首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hepatitis E virus (HEV) infects both humans and animals. Swine has been confirmed to be the principal natural reservoir, which raises a concern that HEV infection would be substantially increasing among swine workers. The present study calculated the pooled prevalence of IgG antibodies against HEV among swine workers and the general population in previous cross‐sectional studies. We conducted a meta‐analysis comparing the prevalence of HEV infection between swine workers and the general population, including local residents, blood donors and non‐swine workers. Through searches in three databases (PubMed and OVID in English, and CNKI in Chinese) and after study selection, a total of 32 studies from 16 countries (from 1999 through 2018) were included in the meta‐analysis. A random‐effect model was employed in the study; an I 2 statistic assessed heterogeneity, and the Egger's test detected publication bias. The comparative prevalence of anti‐HEV IgG was pooled from the studies. Compared to the general population, the prevalence ratio (PR) for swine workers was estimated to be 1.52 (95% CI 1.38–1.76) with the I 2 being 71%. No publication bias was detected (p = 0.40). A subgroup analysis further indicated increased prevalence of anti‐HEV IgG in the swine workers in Asia (PR = 1.49, 95% CI: 1.35–1.64), in Europe (PR = 1.93, 95% CI: 1.49–2.50) and in all five swine‐related occupations, including swine farmers, butchers, meat processors, pork retailers and veterinarians (PR ranged between 1.19 and 1.75). In summary, swine workers have a relatively higher prevalence of past HEV infection, and this finding is true across swine‐related occupations, which confirms zoonotic transmission between swine and swine workers.  相似文献   

3.
4.
Recently, a change of hepatitis E from being a typical travel‐associated disease to an autochthonous zoonosis in Germany was observed. An increasing number of autochthonous infections with the hepatitis E Virus (HEV) have been recognized in developed countries. Venison from wild boar is already known to be a potential source of infection, if not prepared properly by the consumer. In Germany, certain wild animals are known to be a reservoir for HEV. However, current information is missing about European brown hares (Lepus europaeus) and wild rabbits (Oryctolagus cuniculus). Thus, a total of 833 hunting‐harvested animals (European brown hares n = 669; wild rabbits n = 164) were tested for the occurrence of HEV RNA and HEV antibodies. For this, liver and blood specimens were taken after hunts in six German federal states. HEV antibodies were found by ELISA in 2.2% (624/14) of European brown hares, but no HEV RNA was detectable by nested real‐time RT‐PCR. In contrast, a seroprevalence of 37.3% (126/47) was observed for wild rabbits, and 17.1% (164/28) of the samples were HEV RNA positive. Genomic analysis revealed that these partial sequences clustered within the rabbit clade of HEV‐3 genotype. In addition, one rabbit sequence segregated into subtype 3g of HEV‐3. Highest seroprevalences for hares and rabbits were detected in the federal states of Bavaria and of Schleswig‐Holstein, respectively. Comparing urban, rural and insular areas, the highest seroprevalence was shown for wild rabbits in rural areas and for European brown hares on the northern island Fehmarn. This study provides evidence that European brown hares and wild rabbits from Germany can be infected with HEV. The different prevalences indicate that wild rabbits are a potential reservoir for HEV in Germany, whereas European brown hares seem to be only of minor importance for the epidemiology of HEV.  相似文献   

5.
Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.  相似文献   

6.
Hepatitis E virus (HEV) is an emerging pathogen that can be transmitted through contaminated raw or undercooked meat derived from domestic pigs. HEV infections have been documented among pig herds, pig products and environmental samples raising concern about the spread of the virus. HEV genotypes 3 and 4 are considered zoonotic and have been linked to human cases. HEV was detected in 51 of 335 bile samples (15.2%) from healthy pigs in Minas Gerais, Brazil. Phylogenetic analysis of partial sequences from ORF1 and ORF2 regions yielded discordant results, assigning isolates to subtypes 3c and 3i, respectively, suggesting intragenotypic HEV recombination.  相似文献   

7.
Viral pathogens account for a significant proportion of the burden of emerging infectious diseases in humans. The Wellcome Trust‐Vietnamese Initiative on Zoonotic Infections (WT‐VIZIONS) is aiming to understand the circulation of viral zoonotic pathogens in animals that pose a potential risk to human health. Evidence suggests that human exposure and infections with hepatitis E virus (HEV) genotypes (GT) 3 and 4 results from zoonotic transmission. Hypothesising that HEV GT3 and GT4 are circulating in the Vietnamese pig population and can be transmitted to humans, we aimed to estimate the seroprevalence of HEV exposure in a population of farmers and the general population. We additionally performed sequence analysis of HEV in pig populations in the same region to address knowledge gaps regarding HEV circulation and to evaluate if pigs were a potential source of HEV exposure. We found a high prevalence of HEV GT3 viral RNA in pigs (19.1% in faecal samples and 8.2% in rectal swabs) and a high HEV seroprevalence in pig farmers (16.0%) and a hospital‐attending population (31.7%) in southern Vietnam. The hospital population was recruited as a general‐population proxy even though this particular population subgroup may introduce bias. The detection of HEV RNA in pigs indicates that HEV may be a zoonotic disease risk in this location, although a larger sample size is required to infer an association between HEV positivity in pigs and seroprevalence in humans.  相似文献   

8.
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.  相似文献   

9.
应用1对乙型肝炎病毒(HBV)S基因保守区的引物,采用PCR方法从屠宰猪肝、血清中检测到了HBV,序列分析表明,扩增片段与已发表的HBVS基因的同源性高达98%~100%。电镜负染色样品观察结果表明,在HBV表面抗原ELISA检测强阳性反应的血清样品中存在有形态、大小与人HBV Dane颗粒和小球状颗粒相似的病毒粒子。针对戊型肝炎病毒(HEV)()RF2/ORF3重叠区设计了简并引物,采用巢式RT-PCR对屠宰猪肝和血清样品进行了检测。结果表明,部分屠宰猪肝中存在HEV。  相似文献   

10.
Zoonotic hepatitis E: animal reservoirs and emerging risks   总被引:1,自引:0,他引:1  
Hepatitis E virus (HEV) is responsible for enterically-transmitted acute hepatitis in humans with two distinct epidemiological patterns. In endemic regions, large waterborne epidemics with thousands of people affected have been observed, and, in contrast, in non-endemic regions, sporadic cases have been described. Although contaminated water has been well documented as the source of infection in endemic regions, the modes of transmission in non-endemic regions are much less known. HEV is a single-strand, positive-sense RNA virus which is classified in the Hepeviridae family with at least four known main genotypes (1–4) of mammalian HEV and one avian HEV. HEV is unique among the known hepatitis viruses, in which it has an animal reservoir. In contrast to humans, swine and other mammalian animal species infected by HEV generally remain asymptomatic, whereas chickens infected by avian HEV may develop a disease known as Hepatitis-Splenomegaly syndrome. HEV genotypes 1 and 2 are found exclusively in humans while genotypes 3 and 4 are found both in humans and other mammals. Several lines of evidence indicate that, in some cases involving HEV genotypes 3 and 4, animal to human transmissions occur. Furthermore, individuals with direct contact with animals are at higher risk of HEV infection. Cross-species infections with HEV genotypes 3 and 4 have been demonstrated experimentally. However, not all sources of human infections have been identified thus far and in many cases, the origin of HEV infection in humans remains unknown.  相似文献   

11.
Hepatitis E virus (HEV) infection remains an important public health problem, and it is endemic primarily in developing countries. This study aimed to evaluate the seroprevalence of HEV among the general population, occupational population and swine in mainland China and its risk factors based on a systematic review and meta‐analysis. Systematic search from EMBASE, PubMed, Web of Science, Cochrane Library and several Chinese databases, such as Wanfang (WF) Data, China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP) and SINOMED, was searched from inception up to 25 April 2018. The overall seroprevalence of HEV and its corresponding 95% confidence interval (CI) as well as the correlation coefficients between different groups were estimated using stata 12.0 and r ‐3.4.1 software. Potential sources of heterogeneity were explored using subgroup and sensitivity analyses. Twenty‐eight studies with 57,274 participants (including human and swine) were included. The seroprevalence of anti‐HEV immunoglobulin G (IgG) among the general population, occupational population and swine was 27.3% (95% CI: 22.4–32.2), 47.4% (95% CI: 40.1–54.8) and 66.4% (95% CI: 61.7–71.1), respectively. The overall prevalence of IgM among the general population was 1.8% (95% CI: 0.7–2.9). The odds ratio for the occupational population, as compared to the general population, was 2.63. The highest anti‐HEV IgG prevalence (59%) was observed in East China, whereas the lowest (34.8%) was noted in Northeast and North China. In the occupational population, the highest prevalence (77.0%) was observed among swine vendors. Seven studies included 30,392 participants (humans and swine); the correlation coefficient for the prevalence of anti‐HEV IgG between the professional population and adult pigs was 0.88. Sensitivity analyses showed that the stability of results was not considered significant. This research found that HEV is common in China, and contact with pork or other pig products may be an important mode of HEV transmission.  相似文献   

12.
Campylobacter species are commonly isolated from faecal samples collected from dogs and cats, with the most prevalent species being C. upsaliensis, C. helveticus, and C. jejuni. Although the majority of dogs and cats are subclinically infected, some will develop mild to moderate enteritis. Immature animals, animals from intensive housing backgrounds, and animals with concurrent disease are especially predisposed to infection and the development of clinical signs. Bacterial culture methods applied in diagnostic laboratories remain biased to C. jejuni and C. coli detection, but molecular methods to diagnose Campylobacter spp. infections in dogs and cats have become widely available and can aid rapid and accurate diagnosis. Multilocus sequence typing has also been developed for subtyping different strains and has been used in epidemiological investigations. In the majority of cases, clinical signs are self-limiting and antimicrobial treatment is not warranted. Campylobacter spp. isolated from dogs and cats have shown resistance to commonly used antimicrobials, so antimicrobial therapy should only be administered where this is justified. Contact with dogs and cats is a recognised risk factor for human campylobacteriosis, thus people living or working in close contact with cats and dogs should be made aware of the zoonotic organisms these animals can shed.  相似文献   

13.
Surveillance of hepatitis E virus (HEV) in risk groups is an important strategy to monitor its circulation pattern and to timely detect changes thereof. The aims of this cross-sectional study were to estimate the prevalence of HEV infections in pigs and humans from different regions of the country, to identify risk factors for increasing anti-HEV IgG prevalence and to characterize HEV strains. The presence of anti-HEV antibodies was assessed by commercial ELISA in serum samples from the general population, farm and slaughterhouse employees, as well as pigs sampled in the three regions of Cuba from February to September 2016. Overall, individuals with occupational exposure to swine or swine products (70/248, 28.2%) were 4 times more likely to be seropositive compared to the general population (25/285, 8.7%; OR: 4.18; p < .001). Within the risk group, risk factors included age, number of years working in a professional activity with direct exposure to swine, geographic region and distance between residence and closest professional swine setting, while wearing gloves had a protective effect. Prevalence of total anti-HEV antibodies in swine was 88.2% (165/187) and HEV RNA was detected by real-time RT-PCR in 9.2% (16/173) swine stools. All HEV strains sequenced clustered within genotype 3. Some strains clearly belonged to subtype 3a, while another group of strains was related with subtypes 3b and 3 k but partial HEV sequences did not allow unequivocal subtype assignment. These findings suggest that the high HEV exposure in Cuban individuals with swine-related occupations could be due to enzootic HEV in certain regions, direct contact with infectious animals or their products as well as environmental contamination.  相似文献   

14.
Hepatitis E virus (HEV) is known as a causative agent of zoonosis and food poisoning. Pigs and some species of wild animals, including wild boar, are known to be a reservoir of HEV. In this study, we investigated the situation regarding HEV infection in wild boars in Ibaraki Prefecture, Japan. Serum, liver and feces samples from 68 animals were collected, and the presence or absence of HEV genomic RNA and HEV antibodies were analyzed. The viral genome was detected in samples from 7 (10.3%) animals, with all HEVs classified as genotype 3, subtype 3b. HEV antibodies were detected in samples from 28 (41%) animals. This report demonstrates for the first time the high prevalence of HEV infection in wild boars in Ibaraki Prefecture.  相似文献   

15.
The reported incidence of clinical hepatitis E cases is rising in some non‐endemic countries, with concurrent concerns regarding potential hepatitis E virus (HEV) contamination of the blood supply. Therefore, the characterization of major potential sources of human HEV exposure is important to inform risk assessment and public health policy. A systematic review was conducted, including a comprehensive search in six electronic bibliographic databases, verified by hand‐searching reference lists of HEV reviews, and a grey literature search, of the broad research question ‘what is the evidence of the association between predictors of human HEV exposure, and HEV IgG seropositivity, in non‐endemic countries?’ Using forms designed a priori, captured studies were appraised at first‐level screening, second‐level characterization, and third‐level data extraction and risk of bias assessment. Meta‐analysis yielded summary estimates of association between potential predictors and odds of HEV seropositivity. Meta‐analysis and meta‐regression of the odds of HEV seroprevalence in specific groups characterized potential sources of HEV exposure. From 4,163 captured citations, 245 relevant studies underwent data extraction, investigating HEV seroprevalence or predictors in both healthy subjects and targeted patient groups. Across these groups, increasing age was a predictor of HEV IgG seropositivity. Both human immunodeficiency virus patients and haemodialysis patients had significantly increased odds of HEV seropositivity relative to the general population. Working with pigs, in forestry, or in hospitals, was significantly associated with increased odds of HEV seropositivity, as were consumption of meat, pork or game meat, or hunting. Chronological time was not associated with HEV seropositivity within our data sets. Further study of the distribution of potential dietary or behavioural predictors between high and lower prevalence areas within non‐endemic countries could improve our understanding of the relative importance of specific HEV transmission pathways.  相似文献   

16.
猪戊型肝炎病毒大庆株DQ1全基因序列分析   总被引:5,自引:0,他引:5  
本试验采用RT.-PCR的方法对戊型肝炎病毒大庆株(DQ1HEV株)的全基因进行分片段扩增,并对其两个末端采用末端快速扩增法(RACE)进行扩增、克隆,测序。与已报道的人的14株HEV的4个基因型的核苷酸和氨基酸进行比较,与IV型HEV的同源性最高。ORF1区与IV型HEV核苷酸的同源性为82.6%~83.6%.氨基酸同源性为93.5%,ORF2区与IV型HEV核苷酸的同源性为87.0%~88.4%,氨基酸同源性为95.8%~97.4%。ORF3区与IV型HEV核苷酸的同源性为94.4%~96.5%,氨基酸同源性为90.3%~96.5%。其结果表明DQ1 HEV株为IV型HEv。  相似文献   

17.
为了解东北边境地区野猪及放养杂交野猪群体猪戊型肝炎病毒(HEV)感染情况,于2015—2018年在吉林省、黑龙江省的中朝、中俄边境和内蒙古自治区境内加格达奇周边地区采集6月龄以上杂交野猪血清、粪便或肛拭子样品共520份,采集野猪血清和粪便样品共248份。ELISA检测、RT-nPCR检测、全基因组测序、同源性及进化分析结果显示,杂交野猪和野猪感染HEV的血清抗体总阳性率为34.1%(136/399);核酸总阳性率为1.56%(12/771),12份核酸阳性样品均来自杂交野猪,病毒基因组ORF2部分核苷酸序列同源性为85.4%~100.0%,属于基因4型,4a、4b亚型。对4a亚型的1份阳性样品(LJG-18)进行病毒全基因组扩增测序,其核苷酸序列与日本的人源毒株JKO-ChiSai98C同源性最高,为94.9%,与吉林省猪源毒株Ch-S-1同源性为90.2%。结果表明:东北边境地区放养杂交野猪群具有较高的HEV血清抗体阳性率,HEV流行毒株以4a亚型为主。本试验针对我国野猪及放养杂交野猪群体开展猪戊型肝炎流行病学调查,为该病的流行情况提供了新的科学数据,对我国养猪业健康发展和公共卫生安全具有重要意义。  相似文献   

18.
19.
Fasciolosis is caused by digenean trematodes of the genus Fasciola. The principal definitive hosts are cattle, sheep and goats. Humans are infected as accidental hosts. Fasciolosis is one of the major neglected tropical diseases and is considered an emerging zoonotic infection. This study was aimed at determining the prevalence of human and domestic animal fasciolosis in selected counties in Kenya. Stool samples for Fasciola diagnosis were collected from humans and domestic animals and transported to the laboratory at Egerton University and processed using sedimentation technique and examined for the presence of eggs. A total of 272 human samples collected were all negative for Fasciola eggs. A total of 582 domestic animals (cattle [46.0%], sheep [29.9%] and goats [24.1%]) samples collected had overall prevalence of 30.9% for Fasciola infection. There was no significant differences (p > 0.05) between the prevalence of fasciolosis and origin of the animals, sex and season. There was a significant difference (p < 0.05) between the prevalence of fasciolosis and domestic animals, age and body condition. The prevalence of fasciolosis was high in two irrigation schemes which favour the breeding of intermediate host snail and grazing of animals along the irrigation canals where metacercaria of Fasciola parasites could be present on the vegetation. Although human fasciolosis was not detected in this study, the presence of animal fasciolosis can pose public health risk because of its zoonotic nature. Therefore, it is important to introduce measures which would help to reduce the exposure of animals to Fasciola infection.  相似文献   

20.
Hepatitis E virus (HEV) has emerged during the past decade as a causative agent of autochthonous hepatitis and is a clinical concern in Western developed countries. It has been increasingly recognized that pigs are a major reservoir of HEV of genotypes 3 and 4 worldwide and pig‐derived food items represent a potential source of infections by these viruses in humans. Hepatitis E virus RNA testing was performed here on faeces from rectal swabs sampled in 2012 from 50 3‐month‐old farm pigs from the same farm located in south‐eastern France than in a previous work conducted in 2007. Pig HEV sequences corresponding to genomic fragments of ORF2 and ORF1 genes were obtained after RT‐PCR amplification with in‐house protocols. Hepatitis E virus genotype was determined by phylogenetic analysis. Prevalence was similar to that determined 5 years earlier (68% versus 62%). Two robust phylogenetic clusters of HEV subtypes 3a and 3f were identified, and these sequences obtained in 2012 largely differ compared with those obtained in 2007. Notably, HEV sequences obtained in 2012 from a majority (62%) of the infected pigs belonged to subtype 3a, which was not previously described in France, including not being found in any of humans, pigs or wild boars. Further studies are needed to assess the circulation of HEV‐3a in pigs and humans in this country. In addition, along with previous findings, this study supports the need for increased information to the public on the risk of HEV infection through contacts with pigs or consumption of pig‐derived products in France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号