首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
为研究灌水器流道内泥沙颗粒淤积特性的影响因素,进一步降低物理堵塞发生的风险,该研究配置不同浓度(1.8、2.8、3.8 g/L)和不同粒径(0 $leqslant $ d < 0.054 mm、0.054 mm $leqslant $ d < 0.075 mm、0.075 mm $leqslant $ d < 0.1 mm)的含沙水,进行全组合间歇滴灌堵塞试验,对含沙水灌溉下灌水器泥沙沉积特性进行分析并对灌水器内流态进行数值模拟研究。结果表明:灌溉结束后,经由边缝式迷宫灌水器输出的泥沙中,黏粒与砂粒比例下降,粉粒比例上升,即灌水器弯曲流道对小于0.002 mm和大于0.05 mm粒径的泥沙具有明显阻滞作用,流道内堵塞的泥沙集中在0.054~0.1 mm的中大粒径范围内。灌水器流道内部流线在主流区呈波浪状前进,主流区水流流速大于近壁区,中部转角处流速均偏大。沙粒易受上转角和下转角处产生的漩涡影响而沉降集中在漩涡中心及背水面。滞留在漩涡区内的泥沙颗粒是引起灌水器堵塞的主要因素。为减少灌水器堵塞风险,在设计优化时宜考虑减少直角、锐角区域以减少漩涡区的形成。  相似文献   

2.
压力补偿灌水器以其补偿性能好、灌水均匀、铺设长度长等优点得到广泛应用。但由于影响压力补偿灌水器水力性能的因素比较复杂,因此造成压力补偿灌水器设计和优化的困难。该文通过理论分析确定影响压力补偿灌水器水力性能的关键因素包括压力调节腔出水口位置、出水口直径、压力调节腔凸台高度、直径、小槽宽度、弹性膜片的材料性能与厚度,并进一步通过水力性能试验研究了这些关键因素对灌水器水力性能的影响。结果表明:压力调节腔出水口距离越远,流量调节性能越差;压力调节腔出口直径增大会导致工作区间减小;凸台高度应该0.3 mm,否则无补偿效果;凸台直径的改变对灌水器性能影响不大;槽宽的增大有利于提高压力补偿过程的平稳性,但减弱流量调节性能;膜片硬度对补偿效果影响很大,硬度为50 HA时补偿效果最优;膜片厚度的增加可减缓高压阶段流量随压力增长而下降的趋势,有利于灌水器在高压工况下保持流量稳定。研究为压力补偿灌水器的设计和优化提供了参考。  相似文献   

3.
细小泥沙粒径对迷宫流道灌水器堵塞的影响   总被引:3,自引:10,他引:3  
为探明细小泥沙粒径对迷宫流道灌水器抗堵塞性能的影响,该文以内镶片式斜齿形迷宫流道灌水器为研究对象,应用类短周期堵塞测验方法对8种粒径小于0.1 mm的泥沙颗粒进行浑水测试。在此基础上,分析了泥沙粒径和含沙量对灌水器堵塞的影响,探讨引起灌水器发生堵塞时的敏感粒径范围与含沙量水平。试验结果表明:对于粒径小于0.1 mm的细小颗粒,含沙量是引起灌水器堵塞的主要原因,当浑水含沙量水平大于1.25 g/L时,影响尤其显著,呈正相关关系;粒径对堵塞的影响并不是单调的递增或递减,堵塞发生的敏感粒径范围在0.03~0.04 mm之间。试验结果有助于进一步提高含沙水源滴灌的应用水平。  相似文献   

4.
滴灌灌水器迷宫流道主航道抗堵设计方法研究   总被引:20,自引:13,他引:20  
为从结构设计上解决灌水器的堵塞问题,针对滴灌灌水器的各种微小迷宫流道形式,应用计算流体力学(CFD)数值模拟可视化地揭示了迷宫流道内部流动场的情况,并通过流体力学相似实验,用激光多普勒测速仪(LDV)测量了流道中的速度流场,验证了流态模拟计算的正确性.在此基础上,分析了迷宫流道的堵塞机理,针对流道中存在的流动滞止区结构,提出迷宫流道主航道抗堵优化设计方法,使优化后流道中不存在流动滞止区,提高迷宫型灌水器的抗堵性能,并通过了实验验证.  相似文献   

5.
为检验自适应滴灌灌水器的流量自动调节效果,根据自适应滴灌灌水器的工作原理,利用负压吸气泵模拟土壤负压,进行了AD-1型自适应滴灌灌水器在流量补偿、流量自适应2种工作模式的流量均匀性、供水压力-流量关系、模拟土壤负压-流量关系等水力性能试验与研究,并分析了其适宜的工作压力。结果表明:AD-1型自适应滴灌灌水器增添的滴水状态控制结构,不仅保留了常规滴灌灌水器的流量补偿特点,还增添了感知土壤水分含量、智能化控制灌溉和流量自动调节的多重使用功效。在流量补偿模式下,灌水器在额定供水压力100 kPa时的平均流量为14.71 L/h,且流量均匀度高,流量偏差系数为9.79%;在流量自适应模式下,灌水器的流量均匀度基本不变,在供水压力30 kPa和土壤负压最小值20 kPa的共同作用时即可开始正常工作,并确定出最小、最大的适宜供水压力分别为30、50 kPa。在适宜供水压力30~50 kPa范围内,灌水器能根据土壤实际水分状况在0~11.22 L/h之间实时、自动调节滴水流量,改变了常规灌水器被动出水的工作方式,真正实现作物、土壤的按需主动连续取水,明显地提高了节水灌溉设备的精准灌溉水平,既保证了作物正常生长的适宜土壤水分,又促进了灌溉系统应用模式向智能化、自动化方向的进一步发展。  相似文献   

6.
微纳米曝气滴灌时,微气泡在迷宫流道内的行为特征不明确导致系统的运行缺少科学依据。针对该问题,采用粒子跟踪测速技术(Particle Tracking Velocimetry,PTV),对0.02、0.06、0.10 MPa入口压力下迷宫流道内沿程连续5个位置处的气泡液体进行视频拍摄,分析微气泡在流道内的行为特征和入口压力对其的影响。结果表明:沿流道全程,微气泡的数量逐渐减少,直径最大值和平均值逐渐增大,但气泡群经过拍摄段流道的平均速度和平均时间无明显变化规律。在流道相同位置处,入口压力越高气泡数量越少,气泡最大直径越小,气泡群经过的平均时间越短且平均速度越大。入口压力提供气泡群通过流道的最低速度,称为  相似文献   

7.
滴头堵塞是滴灌技术发展的主要障碍。为了分析75 kPa射流三通入口压力下形成的压力脉动对迷宫流道灌水器堵塞的影响。该研究以3个压力(恒定压力,射流三通左侧和右侧的脉动压力),采用因素组合,进行了滴灌系统迷宫流道灌水器堵塞试验研究,最后确定射流三通产生的高频压力脉冲与稳压对平均相对流量(Dra)和克里斯琴森均匀性系数(CU)的影响。结果表明,射流三通组的平均相对流量和克里斯琴森均匀性系数分别比普通三通组高10.8%~14.8%和21.1%~44.9%。3种浑水浓度下(0.5,1.0和1.5 g/L),对于普通三通组,在第16、11和7次灌溉运行之后,平均相对流量降低到74%,这被认为灌水器处于严重堵塞的状态。但是,对于射流三通左和右侧组,分别在第18、16、14、13、11和10次运行后,平均相对流量仍高于75%。高泥沙沉积物浓度(1.5 g/L)的平均相对流量和克里斯琴森均匀性系数与低和中泥沙沉积物浓度(0.5和1.0 g/L)的有显着差异(P<0.01)。高浓度(1.5 g/L)时堵塞的可能性迅速增加,但此浓度下射流三通较普通三通依然具有抗堵塞性能。总之,射流三通产生的高频压力脉冲具有稳定的防堵塞性能。建议使用射流三通代替滴灌系统中的普通三通,以防止灌水器堵塞。  相似文献   

8.
该文开展滴灌双向流道抗堵性能研究,以提高灌水器对含沙率较高的地表水源的适应性。试验浑水含沙率为30 g/L,经20次浑水试验,设置3种结构参数不同的双向流道灌水器(1#,2#,3#),并对比迷宫式流道灌水器的水力性能和抗堵性能。结果表明:1#、2#、3#双向流道浑水流量分别为清水流量的77.44%,83.35%,85.43%,而迷宫式流道在12次试验后完全堵塞。双向流道灌水器与迷宫式流道灌水器的水力性能及抗堵性能差异显著,且双向流道的水力性能及抗堵性能均优于迷宫式流道;双向流道水力性能越好,抗堵性能越差;流道形式及结构参数是影响灌水器水力性能及抗堵性能的重要因素。试验结束后,观测流道泥沙沉积情况,发现泥沙沉积程度由前段(进口)到后段(出口)逐渐减少;采用电子显微镜分别获取流道前段、中段和后段沉积泥沙样品扫描图像,利用Image Pro Plus 6.0软件分析沉积泥沙样品的粒径组成,发现沿流道方向,粒径(29)0.03 mm的泥沙颗粒质量分数逐渐减小,粒径(27)0.005 mm的泥沙颗粒质量分数呈先减小后增加的趋势;流道沉积泥沙中粒径(27)0.03 mm的颗粒质量分数占92.23%~97.89%,此粒径范围的泥沙颗粒更易在双向流道内沉积,引起堵塞。  相似文献   

9.
对滴灌系统的滴头进行试验研究表明,影响流态指数的主要因素是流道结构形式,包括流道齿形、齿角、齿距、齿高和流道的深度,流态指数基本不随滴头流道长度而变化。通过比较不同滴头流道的流态指数、流道长度及流道断面积,分析了其抗堵塞性能,并建立了描述滴头流量与流道长度及工作压力关系的回归模型。  相似文献   

10.
流道结构形式对滴头水力性能影响的试验研究   总被引:6,自引:0,他引:6  
对滴灌系统的滴头进行试验研究表明,影响流态指数的主要因素是流道结构形式,包括流道齿形、齿角、齿距、齿高和流道的深度,流态指数基本不随滴头流道长度而变化.通过比较不同滴头流道的流态指数、流道长度及流道断面积,分析了其抗堵塞性能,并建立了描述滴头流量与流道长度及工作压力关系的回归模型.  相似文献   

11.
滴头性能综合测试平台构建及其在水力特性研究中的应用   总被引:2,自引:0,他引:2  
在对国内外滴头性能测试系统进行深入分析的基础上,构建了面向滴头性能研究的综合测试平台,并利用该系统对目前中国农业灌溉领域最为典型的8种迷宫式流道滴头水力性能进行了研究,结果表明测试系统完全符合滴头流量-压力测试要求;升压、降压两种工作方式对滴头出流的有一定影响,但未达到显著水平;经典的流量-压力关系模型完全适合于1.5~15.0 m压力区间;从水力学角度来看,8种滴头能够满足微重力滴灌滴头的要求;滴头流量偏差系数在整个压力区间范围内都在一定数值附近,制造偏差是属于滴头本身的特性,并不随滴头进口压力的变化而变化,用流量偏差系数完全可以反映这种特性.  相似文献   

12.
内镶片式齿型迷宫滴头抗堵塞试验研究   总被引:3,自引:13,他引:3  
依据ISO滴头堵塞检测方法中“短周期堵塞测试程序”,测试了国内外15种内镶片式齿型迷宫滴头的抗堵塞性能。结果表明:用单一结构参数(流道宽度W、流道深度D、齿高度h和齿角度θ)表征其抗堵塞性能存在局限性;结构特征参数(断面最小尺寸min(D,W)、水力半径R和齿间距l)能较好反映滴头流道横、纵断面的结构特征,在不同程度上表征了流道的抗堵塞性能,且在试验条件下各自均存在抗堵塞临界值;滴头额定流量Qr和迷宫滴头径粒比η与抗堵塞性能相关性较好,且存在抗堵塞临界值。当各参数小于其临界值时,滴头极易堵塞,且抗堵塞性能随结构特征参数、额定流量和迷宫滴头径粒比的增大而明显提高;反之,滴头抗堵塞性能较强,滴头抗堵塞性能对各参数的增大不敏感。该试验结果可为滴头流道优化设计提供参考。  相似文献   

13.
为探求微孔陶瓷灌水器与迷宫流道灌水器在不同水质灌溉条件下抗堵塞性能的差异及堵塞机理,该研究选择了微咸水(A1)、肥水(A2)、微咸水加肥(A3)3种不同水质,分析管间式微孔陶瓷灌水器和6种常用的迷宫流道灌水器在不同水质灌溉条件下的平均相对流量变化规律,并用X射线衍射仪测定堵塞物质组成成分,用场发射扫描电镜观测堵塞物质表面微观形貌及动态生长过程。结果表明:各灌水器的流量随着灌溉运行时间的推移均发生不同程度的下降,其中A1处理下陶瓷灌水器的流量下降最慢,表现出优于迷宫流道灌水器的抗堵塞性能,A2、A3处理下陶瓷灌水器的平均相对流量下降速度先慢后快,试验结束时平均相对流量降幅最大,抗堵塞性能较差;A1处理下堵塞物质的主要成分是CaCO3,A2、A3处理下堵塞物质的主要成分是(NH4)2SO4;A1处理下各灌水器堵塞物表面微观形貌的生长过程为晶体颗粒不断团聚,A2、A3处理下堵塞物的动态生长过程为絮状物不断黏合成板块状或膜状。陶瓷灌水器堵塞发生在内壁上,堵塞物未进入到灌水器内部微孔中,随着堵塞物质增多且变得紧密复杂逐渐覆盖了内壁上的孔隙导致堵塞;迷宫流道灌水器是由于堵塞物质在流道内沉积导致过水断面减小,从而造成堵塞。研究结果可为陶瓷灌水器的应用及改进提供参考  相似文献   

14.
为探明泥沙粒径与含沙量对内镶片式斜齿形迷宫流道滴头的堵塞过程和原因,采用筛分法,分选出6个小于0.1 mm的粒径段,配制成不同含沙量的浑水,在恒压条件下,采用周期性间歇灌水试验观测流量变化,通过电镜扫描法观测堵塞泥沙结构。试验结果表明:粒径为0.075≤D0.1 mm和0.03≤D0.038 mm的泥沙易引起滴头堵塞;粒径为0.038≤D0.05和D0.02 mm的泥沙较难引起堵塞,且含沙量变化对堵塞的影响较小;粒径0.02≤D0.03 mm和0.05≤D0.075 mm的堵塞情况介于上述两者之间。当含沙量为1.2~1.3 g/L时,是最易引起堵塞的临界含沙量。当0.038≤D0.1 mm时,泥沙在流道内不易形成团聚体,造成滴头堵塞的原因是泥沙沉降、堆积;当D0.038 mm时,泥沙易在流道中凝结成大的团聚体,是造成滴头堵塞的主要原因。  相似文献   

15.
为明确浑水条件下正弦波动态压力各参数组合对梯形迷宫流道出流量的影响,该研究以正弦波动态压力参数周期、波幅、基础水压为控制因素设计正交试验,进行浑水灌溉试验,对正常工作次数、排出泥沙中值粒径、淤积泥沙D50值进行极差和方差分析。结果表明:各参数中只有动态周期对正常工作次数、排出泥沙中值粒径和淤积泥沙中值粒径具有显著性;相同基础水压(4、6和8 m,以水头计)的正弦波动态压力的正常工作次数比同水头的恒压状态分别高63.64%、12.50%、36.36%,平均增幅达到37.50%,增幅非常明显;正弦波动态压力对比恒定基础水压有利于不同粒径级别的泥沙通过,上限粒径、中值粒径和下限粒径排出泥沙粒径均有增加,而恒定工作压力下,泥沙粒径越大,越易沉积在流道内,相比正弦波动态压力,中值粒径和下限粒径分别提高了13.41%和18.50%。正弦波动态压力下水流速度波动幅度大,水流紊动强烈,加强了大粒径泥沙的通过,提高了滴头的抗堵塞能力,延长了滴头使用寿命,综合评分得到最优参数组合为周期4 s、基础水压8 m、波幅2 m,动态压力在现有工程基础上较易实现,因而该项研究对滴灌系统的使用具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号