首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

2.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

3.
The effect of an oral dose of probenecid on the disposition kinetics of ampicillin was determined in four horses. An intravenous bolus dose (10 mg/kg) of ampicillin sodium was administered to the horses on two occasions. On the first occasion the antibiotic was administered on its own, and on the second occasion it was administered one hour after an oral dose of 75 mg/kg probenecid. The plasma concentration of probenecid reached a mean (+/- se) maximum concentration (Cmax) of 188-6 +/- 19.3 micrograms/ml after 120.0 +/- 21.2 minutes and concentrations greater than 15 micrograms/ml were present 25 hours after it was administered. The disposition kinetics of ampicillin were altered by the presence of probenecid and as a result the antibiotic had a slower body clearance (ClB; 109.4 +/- 6.71 ml/kg hours compared with 208.9 +/- 26.2 ml/kg hours) a longer elimination half-life (t1/2 beta 1.198 hours compared with 0.701 hours) and consequently a larger area under the plasma concentration versus time curve (AUC 92.3 +/- 5.09 mg/ml hours compared with 35.95 +/- 3.45 mg/ml hours) when compared with animals to which ampicillin was administered alone. The ampicillin concentrations observed suggest that the dosing interval for horses may be increased from between six and eight hours to 12 hours when probenecid is administered in conjunction with the ampicillin.  相似文献   

4.
Cefuroxime pharmacokinetics were studied in unweaned calves. The antibiotic was administered at 10 mg/kg to six calves i.v., to 12 calves i.m. and to ten of the previous 12 calves i.m. at 10 mg/kg together with probenecid at 40 mg/kg. Intramuscular doses of cefuroxime alone at 20 mg/kg were given to seven calves; to five of these calves cefuroxime was also given together with probenecid at 40 mg/kg and at 80 mg/kg. The serum concentration-time data were analyzed using statistical moment theory (SMT). The elimination half-life (t1/2) was 69.2 min (harmonic mean) after i.v. and 64.8 min and 64.9 min following i.m. administration of the lower and higher dose, respectively. Co-administration of probenecid did not affect the t1/2. The mean residence time (MRT) was 80.9 +/- 23.5 min (mean +/- SD) after i.v. and 117.8 +/- 9.3 min and 117.7 +/- 5.4 min after i.m. administration of cefuroxime at 10 and 20 mg/kg, respectively. The MRTi.m. following administration of cefuroxime at 10 mg/kg together with probenecid at 40 mg/kg was 140.0 +/- 8.8 min. The MRTi.m. values were 132.8 +/- 2.3 min and 150.8 +/- 5.1 min after cefuroxime was given at 20 mg/kg together with probenecid at 40 mg/kg or 80 mg/kg, respectively. The total body clearance (ClT) was 3.56 +/- 1.11 ml/min/kg and the volume of distribution at steady state (Vd(ss] 0.270 +/- 0.051 l/kg. The MIC90 values of cefuroxime were 16 micrograms/ml for E. coli and Salmonella isolates, 0.5 microgram/ml for Pasteurella multocida and 2.0 micrograms/ml for P. haemolytica.  相似文献   

5.
Pharmacokinetics of phenobarbital in the horse   总被引:2,自引:0,他引:2  
Pharmacokinetics of phenobarbital was examined in 6 mature horses after 12 mg of phenobarbital/kg of body weight was infused over 20 minutes. Biexponential decrease in serum phenobarbital concentrations was observed with a distribution-phase half-life of 0.101 +/- 0.086 hour (mean +/- SD) and a terminal-phase elimination half-life of 18.3 +/- 3.65 hours. The volume of distribution at steady state was 0.803 +/- 0.070 L/kg. Total body clearance of phenobarbital was 30.8 +/- 6.2 ml/h/kg. The high clearance in the horse seems to explain the markedly shorter half-life of phenobarbital in this species. Seemingly, 6.65 mg of phenobarbital/kg as a 20-minute infusion given every 12 hours would provide approximate peaks of 29 micrograms/ml and troughs of 15 micrograms/ml. A loading dose of 12 mg of phenobarbital/kg would be appropriate for this regimen.  相似文献   

6.
Sodium cefadroxil was administered as a single intravenous dose (25 mg/kg) to six healthy adult mares. Plasma samples were collected over a 24-h period and cefadroxil concentrations were measured by microbiological assay. The pharmacokinetic behavior of the drug was appropriately described in terms of a one-compartment open model. Values for the major pharmacokinetic terms were: extrapolated initial plasma concentration = 59.2 +/- 15.0 micrograms/ml; half-life = 46 +/- 20 min; apparent volume of distribution = 462 +/- 191 ml/kg; and body clearance = 7.0 +/- 0.6 ml/min.kg. In a subsequent study, a suspension of cefadroxil monohydrate was administered intragastrically (25 mg/kg) to the same six horses. Plasma concentrations of the drug peaked at 1-2 h but, in general, absorption was both poor and inconsistent. The data were unsuitable for determination of cefadroxil bioavailability from this oral dosage form. Ninety-nine isolates of eleven bacterial species obtained from clinically ill horses were tested for susceptibility to cefadroxil. All strains of Streptococcus equi, Streptococcus zooepidemicus, coagulase-positive staphylococci, Corynebacterium pseudotuberculosis and five out of six strains of Actinobacillus suis were highly susceptible to the drug (MIC less than 4 micrograms/ml). Escherichia coli, Klebsiella pneumoniae and Salmonella sp. showed intermediate susceptibility (MIC 4-16 micrograms/ml), while all isolates of Corynebacterium (Rhodococcus) equi, Enterobacter cloacae and Pseudomonas aeruginosa proved to be highly resistant to cefadroxil (MIC greater than 128 micrograms/ml).  相似文献   

7.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The correlation between pharmacokinetics and dynamics of furosemide was investigated in anaesthetized dogs. After intravenous administration (i.v.) of furosemide (5 mg/kg), the plasma concentration declined rapidly with bioexponential decay. The half-life (t1/2 beta) of the late phase of elimination was 0.931 +/- 0.187 h and the apparent volume of distribution at steady state was 0.25 +/- 0.043 l/Kg. The total clearance (Cltot) was 0.435 +/- 0.031 l/h/kg, in which the renal clearance was 0.260 +/- 0.020 (about 60% of Cltot). The change in rate of urinary excretion of furosemide was similar to the plasma concentration decay curve. The diuretic effect of furosemide was accompanied by an extreme increase in the excretion rate of sodium and chloride, but not potassium. The relationships between the diuretic response and the plasma concentration or the urinary excretion rate of furosemide was depicted by sigmoidal dose-response curves in both cases. The half-maximum effect was obtained at 1.5 micrograms/ml of plasma concentration or at 80 micrograms/min of excretion rate of furosemide.  相似文献   

9.
Pharmacokinetics of oxytetracycline hydrochloride in rabbits   总被引:1,自引:0,他引:1  
Pharmacokinetics of oxytetracycline HCl (OTC) was studied in rabbits. After 10 mg of OTC/kg of body weight was administered IV, the distribution half-life was 0.06 hour, terminal half-life was 1.32 hours, volume of distribution area was 0.861 L/kg, and total body clearance was 0.434 L/kg/h. After 10 mg of OTC/kg was given IM, the absorption half-life was 2.09 hours, extent of absorption was 71.4%, and total body clearance of the absorbed fraction was 0.576 L/kg/h. Based on these kinetic data, a dosage of 15 mg of OTC/kg, every 8 hours was developed. This dose given IM for 7 consecutive days resulted in observed steady-state maximum and minimum concentrations (mean +/- SD) of 4.7 +/- 0.3 micrograms/ml and 3.2 +/- 0.6 micrograms/ml, respectively. Twice this dose (30 mg of OTC/kg, every 8 hours) given IM caused anorexia and diarrhea.  相似文献   

10.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

11.
The pharmacokinetics of caffeine were determined in 10 camels after an intravenous dose of 2.35 mg kg(-1). The data obtained (median and range) were as follows. The elimination half-life (t(1/2)) was 31.4 (21.2 to 58.9) hours, the steady state volume of distribution (V(SS)) was 0.62 (0.51 to 0.74) litre kg(-1)and the total body clearance (Cl(T)) was 14.7 (8.70 to 19.7) ml kg(-1)per hour. Renal clearance estimated in two camels was 0.62 and 0.34 ml kg(-1)per hour. In vitro plasma protein binding (mean +/-SEM, n = 10) to a concentration of 2 and 8 microg ml(-1)was 36.0 +/- 0.24 and 39.2 +/- 0.36 per cent respectively. Theophylline and theobromine were identified as caffeine metabolites in serum and urine. The terminal elimination half-life of the former, estimated in two camels, was 70. 4 and 124.4 hours. Caffeine could be detected in the urine for 14 days.  相似文献   

12.
Disposition kinetics and urinary excretion of ceftriaxone were investigated in healthy crossbred calves after its single intravenous administration (10 mg kg-1). Based on kinetic parameters, an appropriate dosage regimen of ceftriaxone in calves was calculated. The peak plasma level of ceftriaxone at 1 min was 84.0 +/- 1.55 micrograms ml-1 which declined to 0.43 +/- 0.05 microgram ml-1 at 8 h. The value of elimination half-life (t1/2 beta), volume of distribution Vd (area) and total body clearance (ClB) were 4.39 +/- 0.63 h, 1.91 +/- 0.19 L kg-1 and 0.31 +/- 0.01 L kg-1 h-1, respectively. Approximately 41 per cent of total administered drug was recovered in the urine within 24 h of its administration. The plasma protein binding of ceftriaxone was found to be concentration dependent with an overall mean of 38.55 per cent. The binding capacity of ceftriaxone to plasma proteins and the dissociation rate constant of protein-drug complex were 20.1 x 10(-8) +/- 18.4 x 10(-8) mole g-1 and 1.07 x 10(-6) +/- 0.52 x 10(-6) mole, respectively. An appropriate intravenous dosage regimen of ceftriaxone in cattle would be 12 mg kg-1 repeated at 24 h.  相似文献   

13.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

14.
The central arterial pharmacokinetics of thiopental were studied in six rabbits, six sheep and six dogs after a short infusion at approximately 10 mg/kg min. Thiopental was infused to a defined electro-encephalographic endpoint (EEG burst suppression). The time to reach early burst suppression was longer in the dog (3.9 +/- 0.5 min) compared with the sheep (3.0 +/- 0.6 min) and the rabbit (2.5 +/- 0.5 min). The total dose required to produce the same level of EEG activity was higher in the dog (35.9 +/- 6.8 mg/kg) compared with the sheep (24.3 +/- 5.3 mg/kg) and the rabbit (21.6 +/- 6.8 mg/kg). The plasma concentration-time data for each animal was fitted using non-linear regression to a bi- or tri-exponential function. In all animals, the plasma-time profile was best described as a tri-exponential decay. The initial volume of distribution was similar in all three species (rabbit, 38.6 +/- 10.0 mg/kg; sheep, 44.5 +/- 9.1 ml/kg; dog, 38.1 +/- 18.4 ml/kg). The maximum arterial plasma thiopental concentration achieved at EEG burst suppression was higher in the sheep (221.8 +/- 27.9 micrograms/ml) than the dog (164.7 +/- 29.9 micrograms/ml) or the rabbit (112.3 +/- 15.1 micrograms/ml). Thiopental distribution clearance was slower in the sheep (43.6 +/- 15.1 ml/min/kg) compared with the rabbit (110.5 +/- 18.7 ml/min kg) and the dog (97.2 +/- 47.2 ml/min kg). Elimination half-life was extended in the sheep (251.9 +/- 107.8 min) and dog (182.4 +/- 57.9 min) relative to the rabbit (43.1 +/- 3.4 min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Plasma ampicillin concentrations were determined in a cross-over trial involving five cows after single intramuscular or intra-abdominal administration of sodium ampicillin (10 mg/kg) and ampicillin anhydrate (40 mg/kg). After injection of sodium-ampicillin, high plasma concentrations were reached within 10 min; Cmax following intramuscular injection was 9.1 micrograms/ml and after intra-abdominal injection 7.5 micrograms/ml. Urine concentrations of ampicillin were low after 24 h (1-1.5 micrograms/ml). No significant changes in blood leucocyte numbers, plasma zinc, iron or fibrinogen levels occurred. After injection of ampicillin anhydrate 1 h elapsed before maximum plasma levels were obtained; Cmax was 5.4 micrograms/ml after intramuscular and 6.7 micrograms/ml after intra-abdominal administration. Urine concentrations were very high (238-303 micrograms/ml) after 24 h and stayed above 1 microgram/ml for 6 days. After administration of ampicillin anhydrate a significant increase in blood neutrophils (P less than 0.01) and a significant increase in plasma fibrinogen was measured after intramuscular and intra-abdominal injection (P less than 0.05). A significant decrease in plasma zinc concentration after intra-abdominal injection occurred (P less than 0.05). In abdominal surgery in cows in which contamination cannot be prevented, and practical objections inhibit preoperative administration, intramuscular or intra-abdominal administration during surgery of sodium ampicillin seems justified. Ampicillin anhydrate should not be used intra-abdominally.  相似文献   

16.
Gentamicin (GT) was administered IM to 6 healthy mature mare ponies at a dosage of 5 mg/kg of body weight every 8 hours for 7 consecutive days (total, 21 doses). Two venous blood samples were collected before (trough) and at 1 hour (peak) after the 5th, 10th, 14th, and 19th doses. An endometrial biopsy was done of each mare on days 4 and 7. On the 7th day, just before the 21st administration of GT, base-line blood samples were collected, and 22 blood samples were collected over a period of 48 hours after GT was given. The mares were catheterized on the 7th day, and urine was collected for 24 hours. Serum, urine, and endometrial GT concentrations were determined by a radioimmunoassay technique (sensitivity of 0.3 micrograms/ml of serum). Serum GT concentration data obtained from the terminal phase were best fitted by a 1-compartment open model with a biological half-life of 2.13 +/- 0.43 hours. Total body clearance and renal clearance were 1.69 +/- 0.41 and 1.40 +/- 0.26 ml/min/kg, respectively. Mean endometrial concentrations on day 4 and day 7 were 5.02 +/- 3.3 and 12.75 +/- 1.6 micrograms/g. To achieve mean serum GT concentrations (micrograms/ml) at steady state of 6.47 +/- 1.51, a maximum steady-state concentration of 12.74 +/- 1.60, and a minimum steady-state concentration of 1.43 +/- 0.57, a dosage of 5 mg/kg every 8 hours is recommended. Serum urea nitrogen, serum creatinine, and the fractional clearance of sodium sulfanilate were determined before and after GT treatment. Renal function remained within the base-line range during 7 days of GT administration.  相似文献   

17.
Six mature Holstein bulls were given an 8-day course of phenylbutazone (PBZ) orally (loading dose, 12 mg of PBZ/kg of body weight and 7 maintenance doses of 6 mg of PBZ/kg, q 24 h). Plasma concentration-vs-time data were analyzed, using nonlinear regression modeling. The harmonic mean +/- pseudo-SD of the biologic half-life of PBZ was 61.8 +/- 12.8 hours. The arithmetic mean +/- SEM of the total body clearance and apparent volume of distribution were 0.0021 +/- 0.0001 L/h/kg and 0.201 +/- 0.009 L/kg, respectively. The predicted mean minimal plasma concentration of PBZ with this dosage regimen was 75.06 +/- 4.05 micrograms/ml. The predicted minimal plasma drug concentration was compared with the observed minimal plasma drug concentration in another group of bulls treated with PBZ for at least 60 days. Sixteen mature Holstein bulls were given approximately 6 mg of PBZ/kg, PO, daily for various musculoskeletal disorders. The mean observed minimal plasma concentration of PBZ in the 16 bulls was 76.10 +/- 2.04 micrograms/ml, whereas the mean predicted minimal plasma concentration was 74.69 +/- 3.10 micrograms/ml. Dosages of 4 to 6 mg of PBZ/kg, q 24 h, or 10 to 14 mg of PBZ/kg, q 48 h, provided therapeutic plasma concentrations of PBZ with minimal steady-state concentrations between 50 and 70 micrograms/ml.  相似文献   

18.
Six adult domestic shorthair obese cats were given 3-mg/kg gentamicin sulfate by rapid i.v. and by s.c. injection in a cross-over design. The plasma concentration-time data were analyzed using statistical moment theory with no assumption of a specific compartmental model. Means +/- SD for the half-life, which was calculated from the terminal slope of the log concentration-time curve, were 1.37 +/- 0.24 and 1.24 +/- 0.22 h following i.v. and s.c. injection, respectively. The apparent volume of distribution at steady state was 118.55 +/- 19.83 ml/kg, and total body clearance was 1.07 +/- 0.25 ml/kg/min. Bioavailability was 83.58 +/- 14.83% after s.c. administration. The calculated s.c. dose in obese cats to produce an average steady-state concentration of 4 micrograms/ml is 2.5 mg/kg every 8 h compared to 3 mg/kg in normal-weight cats.  相似文献   

19.
Pharmacokinetic profile and therapeutic range of plasma quinidine concentration were determined in dairy Holstein cows. Plasma half-life of intravenous quinidine was 1.28 +/- 0.492 (0.41-1.65) hr. The pattern of plasma quinidine transition after oral administration varied greatly among individuals. Total body clearance was 58.7 +/- 24.49 ml/min/kg, although renal quinidine clearance was 0.76 +/- 0.441 ml/min/kg. Therefore, the involvement of some extrarenal organ as the main site of excretion was suspected. Seven cows, diagnosed as atrial fibrillation or ventricular premature contraction, were orally administered with quinidine at various dosages. They showed plasma concentration of 2.3 +/- 1.59 mg/l when therapeutic effect was observed. Clinical signs of intoxication were observed at plasma quinidine concentrations over 10 mg/l. These results suggest the difficulty with the maintenance of effective plasma quinidine concentration by an oral or a single intravenous administration, and thus it is concluded that use of quinidine for treatment arrhythmic cows must be carefully done in order to avoid possible intoxication.  相似文献   

20.
The pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) single-dose administration of acyclovir were determined in Quaker parakeets. After i.v. injection at a dose of 20 mg/kg of acyclovir, elimination half-life was estimated at 0.65 h, volume of distribution at steady state was 627.65 ml/kg, and clearance was 11.22 ml/kg/min. The estimated pharmacokinetic values after i.m. injection at a dose of 40 mg/kg of acyclovir were an elimination half-life of 0.71 h and a bioavailability of 90.1%. The peak plasma acyclovir concentration occurred at 15 min when the drug was administered i.m. Plasma concentrations of acyclovir were undetectable 4-6 h after i.v. administration and 6-8 h after i.m. administration. Oral (capsules) and intravenous (sodium salt) formulations of acyclovir were given by gavage at 80 mg/kg. Peak concentrations with the sodium salt formulation were lower and developed more slowly than with the capsules. In studies designed to detect excessive drug accumulation or adverse side effects, acyclovir was administered i.m. at 40 mg/kg every 8 h for 7 days. Plasma concentrations were determined 15 min after (peak) and just prior to drug administration (trough). In another study acyclovir was gavaged at a dose of 80 mg/kg every 8 h for 4 days. Acyclovir plasma concentrations were determined just prior to and 2 h after drug administration. In both experiments, the birds maintained normal appetite and weight and did not exhibit excessive drug accumulation. Acyclovir plasma concentrations ranging from 2.07 +/- 1.09 micrograms/ml to 3.93 +/- 1.13 micrograms/ml were maintained for 4 days when acyclovir was administered in the feed and water (sole source of food and water).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号