首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concept of soil organic C (SOC) saturation suggests that the quantity of stable SOC is limited and determined by the amount of fine particles (clay + fine silt, Clay + fSilt). The difference between the theoretical SOC saturation value and the measured SOC one for the fine fraction corresponds to the soil’s saturation deficit and may represent the potential for SOC sequestration in a stable form. We calculate the saturation deficit of French arable soils based on the national soil test database and using the saturation equation. For the whole database (n = 1 454 633), the median saturation deficit was 8.1 gC/kg and this generally increased with the Clay + fSilt content to reach a maximum of 500 g/kg. National mapping of the SOC saturation deficit allowed investigation of spatial variation and controlling factors. Saturated soils were found in localities with specific land use (grassland, meadows) or farming systems (livestock production with high manure production). Smaller deficits occurred at higher altitudes, probably due to the combined effect of cooler temperature and the presence of meadows. Some very sandy soils appeared to be almost saturated, largely due to their very small fine fraction. Soils in the highly cultivated plains in the northern half of the country had a significant saturation deficit. Soils in the southern part of the country had the highest saturation deficit because of the combined effects of climatic factors (low production, high temperature) and land use (vineyards, orchards). Analysis of communal data revealed significant correlations at the national level with Clay + fSilt (r = 0.59), pH (r = 0.44) but also with the proportion of grassland in the cultivated area (r = ?0.47). Some areas had apparent oversaturation which may be due to uncertainty associated with the theoretical C saturation equation because of overestimation of the stable soil C fraction. Mapping the C saturation deficit at the national scale demonstrates the influence of climate, soil parameters and land use on the SOC stabilization potential and indicates that a significant proportion of agricultural soils have potential for further SOC storage.  相似文献   

2.
Soil degradation processes may be of various kinds, including soil compaction. The present study was carried out with the objective of assessing the sensitivity of agricultural or recently abandoned soils in Maputo province of Mozambique to compaction. The assessment is based on the maximum of bulk density attained using the Proctor test (MBD).

In this study the soil texture is expressed by silt plus clay (S + C) or clay (C). The relations between the soil texture and MBD, and between soil texture and critical water content (CWC—soil water at which MBD is attained) were determined. Selected soils range from 10 to 74% of S + C and 9 to 60% of C.

The results suggest there is a relationship between the considered parameters, being that between S + C and MBD or CWC, the best. For MBD the relationship is represented by two quadratic equations with the boundary in between these being a S + C value of 25% and C value of 20%.

Based on the obtained results, one can conclude that the selected parameters may be a useful basis for estimation of the sensitivity to compaction of the Maputo province's soils. It is recommended that similar studies be carried out for soils under forest land and for soil of other provinces to establish the national physical degradation hazard as a function of soil parameters determined routinely and at low cost. The suggested parameters are texture and soil organic matter (SOM).  相似文献   


3.
The critical state parameters of intact samples of a sandy loam (Eutric Cambisol) and a clay loam (Gleysol) were estimated in a constant cell volume triaxial apparatus. Samples were taken under wet and dry conditions. The parameters describing the clay loam were the more variable. This was true of both its initial condition and its response to deformation. Under dry conditions, the sandy loam was less sensitive to increasing stress but compacted more at low stress than the clay loam. Isotropic stress compacted the wet soils until the percentage saturation reached about 85–95% and axial loading caused little further compaction. The difference in strength between soils was greater for the wet samples, whereas the corresponding compactibility differences were greater under dry conditions. The sandy loam was stiffer than the clay loam and the shear modulus decreased exponentially with increasing specific volume before deformation. The rebound slope was about one-twentieth of the compression index for the dry soils and about one-third of the compression index for the wet soils. A simple model of recompression accounted for plastic deformation below the virgin compression line, where the critical state model usually assumes elasticity. The proposed model reproduced the main observed features of repeated isotropic loading.  相似文献   

4.
Earthworms are the major component of the soil fauna in temperate agro-ecosystems. Land use and soil management are widely reported to influence earthworm populations. We report simple laboratory experiments in which earthworm survival was tested against uniaxial loads for a range of soil conditions. Across all the experimental conditions 86% of earthworms survived. While greater loads (up to 800 kPa) over longer exposure times (up to 60 s) decreased survival; even under the most severe test conditions 33% of earthworms survived. Our results suggest that decreased earthworm populations in compacted soil are not due to uniaxial loading alone, but may be the result of shearing the soil during loading or from changes to the soil properties.  相似文献   

5.
Fields trafficking by wheeled farm machines results often in unfavourable soil compaction. In order to monitor trafficking intensity under different soil tillage technologies, every machine was equipped with a DGPS signal receiver before the entrance into the field under conventional, minimum and zero tillage technology. Positioning data was automatically logged every 2 s and the dimensions of tyres (mainly width) and wheel spacing were marked for every machine. Trajectories of farm machines trafficking and wheel tracks covering 1 ha area are shown for different technologies evaluated during one growing season. The results document that up to 95.3% of the total field area was run-over with a machine at least once during a year, when using conventional tillage. Up to 72.8% or 55.7% of the total field area was run-over when using minimum tillage and direct seeding, respectively. It was calculated that 145.6% of covered area can be run-over repeatedly for conventional tillage, 44.8% for minimum tillage and 18.4% only for direct seeding.  相似文献   

6.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


7.
农田土壤机械压实研究进展与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
任利东  王丽  林琳  张斌 《土壤学报》2023,60(3):610-626
土壤机械压实是威胁全球农业可持续发展的重要因素之一。从农田土壤压实的检测、危害、缓解和预防四个方面系统介绍当前国内外土壤压实的最新研究进展与不足。指出检测方法的创新和突破是实现田间尺度下压实土壤空间分布检测的关键;压实土壤危害的研究多集中在耕层土壤,但忽视了深层土壤压实危害及其在应对气候变化中可发挥的生态服务功能;提倡采用轮作轮耕等合理田间管理措施缓解压实土壤;深层土壤压实具有存在时间久和恢复难度大的特征,因此重点应以预防为主,但当前对土壤压实预防重视不足且预防技术体系尚不成熟。鉴于我国农业机械化正处在快速发展期,采取有效预防措施是避免重蹈发达国家土壤压实退化的有效手段。  相似文献   

8.
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs.  相似文献   

9.
In soil loosening processes like seedbed preparation, significant soil crumbling is often desired. A better understanding of the mechanics of crumbling is necessary to optimize crumbling operations, particularly in structured agricultural soils in which capillary bonds are dominant. To this end, a model of the mechanics of capillary crumbling in structured agricultural soils is developed. Four sets of experiments on cylindrical soil samples were carried out to investigate the validity of the model and soil crumbling characteristics as influenced by freezing, thawing and drying. After preparation and sample pre-treatment, the samples were dried to different moisture contents and then tested to determine soil bonding strength. Soil water suction was also monitored at testing as were sample dimensions at different stages of experimentation. The model was found to account satisfactorily for the mechanics of capillary crumbling in structured agricultural soils. Freezing had the effect of reducing the strength of inter-aggregate bonds whilst preserving the integrity of soil aggregates during crumbling.  相似文献   

10.
为解决通讯环境较差的农业机械作业状态数据的传输难题,该文提出了基于改进Huffman编码技术的数据压缩方法实现数据的压缩、传输、解析与解压。数据压缩与解压测试的结果表明,数据采集周期为5 s、数据长度为918.38 kb时,基于改进Huffman算法压缩的数据长度为412.56 kb,同样条件下对比传统Huffman算法压缩的数据长度498.56 kb小86 kb,压缩率从传统Huffman算法的45.71%提升至改进Huffman算法的55.08%;传统Huffman算法中数据传输出错率和数据传输丢包率为2.47%和4.18%,而在同样传输要求下的筛选压缩传输中数据传输出错率和数据传输丢包率降至2.06%和0.78%。该方法能满足农业机械作业状态数据压缩传输要求,在单个数据包数据较少、传输时间短的压缩传输方式下能够获得较低的传输出错率和丢包率,且该方法具有计算量少、压缩效率较高特点,适合在农业机械作业区域进行数据传输。  相似文献   

11.
Lodging is the permanent displacement of cereal stems from the vertical. Cereal plants growing in the edge rows next to both wheel tracks (‘tramlines’) and the gaps between experimental plots (‘inter-plot spaces’), which are traversed by farm vehicles during planting operations and agrochemical application, are less prone to lodge than plants growing elsewhere in fields and plots. Previous research has attributed this phenomenon to an increase in the stem strength of edge row plants, and hence their resistance to stem lodging, resulting from reduced competition between edge row plants for resources. However, this explanation gives no consideration to the anchorage strength of edge row plants, and hence their resistance to root lodging. Differences in soil and plant characteristics between the edge and centre rows of plots of winter barley (Hordeum vulgare L.) were examined on sand, silt and clay dominated soil types. Edge rows next to tramlines were investigated on the silt and clay soil types, whereas edge rows next to inter-plot spaces were investigated on the sand soil type. Edge row plants next to both tramlines and inter-plot spaces had 58.8% greater anchorage strength and hence resistance to root lodging than centre row plants. This was attributed to (1) greater soil compaction in the edge rows resulting from wheel traffic in the tramlines and inter-plot spaces, which increased the strength of the soil matrix surrounding the roots, and (2) greater plant root growth in the edge rows resulting from reduced competition. Bulk density, root plate spread and structural rooting depth were 19, 22, and 12% greater, respectively, in the edge rows of all soil types. The results suggest that in order to reduce lodging risk, energies should be directed towards identifying agricultural practices that optimise soil compaction in the seedbed without causing significant limitations to root growth.  相似文献   

12.
Factors affecting the compaction susceptibility of South African forestry soils were assessed. Two traditional measures of compaction susceptibility were used: maximum bulk density (ρmbd) determined by the standard Proctor test, defined compactibility, and the compression index using a simple uni-axial test, defined compressibility. Soils were chosen from a broad range of geological and climatic regions and they varied greatly in texture (8 to 66 g 100 g−1 clay) and organic matter content (0.26 to 5.77 g 100 g−1 organic carbon). Soils showed a wide range in ρmbd values, from 1.24 to 2.00 Mg m−3, and this reflected the wide range of particle size distributions and organic matter contents of the soils. Very good correlations were achieved between measures of particle size distribution, particularly clay plus silt and both compactibility and compressibility. Both compactibility and compressibility were significantly correlated with loss-on-ignition (LOI) which is a measure reflecting the combined effects of soil texture and organic matter on soil physical properties. Indices of compaction susceptibility were influenced more by particle size distribution than by organic carbon content. Clear effects of organic carbon on compaction behaviour were only evident for soils with low clay contents (< 25 g 100 g−1. No clear relationship between compactibility and compressibility was found. Compactibility generally increased with decreasing clay plus silt content, whereas compressibility increased up to about 70 g 100 g−1 clay plus silt before decreasing again. It is difficult to define compaction susceptibility solely in terms of indices of compactibility or compressibility particularly as there is no clear relationship between these two properties. A classification system for compaction risk assessment is presented, based on the relationship between compactibility (ρmbd) and LOI, and between clay plus silt content and compressibility.  相似文献   

13.
Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley.  相似文献   

14.
Methods to quantify the mechanical strength of agricultural soils in order to assess the trafficability are presented. The pedotransfer functions relating the precompression stress as a measure of soil strength and the depending soil parameters are also shown. By using cohesion and angle of internal friction values, the precompression stress can be calculated using the multiple regression equations. Horizon specific values on the mechanical stability of arable soils is determined at various moisture suctions. Changes in dependence of gravel contents are also given. The stress transmission for specific soil horizons is calculated by using classified values of the concentration factor. The mechanical stability for the soil profile is then determined by comparing the actual pressures in a specific soil horizon with the corresponding value of the precompression stress. Stress dependent changes of soil physical properties only occur when applied stress exceeds the precompression stress. These changes in soil physical properties are dependent on soil suction, texture, structure and applied stress. Regression equations presented in this paper can be used to calculate the changes in soil physical and mechanical properties due to loading. The proposed method is a useful tool towards fulfilling the soil protection law in the Federal Republic of Germany.  相似文献   

15.
Integrating livestock with cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) production systems by grazing winter-annuals can offer additional income for producers provided it does not result in yield-limiting soil compaction. We conducted a 3-year field study on a Dothan loamy sand (fine-loamy, kaolinitic, thermic plinthic kandiudults) in southern Alabama, USA to determine the influence of tillage system prior to cotton–peanut planting on soil properties following winter-annual grazing. Two winter-annual forages [oat (Avena sativa L.) and annual ryegrass (Lolium mutiflorum L.)] and four tillage practices [chisel + disk, non-inversion deep tillage (paratill) with and without disking and no-till] were evaluated in a strip-plot design of four replications. We evaluated cone index, bulk density, infiltration, soil organic carbon (SOC), and total nitrogen (N). Paratilling prior to cotton or peanut planting, especially without surface soil tillage, reduced compaction initially to 40 cm and residually to 30 cm through the grazing period in winter. There were no significant differences in cone index, bulk density, or infiltration between forage species. No-tillage resulted in the greatest bulk density (1.65 Mg m−3) and lowest infiltration (36% of water applied), while paratilling increased infiltration in no-tillage to 83%. After 3 years, paratilling increased SOC 38% and N 56% near the soil surface (0–5 cm), as compared to concentrations at the beginning of the experiment, suggesting an improvement in soil quality. For coastal plain soils, integrating winter-annual grazing in a cotton–peanut rotation using a conservation tillage system of non-inversion deep tillage (paratill) with no surface tillage can improve soil quality by reducing cone index, increasing infiltration, and increasing SOC in the soil surface.  相似文献   

16.
There is increased use of rubber-tracked tractors for ploughing on clay soil (Vertic Cambisol) in central, south and insular Italy instead of metal-tracked tractors, because they allow travel on public roads. Field tests were carried out on arable soil previously ploughed and harrowed to compare two types of tractors, one rubber-tracked (CAT Challenger Ch 45) and one wheeled (New Holland 8770) in order to establish the compacting effects resulting from 1 and 4 passes of the tractors in the same track. The following parameters were studied: soil penetration resistance, bulk density and its increment ratio, soil shear strength, soil macroporosity and hydraulic conductivity. Multiple passes made by the two tractors induced very similar effects on the soil in regards to soil penetration resistance. Mean values of penetration resistance (0–0.20 m depth) were 1.15 MPa for the rubber-tracked tractor and 1.11 MPa for the wheeled tractor; mean values of penetration resistance (0.21–0.40 m depth) were 1.07 MPa for the rubber-tracked tractor and 1.17 MPa for the wheeled tractor. The decrease in macroporosity, in particular that of elongated pores in the soil surface layer (0–0.10 m depth) was greater in treatments involving the rubber-tracked tractor (from 20.2 to 2.7%) than for the wheeled tractor (from 20.2 to 10.3%). Following traffic of the two tractors, hydraulic conductivity decreased and the following values were found for the five treatments: control, 18.48 mm h−1; wheeled tractor 1 and 4 passes, 11.15 and 7.45 mm h−1, respectively; rubber-tracked tractor 1 and 4 passes, 3.25 and 1.1 mm h−1, respectively. Highly significant correlations between shear strength and dry bulk density, and between hydraulic conductivity and elongated pores and total macroporosity were found. Significant linear relationships between macroporosity and penetration resistance for 1 and 4 passes of both tractors were found in the soil layers (0–0.10 m). A significant difference was found between tractors and for correlations of penetration resistance values above control values. However, in the soil layer (0–0.20 m depth), with respect to the higher degree of macroporosity and low values of penetration resistance, treatments involving wheeled tractor (1 pass) showed a lower degree of soil compaction than was observed after 1 pass of the rubber-tracked tractor.  相似文献   

17.
A soil mechanical resistance sensor with a large-diameter disc coulter was developed to delineate areas of differing soil strength across agricultural fields. The instrumented disc coulter consisted of a 76.2 cm disc with two depth-measuring sensors (rotary potentiometer and ultrasonic proximity sensor) along with a global positioning system (GPS) receiver to georeference operating depth measurements. The consistency and repeatability of the system response were evaluated by making six passes across long-term tillage comparison plots with different degrees of soil disturbance, including: 20 cm plowing, 15 cm disking, 30 cm chiseling, and no-till in several combinations. At the time of testing, standard soil cone penetrometer measurements were taken. The relationship between the average cone index in the 0–30 cm soil profile (CI0–30 cm) and the disc operating depth was evaluated. In addition, the cumulative energy density of the given depth of penetration defined as specific cone penetration energy (J m−2 or N cm−1) for each tillage plot was calculated using the cone index profiles. The average measured depth in each tillage plot was compared to the average predicted depth (dci) of a fixed specific cone penetration energy (Pci). Static calibration tests on the depth sensors showed excellent linearity with coefficients of determination (R2) greater than 0.99. The results showed that, on the average, the changes in the depth measured with the rotary potentiometer were 44 and 68% of the changes in the depth measured with the ultrasonic proximity sensor while the disc coulter was passing across, or along, the tillage plots. This difference was primarily due to the sinkage of the tractor wheels. The depth measured with the ultrasonic sensor had significant correlation with both CI0–30 cm and dci. This was partially due to the fact that a significantly high correlation (R2 = 0.97) between the CI0–30 cm and dci was observed, which was not expected and originated from the type of soil profiles present. The instrumented disc coulter is a low soil disturbance system and could be used as an inexpensive and simple sensor to obtain information about the mechanical condition of the soil for spot tillage or other management decisions.  相似文献   

18.
19.
Alleviation of soil compaction: requirements, equipment and techniques   总被引:1,自引:0,他引:1  
The nature of soil disturbance required to alleviate soil compaction in a range of agricultural and land restoration situations is identified. Implement geometry and adjustments required to achieve the desired brittle or tensile deformation of compacted soil are discussed. Field operating procedures to achieve the required degrees of soil fissuring, loosening or soil unit rearrangement using the power units and equipment available are described. A new progressive loosening technique is identified for use within deep, extremely compacted soil profiles. Emphasis is given to the importance of making visual field checks across the loosened soil zone at an early stage, to check the desired disturbance is being achieved. Care must be taken during subsequent trafficking operations, to minimize the risk of recompaction.  相似文献   

20.
In order to facilitate inverse modeling of time-series data and/or parameter estimation for process-based models of soil organic carbon (SOC) dynamics, we developed and applied a new surrogate CENTURY SOC model (SCSOC). While SCSOC has mass balance and decomposition kinetics equations for residue and soil organic matter (SOM) pools identical to those of CENTURY, it differs by being: (1) decoupled from models of plant growth, nutrient cycling, and hydrologic processes; (2) capable of employing daily, monthly, or annual timesteps; (3) solvable using widely available non-linear regression software. Here, we describe SCSOC and demonstrate that its numerical solution to the CENTURY SOC equations is highly accurate for both daily and monthly timesteps, provided the monthly physical forcing function inputs are appropriately derived from daily-resolution hydrologic model results.As an example of the proper application of the tool to obtain site-specific parameters and to investigate hypotheses using historical data, we analyzed SOC data from a single subplot of the Morrow Plots (Urbana, Illinois, U.S.A.) that has been cropped continuously in corn since 1876 using management practices that were common for east-central Illinois. The impact of different approaches typically used during calibration were examined by objectively estimating a variety of parameter sets that both govern SOM decomposition kinetics and define the initial mass and fractionation of the SOM. The results suggest that mean SOM turnover times were circa 5-fold longer during the period 1876-1954 relative to 1955-1995, when modern management practices were employed, and significantly different from default CENTURY predictions during both.Modified versions of SCSOC were also constructed in order to (1) show that uncertainty about historical soil erosion does not confound this interpretation of the data and (2) explore alternative assumptions about the structure of the model. One such alternate model showed that unexpectedly rapid decomposition of the corn-derived SOM combined with depletion of slowly-decomposing prairie-derived SOM could explain the post-1955 acceleration in decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号