首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
    
Urban greenery is of great significance for sustainable urban development due to the diverse ecosystem services it provides. Assessing urban greenery can reveal its impact on urban areas and provide the evidence base for strategic urban forest management and planning, thereby contributing to sustainable urban development. Street View (SV) images are being used more frequently and widely for assessing urban greenery due to the advantages of providing new perspective and saving workload and research costs. In this paper, 135 peer-reviewed publications that employed SV to assess urban greenery between 2010 and 2022 are reviewed. Presently, the most widely applied area of SV-based urban greenery research is to extract the green view index. Although this has many potential applications for assessing ecosystem services, it has most often been used to date to identify the impact of street greenery on residents' physical and mental health, activities, and well-being (i.e., cultural services). In contrast, fewer studies have explored the other ecosystem services related to the greening. Overall, as an emerging urban environment research method, this review shows that there are still challenges in the utilisation of SV images for assessing urban greenery applications. These include the insufficient spatial and temporal coverage of SV images, low data collection accuracy and immaturity of suitable deep learning techniques on object identification. However, there is clear potential for these approaches to be developed to support a broader range of urban greenery studies that consider different ecosystem services and/or specific types of green infrastructure, for example, street trees.  相似文献   

2.
    
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

3.
    
Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental data reveal that trees in 86 Canadian cities removed 16,500 tonnes (t) of air pollution in 2010 (range: 7500–21,100 t), with human health effects valued at 227.2 million Canadian dollars (range: $52.5–402.6 million). Annual pollution removal varied among cities and ranged up to 1740 t in Vancouver, British Columbia. Overall health impacts included the avoidance of 30 incidences of human mortality (range: 7–54) and 22,000 incidences of acute respiratory symptoms (range: 7900–31,100) across these cities.  相似文献   

4.
    
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

5.
    
Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and pollutant costs to estimate tree effects on building energy use and associated pollutant emissions at the state to national level in the conterminous United States. Results reveal that trees and forests in urban/community areas in the conterminous United States annually reduce electricity use by 38.8 million MWh ($4.7 billion), heating use by 246 million MMBtus ($3.1 billion) and avoid thousands of tonnes of emissions of several pollutants valued at $3.9 billion per year. Average reduction in national residential energy use due to trees is 7.2 percent. Specific designs to reduce energy use using urban trees could increase these values and further reduce energy use and improve air quality in the United States.  相似文献   

6.
Introduced tree species represent a substantial component of urban forests in cities all over the world. Yet there is controversy about the further use of introduced tree species. Many practice orientated publications,research papers and governmental websites in the fields of urban planning, urban forestry, and urban ecology argue for planting native species and avoiding introduced species. Such arguments for native-only species selection are also touted by environmental groups and the media. Consequently the debate has sometimes spiralled away from a sensible and rational platform where invasion risks and biodiversity loss are discussed, to a groundless and unreasonable argument where exotic species are generally considered incapable of providing ecosystem services. From a European perspective, we here aim to curate a set of necessary considerations for current and future discussions on native and non-native plant material in sustainable urban development. Using examples from Northern and Central Europe we illustrate that in some regions the catalogue of native tree species may be too limited to fulfil ecosystem services and resilience in harsh urban environments. A main message from our line of arguments is that we cannot afford to generally exclude non-native tree species from urban greening. If “native-only” approaches become incorporated in regional, national or international policy documents or legislation there is a risk that urban ecosystem resilience will be compromised, particularly in regions with extreme environmental conditions. Since both invasion risks and sizes of native species pools vary conspicuously at regional to continental scales we also argue to adapt urban policies on using non-native trees to regional contexts.  相似文献   

7.
    
Environmental and urban forest managers in cities located in highly biodiverse regions may need to balance biodiversity conservation with the provision of ecosystem services to people. However, striking this balance is not easy and many competing factors influence the decision-making process. Set in the Perth Metropolitan Area, located in the global biodiversity hotspot of the Southwestern Australia Floristic Province, this study aimed to understand: (i) the extent to which a benefits-oriented approach is used by local governments to optimise biodiversity and human wellbeing urban forest outcomes, and (ii) what other factors influence the decision-making process shaping urban forest composition. Using a social-ecological framework, we conducted semi-structured interviews with 29 local government practitioners. We found that biodiversity conservation is actively considered in the planning and management of urban forest in natural areas and parks, but rarely in streetscapes. Maximising shade and cooling, and to a lesser extent enhancing sense of place, were the key benefits actively sought in streetscapes. Parks appeared to straddle the middle ground as areas with most flexibility to accommodate multiple biodiversity and human wellbeing benefits. Yet, benefits were only some of a multitude of social-ecological factors influencing the decision-making process shaping urban forest composition. In particular, streetscapes were affected by a large number of social and political factors (e.g., perceived risk and nuisance, ad-hoc decisions by elected members), many of them leading to suboptimal urban forest outcomes. For a benefits-oriented approach to prevail in complex and contested urban spaces it is important that the decision-making process is evidence-informed and capable of handling the challenges and conflicts that are likely to arise. Reactive decision-making results in a conservative, “safe” species palette that over time defines streetscapes by what they do not do (creating disservices) rather than what they do (delivering multiple biodiversity and wellbeing benefits), which ultimately is not a desired outcome in the context of an increasingly urbanized world.  相似文献   

8.
    
The knowledge of the rate at which trees grow in urban areas is an important aspect to consider as it can influence our quantification and valuation of the ecosystem services provided by an urban forest. This study investigates growth variations in diameter and height for four common urban tree species (Acer pseudoplatanus, Betula pendula, Fraxinus excelsior and Quercus robur) across five cities in Great Britain (GB) and how the typical radial growth of two of those species (F. excelsior and Q. robur) changes with climate. Dendrochronology was used to identify tree age and changes in ring width and diameter at breast height (DBH) and tree height were measured in-situ at the time of coring. Results indicate a substantial variation in the mean annual growth rates and the relationships between DBH and age or height and age of each species across different cities. However, the multiple factors affecting tree growth seem to influence different species in different ways, with for example A. pseudoplatanus trees showing overall the fastest growth in Peterborough but B. pendula ones showing the slowest. Precipitation and temperature had an effect on radial growth of F. excelsior and Q. robur trees in GB, but the strength and direction of influence varied with time of year, species and city. In particular, low precipitation at the start or during the growing season was found to be a significant factor limiting radial growth. A trend towards a reduction in ring width increment was therefore identified in hot and dry years, primarily in south-eastern cities but in other cities too. This highlights the risk that a changing climate may have on the growth and, consequently, on the ecosystem service provision of healthy urban trees.  相似文献   

9.
There is scant research on Australian municipal tree managers’ motivations for street tree planting and the rationales for street tree species selections. Tree managers from 129 city councils across Australia were surveyed to address this knowledge gap. This paper presents the findings from 115 (89%) usable survey responses. Tree managers reported four primary motives for street tree planting: visual and aesthetic (97%), environmental (92%), socio-cultural and community (87%), and health (70%). In contrast, tree species characteristics (97%), management and maintenance issues (92%), visual and aesthetic benefits (89%), site environmental factors (80%) and problems caused by different species (70%) were reported to govern street tree species selection. In spite being the primary motives for planting, considerations for socio-cultural and community benefits (61%) and environmental benefits/ecosystem services (61%) had minor influence on street tree species selection. In absence of established research, Australian city councils’ institutional culture is biased by personal opinions on potential threats to city’s vital infrastructure posed by street tree, resulting in the mismatch between planting and species selection principles. Future research correlating species characteristics to specific ecosystem services/disservices might help Australian city councils to adopt an ecosystem services based approach to street tree planting and species selection.  相似文献   

10.
    
Urban trees provide a wide range of ecosystem services for city residents, with tall, mature trees with wide crowns generally regarded as preferable. The tree biomass which is responsible for shading, pollution removal, rain runoff retention etc. gets periodically reduced by the municipal tree management practice of pruning. This is a necessary activity, which reduces the risk of infrastructure damage and falling branches, but many estimates of ecosystem service provision in cities do not consider its impact explicitly. Tree mortality is also higher in cities, preventing trees from attaining and remaining at large sizes. This study used extensive field measurements of tree structure to estimate the impact of pruning on 8 tree species in two Italian cities: Taranto and Florence. Crown widths were reduced by 1.6 m on average, however there is large variation between species variation with branches more often being removed for thinning crowns resulting in larger gap fractions, which increased by 15% on average. No significant differences were observed for crown widths or gap fraction between trees pruned 3 and 4 years previously, suggesting that tree crowns structurally recover from pruning after 3 years. A deterministic model revealed that current urban forest pruning rates (every 6 years) and mortality (1%) may create a situation in which a city dominated by the species studied benefits from 93.5% of the maximum ecosystem services possible. This work will allow more nuanced estimates of urban forest services to be calculated.  相似文献   

11.
    
Tree visibility is a key determinant of cultural ecosystem services of urban trees. This paper develops a flexible, efficient and easy-to-use GIS method for modelling individual tree visibility to support tree valuation. The method is implemented as a GRASS GIS AddOn tool called v.viewshed.impact, making it available to a broad spectrum of users and purposes. Thanks to empirically validated underlying algorithms and parallel processing, the method is accurate and fast in analysing high-resolution datasets and large numbers of trees. We demonstrate the method in two use cases in Oslo, Norway, showing that it provides an alternative to field-based assessment of visibility indicators in tree valuation methods and facilitates the inclusion of complex visibility indicators not possible to assess in the field. We argue that the method could also be used for tree management and planning, urban ecosystem accounting and neighbour conflict resolution related to trees.  相似文献   

12.
    
Paired aerial photographs were interpreted to assess recent changes (c. 2009–2014) in tree, impervious and other cover types within urban/community and urban land in all 50 United States and the District of Columbia. National results indicate that tree cover in urban/community areas of the United States is on the decline at a rate of about 175,000 acres per year, which corresponds to approximately 36 million trees per year. Estimated loss of benefits from trees in urban areas is conservatively valued at $96 million per year. Overall, for both urban and the broader urban/community areas, 23 states/districts had statistically significant declines in tree cover, 25 states had non-significant decreases or no change in tree cover, and three states showed a non-significant increase in tree cover. The most intensive change occurred within urban areas, with tree cover in these areas dropping one percent over the 5-year period, compared to a 0.7 percent drop in urban/community areas. States/districts with the greatest statistically significant annual decline in percent urban tree cover were: Oklahoma (−0.92%/yr), District of Columbia (−0.44%/yr), Rhode Island (−0.40%/yr), Oregon (−0.38%/yr) and Georgia (−0.37%/yr). Coinciding with the loss of tree cover was a gain in impervious cover, with impervious cover increasing 0.6 percent in urban/community areas and 1.0 percent in urban areas over the 5-year period. Such changes in cover types affect the benefits derived from urban forests and consequently the health and well-being of urban residents.  相似文献   

13.
    
Urban green infrastructure, including street trees, plays a key role in providing ecosystem services to urban residents. However, to fully understand the effective role of trees in the urban context, it is also necessary to evaluate the disservices that they can produce in the development of their functions if not managed in an adequate and integrated way. This contribution aims to demonstrate an approach to assess three disservices (pavement damage, aesthetic damage, likelihood of tree failure) of street trees at the municipal level, starting from the existing municipal tree inventory. In this case study, from the street tree population, a sample of approximately 5% of the trees was drawn by stratified random sampling, where the strata were composed of groups of tree species. In particular, a sampling scheme is adapted in which the probability to select a tree in the sample is greater for bigger trees, under the assumption that the bigger the trees the greater are the disservices caused. In this way, a greater precision of the estimates of the considered disservices for the population of urban trees is expected. The results show a high variability of disservices provision among species groups. The results also confirmed a positive correlation between the considered disservices and tree diameter at breast height, while other tree attributes such as total height and crown diameter were found to be positively related only to pavement damages. Finally, severe pruning can lead to a high level of the aesthetic and functional disservices even for shorter and younger street trees.  相似文献   

14.
Urban green spaces are an important component of the urban ecosystem of cities as they provide a range of ecosystem services that contribute to sustainability and livability of urban areas. The extent to which such services are provided is influenced by limitations on biological processes that underpin such ecosystem services. A poorly understood limitation in the urban environment is the effects of shade created by buildings on the adequacy of photosynthetically active radiation (PAR) for plant growth. We examined the effects of building shade in high-density, high-rise residential estates in Singapore on the level and distribution of PAR, and how PAR might in turn be correlated with growth of plants in community green spaces nested within these estates. Our estimates showed that high-rise and high-density buildings reduced daily PAR by almost 50% when compared to fully exposed conditions. The reduced PAR levels were correlated with lower vegetative and reproductive growth of several species of shrubs, and increased slenderness of two tree species. The shade environment created by buildings was differentiated from shade under vegetation canopies by longer periods of high instantaneous PAR during a diurnal cycle. There was also evidence of higher red to far-red ratio in the spectral composition of PAR. We suggest that an understanding of the spatial and temporal characteristics of PAR is necessary for appropriate selection of plants, particularly to match daily PAR received on site to daily light integral requirements of plants for improved delivery of ecosystem services.  相似文献   

15.
The attribution of economic value to landscape resources is fraught with technical and methodological difficulties. Little is mandated in UK planning policy explaining how economic value should be established. As a result landscape resources have been undervalued, underfunded and marginalised in favour of larger grey infrastructure development. The UK NEA however outlined for the first time a national scale economic evaluation of environmental resources. The Valuing Attractive Landscapes in the Urban Economy (VALUE) Interreg IVB project examined this issue by establishing a toolkit of economic evaluation methodologies for green investments across North-West Europe. Focussing on the returns that investments in green infrastructure can deliver to cities and city-regions, the VALUE project identified economic values that can be used to influence future policy-making. This paper presents an analysis of VALUE street tree investments in Manchester, UK. Using a contingent valuation survey preferences for green investments and associated willingness to pay (WTP) for them were generated. Analysis suggests that willingness to pay is directly related to the size and greenness of the proposed investment and participant perceptions of added value. 75% of respondents were WTP for investments in green infrastructure. Analysis indicates increased WTP and a marked preference for larger and physically greener investments. Payment values ranged from £1.46 to 2.33, a 59.5% variance, between the preferred investment option and the status quo. The paper concludes that although green investments vary in size and function, respondents consider the specific and wider value of green infrastructure resources when asked how much they willing to pay to fund and maintain such investments.  相似文献   

16.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

17.
    
Across cities worldwide, people are recognizing the value of greenspace in ameliorating the health and well-being of those living there, and are investing significant resources to improve their greenspace. Although models have been developed to allow the quantification of ecosystem services provided by urban trees, refinement and calibration of these models with more accurate site- and species-specific data can increase confidence in their outcomes. We used data from two street tree surveys in Cambridge, MA, to estimate annual tree mortality for 592 trees and diameter growth rates for 498 trees. Overall tree turnover between 2012 and 2015 was relatively low (annualized 3.6% y−1), and mortality rate varied by species. Tree growth rates also varied by species and size. We used stem diameter (DBH) and species identity to estimate CO2 sequestration rates for each of 463 trees using three different model variations: (1) i-Tree Streets, (2) Urban Tree Database (UTD) species-specific biomass allometries and growth rates, and (3) empirically measured growth rates combined with UTD biomass allometries (Empirical + UTD). For most species, the rate of CO2 sequestration varied significantly with the model used. CO2 sequestration estimates calculated using i-Tree Streets were often higher than estimates calculated with the UTD equations. CO2 sequestration estimates were often the lowest when calculated using empirical tree growth estimates and the UTD equations (Empirical + UTD). The differences among CO2 sequestration estimates were highest for large trees. When scaled up to the entire city, CO2 sequestration estimates for the Empirical + UTD model were 49.2% and 56.5% of the i-Tree Streets and UTD estimates, respectively. We suggest future derivations of ecosystem service provision models allow localities to input their own species-specific growth values. By adding capacity to easy-to-use tools, such as i-Tree Streets, we can increase confidence in the model output.  相似文献   

18.
We assessed the net carbon (C) sequestration dynamics of street tree plantings based on 10 years of measurements at two case study sites each with different tree species in Helsinki, Finland. We assessed C loss from tree soils and tree C accumulation, tested the applicability of pre-existing growth and biomass equations against observations, and estimated the time point for the beginning of net C sequestration for the studied street tree plantings. The tree woody biomass C accumulation in the first 10 years after planting was 18–32 kg per tree. At the same time the C loss from the growth media was at least 170 kg per growth media volume (25 m3) per tree. If this soil C loss was accounted for, the net C sequestration would begin, at best, approximately 30 years after planting. Biomass equations developed for traditional forests predicted more stem biomass and less leaf and branch biomass than measured for the species examined, but total aboveground biomass was generally well predicted.  相似文献   

19.
Cities across North America are adopting ambitious goals to grow their urban forests. As existing trees and new planting opportunities are often located on private property, residents’ support and participation is needed in order to meet these goals. However, little research has examined support for municipal urban forestry efforts, including policies specifically targeting residential areas. The objectives of this research are to (1) assess resident’ level of support for common urban forestry policies and (2) determine if there are specific household characteristics associated with different levels of policy support. The objectives are addressed through a statistical analysis of survey responses and a qualitative examination of follow-up interviews with residents in four neighborhoods located in Mississauga (Ontario, Canada). The survey participants and their properties vary in their socioeconomic characteristics, age of development, and urban forest conditions. Our results found that the majority of residents had neutral to very positive attitudes toward common municipal policies encouraging planting and restricting removal of trees, but support levels were lower for the policies than for general statements about desired presence and size of urban trees. Several characteristics are significantly related to level of policy support, including age of household members, education-level, property-level tree density, recent tree planting activity and age of house. Interviews also highlighted residents’ apprehensions about living among tall trees and older resident's concerns with tree maintenance. The results suggest that most residents would be willing partners in urban forestry efforts, with many of these residents already actively planting and maintain trees. However, to increase support and participation rates, different types of trees – including those smaller in stature and ones that require relatively little maintenance – should be part of any planting program to meet the varying needs of households.  相似文献   

20.
Tree risk assessment consists of the identification of a set of defects that may affect the stability of the tree, leading to a possible collapse or failure, either of the whole plant or a part of it; and also, the identification of the targets to be reached and the side effects caused by any eventual failure. Although this is a necessary practice, the large number of variables involved in this evaluation makes the analysis time-consuming. Thus, this research aimed to optimize the tree risk assessment by creating a new protocol with the three visual assessment methods common variables and generating a new protocol applied to trees of species frequently used in urban afforestation worldwide: Terminalia catappa, Ficus Benjamin and Delonix regia. Altogether 36 variables were used for tree risk visual assessment applied in the evaluation of 230 trees located in the urban forest in Itanhaém - São Paulo - Brazil. The data collection was carried out using a smartphone and a data spreadsheet created in ODK collect app, facilitating data storage and processing. To identify the variables with the greatest possibility to determine the risk of falling, artificial intelligence was used through the Decision Tree algorithm (C4.5) in the WEKA software. The results showed that, from the 36 variables evaluated, 14 were enough to determine the risk of tree falling, with 73% hit rate in the tree risk classification. It is concluded that the use of artificial intelligence was essential in detecting tree problems in order to redirect management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号