首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

2.
Natural parks are comprised of preserved forested natural areas that are undergoing natural ecological processes. These areas can offer a refuge for local biodiversity and contribute substantially to ecosystem services in both rural areas with relatively low population densities, as well as high-density urban areas. Forested natural parks located in urban areas should experience more stressful environmental conditions than nearby rural areas, yet we know relatively little about how urbanization impacts tree communities within these important natural habitats. To better understand the impact of urbanization on forests, we investigated the species composition, abundance, and diversity of midstory and canopy trees as well as tree seedlings in urban and rural natural parks in and around Cleveland, Ohio. We found that both urban and rural natural parks have similar tree abundance, but midstory and canopy trees as well as tree seedling communities in the urban natural parks included higher abundances of stress-tolerant species compared to rural parks. In addition, this pattern was driven by changes in native tree species, as we observed low abundance of invasive species. More stress-resistant native species in urban areas include Quercus rubra and Prunus serotina, in contrast to rural natural parks which are dominated by Acer spp. and Fagus grandifolia. Lastly, we show that urban and rural natural parks have similar species diversity within plots, but we found higher variation in community composition among urban natural parks compared to among rural parks. Furthermore, Q. rubra and P. serotina were significantly larger in rural natural parks, indicating that both environmental stress and successional stage could drive compositional differences. Thus, we show that urbanization can have unexpected effects on plant community composition and diversity. Our study refutes the idea that these are degraded habitats, highlights the need to conserve them, and suggests that characterization of local variation in self-assembled urban tree communities will provide the most accurate picture of their management needs and potential ecosystem services.  相似文献   

3.
Healthy and sustainable tree populations require a high diversity of genera and species. This study examined the occurrence and contents of tree inventories in Denmark's 30 largest municipalities. 59% of the municipalities had a tree inventory for street trees, but only about half of these were complete and updated. Only one municipality had a registration for trees other than street trees. Based on data from the tree inventories, the diversity of road side trees was analyzed at genus level and species level. A total of 82,072 street trees are part of the study. 11 different genera account for 92% of the total street tree stock, and 2–6 genera account for 40–80% of the street tree stock in the individual municipalities. Tilia was the most dominating genera (26%). 12 species account for 73% of the total street tree stock. The 6 most common species account for almost 50% of the total tree population. The species representing the largest numbers were Tilia × europaea (12%), Acer platanoides (10.9%), Platanus × acerifolia (7.2%), Tilia cordata (7.2%), Fraxinus excelsior (6.2%) and Sorbus intermedia (5.9%). The four most urbanized municipalities had a surplus of non-native species, but all municipalities apart from one had most street trees belonging to native species. The concluding recommendation of this study is that tree managers need to start working more strategic with their tree stock, in order to reduce the vulnerability, due to potential attacks from pests or diseases and climate change effects. A risk spreading system for the urban tree population is proposed, suggesting that no genera should account for more than 10% and no species for more than 5% of the tree population.  相似文献   

4.
Tree planting has been favoured in many North American cities, including Montreal which aims to increase its canopy from 20% to 25% in 2025. However, the mortality rate of street trees is especially high in the first few years after planting. Studies have shown that variables that are intrinsic to the tree and those related to its location, the urban form and the socio-demographic characteristics of the surrounding environment are significantly associated either with trees’ survival rate or with vegetation cover. In this research we examine variables that have statistical associations with tree growth, which is the diameter at breast height divided by the number of years on the ground, for approximately 28,000 street trees in Montreal. Independent variables were nested into three spatial scales: the tree (species and physical variables), the street section (urban form variables), and the census tract (socio-demographic variables). Multilevel models reveal that 65.51% of the growth variance is potentially explained by the species and planting physical conditions such as the east and north sides (positive associations with the growth), signage as an obstruction (negative association). 28.54% of the grow variance is potentially explained by the urban form, in our case building age (convex relationship with the growth), mixed zoning (negatively) and residential zoning (positively). At the neighbourhood level, although none of our variables is significant, 6.95% of the growth variance is be potentially explained by other missing variables. New planting programs should hence consider the urban form in order to improve tree growth.  相似文献   

5.
Understanding how trees influence water movement in an urban landscape is important because in an ‘engineered xeriscape’ small changes in rainfall frequency or magnitude have significant implications to plant water availability and mortality at one extreme, and stormwater runoff and flooding at the other. This study relates direct measures of tree canopy interception and discusses their implication for catchment hydrology in different urban landscape contexts. We measured canopy throughfall and stemflow under two eucalypt tree species in an urban street setting over a continuous five month period. Eucalyptus nicholii has a dense canopy and rough bark, whereas Eucalyptus saligna has a less-dense canopy and smooth bark. E. nicholii, with the greater plant area index, intercepted more of the smaller rainfall events, such that 44% of annual rainfall was intercepted as compared to 29% for the less dense E. saligna canopy (2010). Stemflow was less in amount and frequency for the rough barked E. nicholii as compared to the smooth barked E. saligna. However, annual estimates of stemflow to the ground surface for even the smooth barked E. saligna would only offset approximately 10 mm of the 200 mm intercepted by its canopy (2010).Tree canopy and bark characteristics should be considered when planting in pervious green space, or impervious streetscapes, because of their profound impact upon tree and surrounding water availability, soil water recharge or runoff. This study provides an evidence base for tree canopy impacts upon urban catchment hydrology, and suggests that rainfall and runoff reductions of up to 20% are quite possible in impervious streetscapes. Street tree canopies can function as a cost-effective compliment to water sensitive urban design for stormwater reduction benefits.  相似文献   

6.
Urban forests have many positive effects on human health and recreation. However, urban areas can create stressful environments for native trees, leading to increased mortality and an altered ecosystem. Here, we compare growth variability and the climate response from old (>200 years) L. tulipifera growing in an urban forest in Bloomington, IN to surrounding non-urban sites in southern Indiana using dendrochronological techniques. We found that L. tulipifera growing in the urban forest responded similarly with small differences to climate compared to the non-urban sites. Radial growth from urban L. tulipifera had statistically similar correlation values with temperature, soil moisture, and precipitation compared to the trees in non-urban forests. Growth variability between the urban and non-urban L. tulipifera trees showed good agreement through time with the exception of the 20th century, where the urban forest experienced a stand-wide release from competition. Our results indicate that some urban forests may function similarly to non-urban forests from an ecological perspective. These findings suggest management practices from non-urban old-growth forest could be useful for management of rare urban old-growth forests.  相似文献   

7.
The knowledge of the rate at which trees grow in urban areas is an important aspect to consider as it can influence our quantification and valuation of the ecosystem services provided by an urban forest. This study investigates growth variations in diameter and height for four common urban tree species (Acer pseudoplatanus, Betula pendula, Fraxinus excelsior and Quercus robur) across five cities in Great Britain (GB) and how the typical radial growth of two of those species (F. excelsior and Q. robur) changes with climate. Dendrochronology was used to identify tree age and changes in ring width and diameter at breast height (DBH) and tree height were measured in-situ at the time of coring. Results indicate a substantial variation in the mean annual growth rates and the relationships between DBH and age or height and age of each species across different cities. However, the multiple factors affecting tree growth seem to influence different species in different ways, with for example A. pseudoplatanus trees showing overall the fastest growth in Peterborough but B. pendula ones showing the slowest. Precipitation and temperature had an effect on radial growth of F. excelsior and Q. robur trees in GB, but the strength and direction of influence varied with time of year, species and city. In particular, low precipitation at the start or during the growing season was found to be a significant factor limiting radial growth. A trend towards a reduction in ring width increment was therefore identified in hot and dry years, primarily in south-eastern cities but in other cities too. This highlights the risk that a changing climate may have on the growth and, consequently, on the ecosystem service provision of healthy urban trees.  相似文献   

8.
This paper presents a method that allows sorting of tree and shrub species according to their suitability for planting in urban areas of Madrid (Spain). Suitability was determined from a weighted index for each species according to the severity of damage (biotic, abiotic, and anthropogenic; stem wounds are the main problem in trees, while dead plants are the most important problem in shrubs, seasonal flowers, and vines) and to risk, which was obtained from a new measure, observed Species per Green Area per Year (SAYs). The greater the number of damaged SAYs, the less suitable a species was considered for outdoor planting. For this purpose, 49 green areas corresponding to 141 ha were sampled during 2005–2008. The tree species least recommended for planting include Robinia pseudoacacia, Ulmus sp., Acer negundo, Platanus × hybrid, Populus Boolleana. The shrubs least recommended for planting are Nerium oleander, Cotoneaster sp., Euonymus europaeus, Pyracantha coccinea, and Pittosporum tobira. Statistical analysis reveals that native species have a lower percentage of damaged SAYs than non-native species.  相似文献   

9.
Vegetation in urban areas provides benefits to people, which are increasingly assessed and valued as ecosystem services (ESS). The regulation of the urban microclimate is one of these services, since trees have the potential to reduce urban heat loads by evapotranspiration and shading. Simultaneously, it has been suggested that trees from dry habitats should be used to cope with the increasing risks of drought under climate change in Central Europe. The underlying properties that enable those trees to reduce dependence on the environment, however, are assumed to come at the expense of biomass production and water loss. In the potentially conflicted area between drought tolerance and ESS we compared water consumption, water-use efficiency (WUE), crown structure and growth of six roadside species/cultivars, which are assumed to vary in drought tolerance, due to differing resource supplies in their native habitats. Acer platanoides, Carpinus betulus ‘Fastigiata’, and Tilia cordata ‘Greenspire’ were compared with Acer campestre, Ostrya carpinifolia, and Tilia tomentosa ‘Brabant’, the latter presumably being less water-demanding. Measurements took place in the municipal nursery of Munich during summer 2016.Surprisingly, the less water-demanding species/cultivars exhibited on average 1.24 times higher values of maximum daily sap flux density and up to seven times higher growth rates, both contributing to higher WUE. Scaled to leaf level, however, their mean daily transpiration rates were on average lower (0.21 and 0.31 kg H2O m−2 d−1, respectively). They also showed higher flexibility in response to changing weather with increased growth and transpiration under favorable conditions in early summer, but a more conservative water use in dry late summer. The results suggest that these species/cultivars tend to regulate their water use stronger under increasing dryness, whereas canopy size and leaf amount are still the main important determinants of species and cultivar differences in water use.  相似文献   

10.
Urban stormwater is a major contributor to surface water degradation in the United States, prompting cities to invest in ways to naturally capture, store, and slowly release runoff through green infrastructure (GI). An often overlooked, yet integral, component of GI is urban tree canopy, which functions as GI through the process of rainfall interception (i.e., rainfall captured and stored within the canopy prior to returning to the atmosphere via evaporation). Nine trees from three native species commonly found in urban areas in the southeastern United States were studied in three parks in Knoxville, TN, USA to quantify interception. Throughfall (rainfall that passes through the canopy) and stemflow (rainfall that travels down the trunk) data were collected with continuous measurements by a network of automatic rain gauges positioned underneath each tree canopy. Data were collected from January 2018 to May 2019 which resulted in 98 storm events collected for each red maple (Acer rubrum) and willow oak (Quercus phellos), and 97 storm events collected for each white pine (Pinus strobus). Annually, red maples, white pines, and willow oaks intercepted 24.4%, 52.4%, and 33.2% of gross throughfall, respectively. Seasonally, white pines performed the most consistently with interception varying only from 49.2% to 57.0% between seasons compared to an interception range of 13.2–39.7% and 17.5–54.2% for red maples and willow oaks, respectively. Results demonstrated the effect of event duration, rainfall intensity, and seasonality on the interception potential of each species. Overall, these observations are a step toward allowing the storage capacity of urban trees to be properly credited as part of efforts to reduce stormwater runoff.  相似文献   

11.
Recent studies have emphasized the presence of microclimates in urban settings, but most do not have the high resolution observations necessary to understand the interactions taking place at a neighborhood scale. This study used a network of 10 identical weather stations and high resolution land cover data in Knoxville, Tennessee, to analyze the microclimates of a medium-sized city with a temperate climate. Two stations were installed in each of four urban neighborhoods in locations with varying localized tree cover, and two additional stations were installed in the center of downtown and in a nearby urban nature center. The intra-neighborhood results suggested that there is significant temperature variability within a single neighborhood based on the tree canopy density immediately surrounding a given weather station. However, the inter-neighborhood variability (differences between neighborhoods) was similar in magnitude, which suggests that the overall differences in neighborhood characteristics also have an effect on climate. Land cover at the neighborhood scale (in particular tree canopy percentages at the 500-m radii) had the highest correlation with the minimum daily temperature (Tmin) during the summer season. Maximum daily temperature (Tmax) relied most on the distance of each station from Downtown and the amount of impervious area in the 50 m surrounding each station. Tmax was also most influenced by surrounding land cover during dry conditions (a Dry Moderate air mass). Overall, highly localized impervious land cover percentages and larger-scale forested canopy were important in explaining temperature fluctuation, pointing to the importance of scale in microclimate assessments. Dry air masses enhanced the relationship between land cover and temperature during the day, while moist air masses did the same overnight. These data can be used to better inform planning strategies to build resiliency to extreme heat into urban environments by considering the influence of tree canopy.  相似文献   

12.
Native trees provide a range of benefits, from supporting native wildlife to climate regulation, and many urban natural resource managers prioritize native tree planting and restoration. Ulmus americana (American elm) was once widely planted in American cities but has been decimated by Dutch elm disease (DED; Ophiostoma ulmi). Our study evaluated U. americana establishment and growth across urban landscapes. We planted ramets from three DED-tolerant U. americana genotypes (RV16, RV474, and Sunfield) along an urbanization gradient in Newark, DE and Philadelphia, PA, and assessed physiological and morphological responses. We analyzed how U. americana clone growth, chlorophyll fluorescence, and foliar chemistry relate to impervious surface area, ozone (O3) concentrations, and soil characteristics. The one-year post planting mortality rate was low (4%) demonstrating these elms can withstand urban environmental conditions when provided ample water supply and protection from deer. As expected, the elms differed in growth rate, chlorophyll fluorescence, and foliar chemistry between the cities. Elms planted in Philadelphia had greater photosynthetic capacity in July (Fv/Fm = 0.76) and September (Fv/Fm = 0.75), while Newark elms had greater photosynthetic capacity in August (Fv/Fm = 0.78). Depleted foliar δ13C signatures in Philadelphia suggest elms are experiencing greater fossil-fuel derived atmospheric CO2 than in Newark, possibly contributing to the greater growth rates observed in Philadelphia compared to Newark. Enriched foliar δ15N and greater foliar %N in Philadelphia clones suggest they are experiencing greater N deposition from NOx-derived sources compared to Newark clones. Clones growing in Philadelphia had greater foliar nutrient concentrations despite growing in soils with greater heavy metal concentrations. These foliar-soil chemistry patterns suggest that clones growing in Philadelphia respond positively to urban environmental conditions in a large city, whereas clones growing in Newark may be experiencing N limitation in the first year of growth after planting.  相似文献   

13.
Urban forests are important lungs for urbanized environments; therefore, their study and conservation are needed. Compared with trees in natural areas, urban trees develop in more stressful conditions, which may make them more susceptible to infections by parasites such as mistletoes. Bosque de Tlalpan (BT) is an urban forest embedded in one of the largest cities of the world, Mexico City. The aim of this study was to assess which mistletoe species were present in BT, determine the intensity of the infestation, and distinguish which host species are more susceptible to mistletoe parasitism based on 20 randomly selected plots. We found that Cladocolea loniceroides was extensively distributed on the cultivated area of BT (17 plots), whereas a second species, Phoradendron brachystachyum, was found only on four plots. Seven tree species were susceptible to infection by C. loniceroides, whereas only one was susceptible to infection by P. brachystachyum. Fraxinus uhdei, the most abundant host, was the one with higher severities and larger sizes (tree height and crown length); the latter variables positively influence the severity of infection. Reforestation of the cultivated area with low diversity and exotic species appears to be a reason for the increased infestation. Therefore, we support the reforestation of urban areas with native species to provide benefits such as a lower incidence of parasitic infection and tree mortality.  相似文献   

14.
15.
Impervious surfaces are a ubiquitous urban feature that increase temperature and tree drought stress and are a demonstrated indicator of Acer rubrum L. tree condition and insect pest abundance. We examined the relationship between A. rubrum condition, impervious surface cover, and Melanaspis tenebricosa (Comstock) abundance, a primary herbivore of urban A. rubrum, in eight cities across the southern distribution of A. rubrum. We predicted that the effects of warming, due to impervious surface, would be greater in warmer southern cities than in cooler northern cities. We found that impervious surface was a robust predictor of tree condition, but this effect was not significantly affected by background temperature. Melanaspis tenebricosa abundance was a function of impervious surface and background temperature, with greatest abundances occurring at mid latitudes. Based on these relationships, we developed impervious surface thresholds to inform site selection for A. rubrum throughout the southeastern USA. Planting criteria based on habitat characteristics should maximize urban tree longevity and services provided.  相似文献   

16.
Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes the development of allometric equations for Fraxinus americana and F. pennsylvanica growing in Oakville, Canada. With data collected from 103 ash trees, five allometric models were tested to develop equations estimating diameter-at-breast-height (dbh), tree height, crown width and crown height, using age and dbh as explanatory variables. Mean annual growth rates are presented to demonstrate species growth performance and were not significantly different over the first 40 years of growth for the two species. Of all the tested random coefficient models for both species, the cubic with weight 1/x provided the best fit for estimating dbh from age. The best models for other parameters were the loglog for crown height from dbh, the quadratic for crown diameter from dbh, and the linear for tree height from dbh for F. americana. Model types showed more consistency for F. pennsylvanica with linear providing the best fit for crown diameter, crown height and tree height from dbh. The number of model types suggests the difficulty of fitting any single model to the vast array of conditions affecting plant growth in urban areas where management practices and environment can significantly influence tree size and growth. These models may be used to estimate the growth of ash tree populations in Oakville and communities with similar climate, soil, planting, and management environments.  相似文献   

17.
The urban forest provides valuable ecosystem services for enhancing human well-being. Its structure and composition determine the quantity and quality of these services. There has been little research on the heterogeneity in structure and composition of urban forests in the Australasian region, especially in the centre of a highly dynamic and rapidly urbanizing city. This paper quantifies the structure and the composition of the urban forest of Melbourne, Australia's city centre. The effects of land tenure and land use on the heterogeneity of canopy cover, tree density and canopy size were explored. Species and family composition by land use, land ownership and street type were also analysed using the Shannon–Wiener and Jaccard similarity indices. Most of the canopy cover in the city centre is located on public land and is unevenly distributed across the municipality. The mean canopy cover (12.3%) is similar to that found for whole city studies around the world, which often include peri-urban forests. Similarly to other cities, structure varied across different land uses, and tree size, density and cover varied with land tenure and street type. The diversity index shows that the urban forest is rich in species (H = 2.9) and is dominated by native species. Improving the distribution, and increasing tree cover and variety of species will result in a more resilient urban centre, able to provide multiple ecosystem services to their residents and its large population of visitors and workers. The study of the urban centre provides further understanding of compact city morphologies, and allows inter-city comparison independent of the size.  相似文献   

18.
Urbanized land is characterized by the dominance of paved surfaces. Increasing tree canopy in urbanized areas has been identified as an effective way to reduce stormwater runoff, sequester carbon, improve air and water quality, and otherwise mitigate the environmental impacts and increase the livability of cities. However, attaining sufficient tree canopy in urban areas remains an elusive goal. Site design characteristics such as cutout size may limit urban tree growth and complicate efforts to predict future canopy, especially in highly paved systems such as parking lots. We studied 25 silver lindens (Tilia tomentosa Moench) grown for 14 years at one site, in pavement cutouts of various sizes. Regression analysis, even on these limited data, indicated a strong relationship between tree size and canopy projection area and unpaved soil surface area, but not soil depth. Cutout size explained 70% of the variability in tree canopy projection area and 77% of the variability in trunk cross-sectional area. The addition of other variables, such as soil bulk density, did not improve the model. Trees growing in parking lot cutouts <5.3 m2 attained only limited size, regardless of the level of soil compaction. In larger cutouts, however, increases in soil bulk density from 1.1 to 1.5 Mg/m3 were associated with a 70% reduction in trunk cross-sectional area. In order to create urban sites with a sustainable tree canopy, site design must provide large areas of uncompacted soil for trees and protect this soil from compaction during use. Urban tree growth models that incorporate cutout characteristics are needed to predict future canopy area with confidence.  相似文献   

19.
Horse chestnut (Aesculus hippocastanum L.) is a common urban tree species in Ljubljana, the capital of Slovenia. This area is forecast to experience a general reduction in precipitation and an increase in temperature, which increases water demand in plants. Because A. hippocastanum is known for its drought vulnerability, the question of the future suitability of this urban tree species in Ljubljana has arisen. To investigate how climate has influenced A. hippocastanum radial growth and how trees responded to extreme climatic events, standardized precipitation-evapotranspiration index (SPEI) was used as a proxy for water demand. Climatic signal and its stability through time were calculated using Pearson’s correlation coefficient. Additionally, to investigate whether the trees had a common response to extreme climatic events, pointer years were calculated using Cropper values. We sampled 19 trees that were growing in Tivoli Park in Ljubljana. After successful cross-dating of 15 trees, the ring count showed that the trees had up to 201 tree-rings and had 130 on average. Climate-tree growth analysis showed that in July, 3-month SPEI had the strongest influence on radial growth, but its influence on radial growth decreased over time, possibly due to the die-off process of trees. The narrowest tree-rings were a result of unusually dry periods at the time of cambium activity and/or new cell growth. With the forecast of longer, more frequent summer drought periods in Ljubljana, soil moisture stress will increase, and as a result, a decrease in radial tree growth of A. hippocastanum trees from Tivoli Park is expected.  相似文献   

20.
Increasing tree species diversity has become a key underpinning for communities to improve resilience of urban and community forests. Increasingly, urban forestry researchers are examining physiological traits to aid in selecting trees for urban sites. Knowledge of physiological responses also has implications for understanding species’ resilience to increased stresses associated with climate change. Here, we compare growth, leaf SPAD chlorophyll index, water relations, and gas exchange of seven genotypes of shade trees planted in two locations in downtown Detroit, MI, USA. Genotypes included Redpointe® maple (Acer rubrum ‘Frank Jr.’), Flashfire® maple (Acer saccharum ‘JFS-Caddo2′), Pacific Sunset® maple (Acer truncatum x platanoides ‘Warrenred’), Emerald City® tulip tree (Liriodendron tulipifera ‘JFS-Oz’), Chanticleer® pear (Pyrus calleryana ‘Glen’s Form’), swamp white oak (Quercus bicolor), and Emerald Sunshine® elm (Ulmus propinqua ‘JFS-Bieberich’). Trees were planted in either Lafayette Plaisance Park (Park), a large urban greenspace, or on the median of St. Aubin Avenue (Median), a nearby major thoroughfare. Tree height growth and leaf SPAD index were higher for trees planted in the Park location than on the Median. However, genotypic variation was larger than the effects of location or the interaction of Genotype × Location for most traits. Across measurement dates, midday leaf water potential was lowest for Pyrus trees and highest for Ulmus and Liriodendron trees. Pyrus and Quercus trees had relatively high rates of net photosynthesis (A) and stomatal conductance (gs) while Liriodendron, Acer saccharum, and Ulmus trees had low rates of A and gs. Liriodendron trees closed their stomata rapidly as leaf water potential (Ψw) declined (isohydric response), while Pyrus and Quercus trees maintained gs across a range of leaf Ψw (anisohydric response). Liriodendron trees also had the highest relative growth rates, suggesting that drought stress avoidance through isohydry is a viable drought tolerance mechanism in urban trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号