首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Street trees are threatened by multiple stresses from biophysical and anthropogenic factors. This situation can be extremely challenging in highly developed urban areas with limited space for tree planting. Asia has some of the most densely populated cities globally, but there is a lack of data on factors affecting street tree health in the region. This study aims to examine the impact of constrained planting environments on the health condition of street trees through a case study in Kyoto City, Japan. The health condition of 1230 street trees distributed throughout the city was assessed from June to October 2018. Additionally, several tree- and site-related variables were collected to identify their impact on tree health. Trees that were in excellent and good condition accounted for 19.9 % and 32.0 % of the sample population, respectively. Multivariate linear regression (N = 1139) revealed that tree health condition was significantly related to pruning intensity, tree pit size, adjacent land use, presence/absence of tree grate or guard, width of sidewalk, tree height, presence/absence of dedicated cycle route, tree pit pattern, crown light exposure, DBH and tree pit type. Platanus × acerifolia and other trees with large diameters exhibited relatively poor condition, along with those in tree pits with concrete paving, without tree grates, or in industrial areas, whereas trees planted in strips exceeding 1.8 m in length and exposed to weak pruning showed the best condition. These results imply the potential for healthy growth of street trees in the restricted planting spaces of Kyoto City, which suggests appropriate management and planting practices. Moreover, our empirical data can inform urban tree managers to support their efforts in making decisions on the better matching of species tolerances with urban site conditions for future street tree plans.  相似文献   

2.
Cities across North America are adopting ambitious goals to grow their urban forests. As existing trees and new planting opportunities are often located on private property, residents’ support and participation is needed in order to meet these goals. However, little research has examined support for municipal urban forestry efforts, including policies specifically targeting residential areas. The objectives of this research are to (1) assess resident’ level of support for common urban forestry policies and (2) determine if there are specific household characteristics associated with different levels of policy support. The objectives are addressed through a statistical analysis of survey responses and a qualitative examination of follow-up interviews with residents in four neighborhoods located in Mississauga (Ontario, Canada). The survey participants and their properties vary in their socioeconomic characteristics, age of development, and urban forest conditions. Our results found that the majority of residents had neutral to very positive attitudes toward common municipal policies encouraging planting and restricting removal of trees, but support levels were lower for the policies than for general statements about desired presence and size of urban trees. Several characteristics are significantly related to level of policy support, including age of household members, education-level, property-level tree density, recent tree planting activity and age of house. Interviews also highlighted residents’ apprehensions about living among tall trees and older resident's concerns with tree maintenance. The results suggest that most residents would be willing partners in urban forestry efforts, with many of these residents already actively planting and maintain trees. However, to increase support and participation rates, different types of trees – including those smaller in stature and ones that require relatively little maintenance – should be part of any planting program to meet the varying needs of households.  相似文献   

3.
Summary

The apple cultivar Queen Cox on M.9 rootstock cropped more precociously when planted as two year old trees than when planted as one year old trees, even though there were no significant differences in the sizes (leader height and branch length) of the trees at the time of planting. However, the two year old trees had larger root systems at planting. As the trees aged, those planted as one year olds grew more vigorously and bore higher cumulative yields than those planted as two year olds. Annual root pruning of the trees, commencing 15 months after planting, reduced extension shoot growth, crown volume and grubbing weights (final fresh weights of scions) severely. In some seasons root pruning increased the number of spur and terminal floral buds produced and also the final sets and yield efficiencies on the treated trees. Planting trees within semi-permeable fabric membranes also reduced extension shoot growth and tree size, but less severely than the root-pruning treatment. Root restriction increased the efficiency of fruit set and yields and also improved the grades of fruits produced. Trickle irrigation treatments increased shoot growth and tree fresh weight at the time of grubbing, but had inconsistent and small effects on fruit set and yields. Interactions between tree age at the time of planting and the root manipulative treatments were significant.  相似文献   

4.
一个数学模型在果树栽培学中的应用   总被引:2,自引:1,他引:2  
假设树冠为一仅由连续叶片组成的密度均匀的曲面体,通过计算单位土地面积上的果树树冠的总表面积和总容积发现,树形相似时,封行后矮化密植与常规种植果树的树冠总表面积相等,而矮化密植果树树冠的总容积相对较小;通过计算单位土地面积上不同树形树冠的表面积,发现他们差异悬殊。进而研究树冠的表面积和容积与栽植密度和树形之间的关系,为矮化密植高产、优质及树形选择提供新的理论依据和参考。  相似文献   

5.
Increasing human populations and rapid urbanization in sub-Saharan Africa have prompted the development and maintenance of urban green infrastructure, including urban trees for sustainability, human wellbeing, liveability and climate resilience. However, there are still insufficient amounts and large inequities in the distribution of trees between and within towns and cities of the Global North and South. In South Africa, urban green space planning and planting are encoded in several policies at national level. However, these policies are rarely translated into specific guides, standards or actions, and consequently disparities in urban trees and green space distribution persist. This study assessed the prevalence of urban trees in domestic gardens in low-cost housing areas (LCHAs) of eight small to medium-sized towns in the Eastern Cape province of South Africa and examined residents’ perceptions in this regard. This was done via surveys with 800 households in old and recently developed LCHAs. The results revealed that most households (52 %) had at least one tree in their yard, with more households in the older neighbourhoods (60 %) reporting having trees than in the newer ones (44 %). Most of the trees (66 %) had been deliberately planted as opposed to natural regeneration. Experience of formal urban tree planting programs was low, but 75 % of residents expressed willingness to participate in the future, preferably in tree planting and maintenance. Urban green spaces and trees cannot be an afterthought in the development of sustainable human settlements, and municipal plans should reflect tangible commitments in this regard. Meeting goals for greener LCHAs requires the involvement of local residents, and for municipal authorities to be receptive to the wishes of residents and willingness to green their residential areas.  相似文献   

6.
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the existing tree populations reveal that, on average, about 1 in 3 trees are planted in cities. Land uses and tree species with the highest proportion of trees planted were residential (74.8 percent of trees planted) and commercial/industrial (61.2 percent) lands, and Gleditsia triacanthos (95.1 percent) and Pinus nigra (91.8 percent). The percentage of the tree population planted is greater in cities developed in grassland areas as compared to cities developed in forests and tends to increase with increased population density and percent impervious cover in cities. New tree influx rates ranged from 4.0 trees/ha/yr in Baltimore to 8.6 trees/ha/yr in Syracuse. About 1 in 20 trees (Baltimore) and 1 in 12 trees (Syracuse) were planted in newly established tree populations. In Syracuse, the recent tree influx has been dominated by Rhamnus cathartica, an exotic invasive species. Without tree planting and management, the urban forest composition in some cities will likely shift to more pioneer or invasive tree species in the near term. As these species typically are smaller and have shorter life-spans, the ability of city systems to sustain more large, long-lived tree species may require human intervention through tree planting and maintenance. Data on tree regeneration and planting proportions and rates can be used to help determine tree planting rates necessary to attain desired tree cover and species composition goals.  相似文献   

7.
Long-term, multi-decade research on planted tree survival in urban settings is sparse. One understudied urban environment is highway rights-of-way (ROW), lands adjacent to high-speed, unsignalized roadways. We conducted a re-inventory of tree planting cohorts in northern Illinois, U.S. on a 48 km-long highway near Chicago which were 10-, 21-, and 30-years old to evaluate long-term patterns of survival and diversity. Using each randomly selected planting site along the highway as a unit of observation and analysis, we compared the number of trees documented in record drawing to the number of trees currently alive to determine percent survival. We evaluated 224 planting sites which originally contained 2944 trees and collected data about the planting site location. For the oldest cohort, 26% of trees were still alive in 2018 (median survival by species = 16%, Q1 = 0%, Q3 = 48%), while 31% of the 21-year-old cohort (med. = 6%, Q1 = 0%, Q3 = 47%) and 86% of the 10-year-old cohort were still alive (med. = 85%, Q1 = 74%, Q3 = 96%). The survival of the 21- and 30-year-old cohort matches urban tree survival estimates by other researchers, while the 10-year-old survival is higher than expected. The only planting location characteristic that significantly affected survival was traffic islands (areas between the highway and entrance/exit ramps). Species with low drought tolerance were less likely to be alive for the 30-year-old cohort. Waterlogging tolerant species were more likely to be alive in the 10-year-old cohort. Since some species in the 21- and 30-year-old cohorts had very low survival, the tree species richness and diversity s in study areas declined between the initial record drawings and reinventory. This study demonstrates the challenges of maintaining long-term survival and diversity in the highway ROW and emphasizes the importance of species selection.  相似文献   

8.
Urban street canyon morphology plays an important role in outdoor air quality and should be considered in tree planting schemes. However, the air pollutant reduction rate by street trees in different types of street canyon has rarely been analyzed for real urban environments. Therefore, this study conducted field investigation of 15 street canyons in residential areas to assess the reduction rate of particulate matter (PM) by trees in canyons with varying aspect ratio (AR) and orientation. The species of trees planted in these streets were Sophora japonica, Populus alba 'Berolinensis' L., Salix babylonica, Fraxinus chinensis, Pinus tabulaeformis, and Ulmus pumila. In the presence of trees, the mass concentration of fine PM (PM1) decreased most in narrow canyons (AR = 1.37–3.02), while the concentration of coarse PM (PM10) decreased most in wide canyons (AR = 0.45–0.69). The PM concentration increased most with tree planting in medium canyons (AR = 0.79–1.08). Additionally, street trees reduced fine PM concentration more in canyons with a 45° angle to the prevailing wind than in canyons aligned parallel to the prevailing wind. But they reduced coarse PM more in canyons aligned parallel to the prevailing wind than in canyons with a 45° angle to the prevailing wind. In comparison with tree-free cases, tree planting weakened the correlation between AR and coarse PM concentration, whereas no difference in correlation was found between AR and fine PM concentration. Overall, street canyon morphology should be considered seriously in developing tree planting guidelines for built-up environments.  相似文献   

9.
Street trees are exposed to a variety of site conditions, environmental factors, and physical disturbances which influence their survival in urban areas. This study draws on 25 years of urban forest monitoring data from the city of Milwaukee, WI (United States) to model the impacts of these factors on tree survival for a single cohort of trees. Tree condition, tree size, tree species, and site attributes were measured initially in 1979. These factors were measured again in 1989 and 2005 and compared to construction data for the same area during the study period. Multivariate logistic regression was used to identify factors associated with tree survival. Cross-validation show the final model could successfully predict tree survival nearly 85% of the time. Results indicate that tree survival varied by species. Additionally, trees were more likely to die as trunk diameter increased, planting space width decreased in the tree lawn, and tree condition decreased. Finally, trees adjacent to construction were nearly twice as likely to die as those not exposed to development and redevelopment activities.  相似文献   

10.
Trees of Cox's Orange Pippin on M.IXa, M.26 and MM. 106 were planted either normally with roots or without roots to simplify the planting operation. Pruning treatments were superimposed, the trees being cut back at planting, left unpruned the first year and cut back the second year, or left entirely unpruned. All trees survived. After two growing seasons the trees were lifted and weighed. Removal of all roots before planting reduced shoot growth, trunk girth increment, final tree weight and incremental weight. However, on all rootstocks, trees planted without roots and left unpruned were similar in size when lifted to those planted with roots and cut back at planting in the orthodox manner.

In a complementary trial lasting one season Cox's Orange Pippin trees on M.26 were planted with or without roots. All trees were cut back at planting, and four times of planting were compared. The mid-April planting included trees that had been stored at 2.8 °C and trees that had been bedded-in outdoors. There were no tree losses attributable to removal of the roots before planting. Removing the roots at planting again reduced growth and weight of tree at lifting. Month of planting had no effect upon shoot growth or trunk girth increment.

The results are discussed, together with their practical implications in relation to mechanical tree planting for high density orchards.  相似文献   

11.
High levels of mortality after installation can limit the long-term benefits associated with urban tree planting initiatives. Past planting projects funded by the Florida Forest Service were revisited two to five years after installation to document tree survival and growth and assess program success. Additionally, various site (e.g., soil compaction, installed irrigation) and tree-related (e.g., species, nursery production method, initial size at planting) factors were noted to assess their impact on tree growth. Results show that the overall establishment rate for the 26 sites (n = 2354 trees) was high, with 93.6% of trees alive at the time of final inspection. On-site irrigation played a significant role in tree survival and growth, especially for Magnolia grandiflora (97.7% survival on irrigated sites; 73.8% survival on non-irrigated sites). Findings from this work validate the effectiveness of current program policies which include maintenance of tree quality within the first year after planting, and offer further insights regarding the impacts of season of planting and initial size of nursery stock on plant growth and development.  相似文献   

12.
Urban trees are frequently planted with their root collars and structural roots buried well below soil grade, either because of planting practices, nursery production practices, or both. These deeply planted structural roots can impair tree establishment and are thought to reduce tree growth, lifespan, and stability, although research has provided few and contradictory results on these questions to date. This study examines container-grown (55 L) Turkish hazel trees (Corylus colurna L.), planted either at grade, 15 cm below grade, or 30 cm below grade into a well-drained silt loam soil, over nearly 8 years. Five years after planting, in 2004, remediation treatments (root collar excavations) were performed on two replicates of each below-ground treatment. Subsequently, all trees were subjected to flooding stress by being irrigated to soil saturation for approximately 6 weeks. In 2006, flooding stress was repeated. Trees root systems were partially excavated in 2007, and root architecture was characterized. Deep planting did not affect trunk diameter growth over 8 years. Survival was 100% for the first 5 years; however, one 30 cm below grade tree died after flooding in 2004 and another died after the 2006 flooding. Photosynthesis was monitored during the 2004 flooding and all trees experienced decline in photosynthetic rates. There was an apparent slight delay in the decline for trees with excavated root collars and those planted at grade. Girdling roots reduced trunk taper and occurred primarily on unremediated trees planted 30 cm below grade.

Selected individual roots were excavated and followed from the root ball and were observed to gradually rise to the upper soil regions. Analysis of roots emerging from excavation trench faces indicated that vertical root distribution at approximately 1.25 m from the tree trunks was the same regardless of planting depth. Longterm consequences of planting below grade are discussed.  相似文献   


13.
A GIS-based method for locating potential tree-planting sites based on land cover data is introduced. Criteria were developed to identify locations that are spatially available for potential tree planting based on land cover, sufficient distance from impervious surfaces, a minimum amount of pervious surface, and no crown overlap with other trees. In an ArcGIS environment, a computer program was developed to iteratively search, test, and locate potential tree-planting sites by virtually planting large, medium and small trees on plantable areas, with large trees given priority as more benefits are expected to accrue to them. A study in Los Angeles, USA found 2.2 million potential planting sites, approximately 109.3 km2 of potential tree canopy cover.  相似文献   

14.
In order to meet comprehensive planting goals, tree-planting campaigns must plant on private properties, in residential front and backyards. Successful engagement in these kinds of neighborhood plantings requires an understanding of residents' decision making. Through surveys with past recipients of free 1″-caliper trees, past neighborhood leaders of tree-planting recruiting, and door-to-door canvassing in a pilot neighborhood, this study shows the top factors for accepting free trees and main reasons for declining. Surveys asked past tree recipients their main motivations for accepting a free tree, and three reasons rose to the top: trees provide beauty, trees help the environment, and trees keep people healthy. Top barriers for declining a free tree included not desiring more trees than they had, concerns about maintenance, and a language barrier. These results can inform tree-planting campaigns and tree-focused organizations in order to improve messaging and neighborhood engagement – all to ensure that more trees are planted and canopy is increased.  相似文献   

15.
Forest landscape based on Feng Shui concepts in East Asia deserves research focus for its cultural and ecological contexts. How to contain the wind is the primary principle of Feng Shui practice in small island villages. To protect from strong wind, house-embracing Fukugi (Garcinia subelliptica Merr.) tree lines have been planted around the hamlets and along the coastline in small islands. After Tonaki and Bise villages, we continued to study the actual forest structure, e.g., the forest layout, composition, and density, and further discussed the regeneration and management of Feng Shui trees on small islands. Another objective of this study was to compare the features of the house-embracing Fukugi trees in Aguni Island to those in the two former survey sites of Tonaki Island and Bise village.House-embracing Fukugi trees along the village borderlines and in the north were thicker in Tonaki and Bise villages. In contrast, Fukugi trees on Aguni Island are laid out almost single file. Differences in village topography might contribute to the difference of layout. Hamlets in Aguni are located on the southern part of the island, backed by the high land, and somewhat far from the seashore, while Tonaki and Bise villages are located close to the sea.Fukugi tree density in Aguni was much lower, while, the mean DBH was higher than those in Tonaki and Bise. A large number of small trees were found in the lower storey in the previous survey sites in Tonaki and Bise, where the villages were built on sandy soil. In contrast, small trees were few due to the regular cutting in Aguni Island. Routine chopping and cutting of extended branches were still conducted once a year on Aguni Island. The Shimajiri Mahji soil might also contribute to the few lower storey trees.The biggest tree on Aguni island is estimated to be about 296 years old. The old trees might have been planted prior to the building of Goban villages. Different to Tonaki and Bise, hamlets on Aguni might not be Goban villages. It also suggests that Fukugi trees might have been planted prior to 1737, though central government started to recommend to plant a Fukugi tree belt around every house, every village, and along the coastline in 1737.  相似文献   

16.
Street trees are important foundations of urban sustainability due to the ecosystem services that they provide society and the environment. However, street trees are vulnerable to vandalism and damage, especially when small, which constraints the flow of benefits they provide and also increases the costs of planting programmes. Despite being a common phenomenon, there is limited knowledge regarding the extent of vandalism and the reasons for it. Here we seek to understand the causes and extent of street tree damage in eleven small Eastern Cape (South Africa) towns and to assess the perceptions of residents and officials. The condition of newly planted street trees was assessed in each town and residents were interviewed in the two towns with the highest number of newly planted street trees. Almost half (42%) of recently planted street trees were totally snapped, ranging between 0% and 63% per town. There was no difference in the prevalence of trees being snapped between those with protective structures and those without. Each town used different structures around newly planted street trees, but in only two towns were all the structures intact. The prevalence of damage declined with increasing trunk thickness and increasing town size. According to residents, boredom, misbehaviour, lack of appreciation of trees and collection for wood were the main factors for tree vandalism by people along with damage by livestock. Ward councillors recognised the presence of vandalism, but indicated that it was not a priority topic in their ward meetings. Suggestions by residents to prevent vandalism included: planting in sensible areas, re-designing the protective structures, re-locating livestock and engendering community participation and ownership in all aspects of street tree planting.  相似文献   

17.
Urban environments are often characterized by extensive paved surfaces, exacerbating the urban heat island effect. At the same time, limited root space due to underground infrastructure poses a challenge for planting new trees in these areas. Trees in planters have emerged as popular design elements, offering innovative and sustainable greening solutions, particularly in urban environments with limited rooting space. However, growing conditions in planters may strongly impact tree growth and the provision of environmental ecosystem services (ES). In this 3-year study, we analyzed tree growth and ecosystem services (cooling by shading, CO2-fixation) of London plane (Platanus x hispanica Münchh.) and small-leaved lime (Tilia cordata Mill.) in four planting treatments: in-ground (G), planters in the ground (PG), non-insulated plastic planters (P), and insulated planters (PI). We also recorded soil temperature throughout the experiment and implemented soil drought conditions by reducing soil irrigation for half of the trees after one year. Our findings revealed higher thermal fluctuations in soil temperature within non-insulated plastic planters (P), reaching a maximum of 45 °C, surpassing the critical temperature threshold for plant growth (>38 °C). In contrast, insulated planters (PI) effectively mitigated soil temperatures, staying below 33.8 °C. When planted in the ground (G), P. x hispanica exhibited a significantly higher stem diameter increment (52–66%) compared to other planting treatments, aligning with the provision of ecosystem services. However, T. cordata trees showed a more moderate response to planting treatments in terms of growth and ecosystem service provision. Furthermore, the implementation of soil drought conditions resulted in a reduction of up to 34% in stem diameter increment for P. x hispanica and up to 25% for T. cordata. Our results underscore the necessity of tree species-specific knowledge about growth responses to different planting treatments for effective urban planning perspectives, as the provision of ecosystem services may be influenced differently.  相似文献   

18.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

19.
苹果苗木类型和栽植时间对幼树生长特性的影响   总被引:1,自引:0,他引:1  
【目的】为了研究不同栽植时间下不同苗木类型的生长特性,【方法】以3 a生‘长富2号’/‘M26’/八棱海棠为试材,测定3个栽植时间(2010年3月10日、4月10日和5月10日)下分枝苗、去分枝苗和单干苗生长特性相关指标。【结果】5月份栽植植株的生长势弱于3、4月栽植的植株;单干苗生长势弱于分枝苗和去分枝苗。栽植后第2年,3、4月栽植植株的株高、主干粗度显著大于5月栽植的植株。去分枝苗和单干苗株高显著大于分枝苗。3种苗木类型主干粗度依次为分枝苗>去分枝苗>单干苗,且相互差异显著。分枝苗和去分枝苗冠径显著大于单干苗。栽植后第3年,分枝苗的花芽数显著高于去分枝苗和单干苗。【结论】苹果苗木在冷藏条件下,4月栽植是可行的,本试验中3月份栽植较为适宜。分枝苗有利于促进幼树提早开花结果。  相似文献   

20.
Tree diversity is one of the most important components of urban ecosystems, because it provides multiple ecological benefits and contributes to human well-being. However, the distribution of urban trees may be spatially segregated and change over time. To provide insights for a better distribution of tree diversity in a socially segregated city, we evaluated spatial segregation in the abundance and diversity of trees by socioeconomic group and their change over a 12-year period in Santiago, Chile. Two hundred vegetation plots were sampled across Santiago in 2002 and 2014. We found that overall abundance and diversity of urban trees for the entire city were stable over 12 years, whereas species richness and abundance of native tree species increased. There was segregation in tree species richness and abundance by socioeconomic group, with wealthier areas having more species and greater abundance of trees (for all tree species and native species) than poorer ones. Tree community composition and structure varied with socioeconomic group, but we found no evidence of increased homogenization of the urban forest in that 12 years. Our findings revealed that although tree diversity and abundance for the entire city did not change in our 12-year period, there were important inequities in abundance and diversity of urban trees by socioeconomic group. Given that 43% of homes in Santiago are in the lower socioeconomic areas, our study highlights the importance of targeting tree planting, maintenance and educational programs in these areas to reduce inequalities in the distribution of trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号