首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is becoming increasingly evident that cities are important places for biodiversity. Biodiverse urban forests are vital green areas within cities and have favorable impacts on the citizens, including their health. We focused on the effect of the urban forest environment on biodiversity in Prague, the capital of the Czech Republic. We used a multi-taxon approach with five taxa of different ecological demands: butterflies, bees and wasps, vascular plants, mosses, and lichens. We modeled their responses to the various urban forest attributes at four hierarchical levels – plot, permeability, forest, and landscape. Our results revealed that temporally continuous forests dominated by native oaks with open canopies, a high number of admixed and interspersed tree species and shrubs, together with scattered trees in the surrounding landscape, were optimal biodiverse forest environments. The most influential parameter that positively influenced bees and wasps, plants, and lichens at the plot level was canopy openness. We found that the permeability was suitable mainly on 20 m surroundings and increasing coverage of native oaks and tree species richness were the most important parameters. Continuity was the only found parameter that influenced mosses at the forest level. Scattered tree vegetation was the most important landscape parameter and positively drove the species richness of bees and wasps. Forest management methods can relatively easily solve the improvement of the scattered light gap structure within urban forests. Applying traditional forest management (pasture management, controlled burning and/or coppicing) is also an option but requires sensitive communication with the public. The canopy cover has been used as an indicator of urban forest health conditions, now indicating that artificial disturbances could be important issues for urban forest management and planning in the future. Therefore, active forest management is an essential method for biodiversity maintenance. We conclude that urban forests have a high potential for increasing native biodiversity. The response of the studied groups in urban forests was complementary. The resulting biodiverse stages of urban forests are akin to the established idea of the open temperate deciduous woodlands.  相似文献   

2.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

3.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
We surveyed birds in patches of native eucalypt forest and in surrounding exotic matrix (Radiata pine forests) in south-eastern Australia. Our objectives were: (1) to examine the influence of the width of native forest patches and the age of surrounding pine forests on bird occurrence in patches of native forest; and (2) to verify the relationship between the use of the surrounding pine matrix and bird species response to variation in width of patches of native forests. A total of 32 study sites (boundaries between eucalypt and pine forests) were surveyed. Birds were counted by the area search method within 0.5-ha quadrats. Data were analysed using generalised linear models. Wide patches of eucalypt forest supported higher species richness and greater numbers of birds, such as foliage searchers and nectarivores, than narrow patches. Matrix age also influenced the occurrence of some species in native patches. The abundance of species in wide and narrow patches of native forest was related to their use of the matrix. This was true for native forests surrounded by old but not by young pine forests. We suggest that management in wood production landscapes take into account both characteristics of native patches and the surrounding matrix. Negative impacts of fragmentation in managed landscapes might be reduced by promoting matrix types that are suitable for bird species.  相似文献   

5.
Brotons  Lluís  Mönkkönen  Mikko  Huhta  Esa  Nikula  Ari  Rajasärkkä  Ari 《Landscape Ecology》2003,18(4):377-393
Old-growth forest birds in Fennoscandia have sharply declined in numbers during the last decades apparently due to commercial forest harvesting and fragmentation of old-growth forests. Conservation measures have led to the establishment of a forest reserve network to assure the persistence of forest birds at a regional scale. However, little is known about the effects of landscape structure within and around the reserves on the distribution of old-growth forest birds. We used a hierarchical approach to address the questions of how landscape structure and composition within forest reserves, landscape composition of surrounding areas and reserve location affect the abundance of resident, old-growth forest birds in the Northern Finnish forest reserve network. The positive role of particular landscape features on bird distribution indicates that both the proportion of old-growth forests and the structure of boreal landscape mosaic has an important role in determining the distribution of these birds. The landscape composition surrounding the reserves proved to be only a weak predictor in species distribution models, which argues against the primary role of the surrounding matrix in determining species distribution within forest reserves. Reserves located near the Russian border showed a higher abundance of old-growth birds than more western ones. Once east-west gradients in overall landscape composition had been accounted for, however, reserves did not differ significantly in the number of species present. These results suggest that landscape gradients, rather than ecological processes such as the presence of source areas located along the border with Russia, are the main determinant of the distribution of old-growth forest birds in the Finnish reserve network. We propose that to enhance regional persistence of old-growth forest birds, conservation efforts should be primarily directed towards the protection and enhancement of forest habitat quality and natural heterogeneity of landscapes within targeted areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The vascular plant species richness of upland urban forest patches in St. Paul and Minneapolis, Minnesota, was found to be positively related to their size. There was no significant relationship between species richness and the distance of these patches to other patches. Mowing and trampling reduced species richness of patches, whereas planting increased richness. Landscape richness can be maintained at a relatively high level by leaving even small unmown forested patches within a more disturbed matrix. However, maximizing landscape diversity would require leaving large forest stands unmown. It is suggested that cultivation be deliberately used as a mechanism for increasing native species richness in urban forests.  相似文献   

7.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

8.
Land cover change, predominantly habitat conversion to agricultural use and urbanization, has recently been recognized as the primary cause of biodiversity loss in terrestrial ecosystems. We evaluated the relative effects of urban and agricultural landscapes on anuran species richness and the abundance of six anuran species found at breeding ponds in and around the cities of Ottawa, Ontario and Gatineau, Quebec. We performed six call surveys at 29 permanent focal ponds surrounded by one of three landscape contexts: primarily urban, primarily agricultural, and primarily forested. We also measured three local pond variables to control for the effects of local habitat quality in our analyses. We found that anuran species richness was significantly lower in breeding ponds in urban landscapes compared to forested and agricultural landscapes, which exhibited no significant difference in species richness. The abundances of individual anuran species were also consistently lower in urban landscapes for all species except one, which exhibited no response to landscape type. Three species had their highest abundances in ponds in forested landscapes, whereas two species had their highest abundances in ponds in agricultural landscapes. We conclude that ponds embedded in urban landscapes support lower biodiversity than ponds in agricultural settings. We suggest that landscapes composed of a mosaic of forest and open habitats surrounding wetlands would hold the highest biodiversity of these species.  相似文献   

9.
The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.  相似文献   

10.
The effects of habitat fragmentation on species richness and composition have been extensively studied. However, little is known about how fragmentation affects functional diversity patterns. Fragmentation can indeed affect functional diversity directly (e.g. by promoting traits associated to long-distance dispersal when fragment isolation increases) or indirectly (e.g. by decreasing species richness, hence trait diversity, when fragment area decreases). Here, we used structural equation modeling to determine whether factors associated to forest fragmentation, namely area, habitat heterogeneity, spatial isolation and age have a direct effect on forest herb functional diversity. Using occurrence data from 243 forest fragments located in northern France and six plant life-history traits, we estimated species richness and calculated functional diversity in each of these 243 forest fragments. We found that species richness was the primary driver of functional diversity in these fragments, with a strong positive and direct relationship between species richness and functional diversity. Interestingly, both fragment isolation and age had a direct negative effect on functional diversity independent of their effects on species richness. Isolation selected life-history traits associated with long-distance dispersal, while age selected for life-history traits typical of forest habitat specialists. Isolated and/or older forest fragments are thus at greater risk of local species and functional extinctions, and hence making these forest fragments particularly vulnerable to future global changes.  相似文献   

11.
We consider Miami-Dade County’s Environmentally Endangered Lands (EEL) network of preserves as a means to conserve rare plant species in urban and suburban forest fragments. In this rapidly urbanizing landscape, upland forests are at particularly high risk of development. We examined the number of rare plant species present in preserves based on the site area, ecosystem type and management practices using the EEL database maintained by the county and a database of plant species inventories collected by the Institute for Regional Conservation. About 99% of the area of the EEL system is located in southern Miami-Dade. Pine rockland forests are primarily in the outer suburbs of the county where fire can be used most effectively for management. Hardwood hammock forests are distributed throughout the county including within the urban core. All 56 EEL forested sites under study contained at least one rare plant species. Small sites often contained high numbers of rare species per unit area, but presumably at lower population sizes. The type of upland forest was not related to the mean richness of rare or state-listed plant species. Public access was not related to the mean richness of rare plants, but was negatively associated with the richness of state-listed plant species.  相似文献   

12.
Urban forests are increasingly valued for multiple benefits such as amenity, cultural values, native biodiversity, ecosystem services, and carbon sequestration. Urban biodiversity in particular, is the new focus although global homogenisation is undermining regional differentiation. In the northern hemisphere (e.g., Canada and USA) and in the southern hemisphere, particularly in countries like South Africa, Australia, South America and New Zealand, local biodiversity is further impacted by historical colonisation from Europe. After several centuries, urban forests are now composed of synthetic and spontaneous mixtures of native species, and exotic species from around the temperate world (e.g., Europe, North and South America, South Africa, Asia). As far as we are aware no-one has carried out in-depth study of these synthetic forests in any Southern Hemisphere city. Here we describe the composition, structure, and biodiversity conservation imperatives of urban temperate forests at 90 random locations in Christchurch city, New Zealand.We document considerable plant diversity; the total number of species encountered in the 253 sampled urban forest patches was 486. Despite this incredibly variable data set, our ability to explain variation in species richness was surprisingly good and clearly indicates that total species richness was higher in larger patches with greater litter and vegetation cover, and taller canopy height. Species richness was also higher in patches surrounded by higher population densities and closer to very large native forest patches. Native species richness was higher in patches with higher soil pH, lower canopy height, and greater litter cover and in patches closer to very large native forest patches indicating dispersal out of native areas and into gardens. Eight distinct forest communities were identified by Two-Way INdicator SPecies ANalysis (TWINSPAN) using the occurrence of 241 species that occurred in more than two out of all 253 forest patches.Christchurch urban forest canopies were dominated by exotic tree species in parklands and in street tree plantings (linear parkland). Native tree and shrub species were not as common in public spaces but their overall density high in residential gardens. There was some explanatory power in our data, since less deprivation resulted in greater diversity and density, and more native species, which in turn is associated with private ownership. We hypothesise that a number of other factors, which were not well reflected in our measured environmental variables, are responsible for much of the remaining variation in the plant community structure, e.g., advertising, peoples choice. For a more sustainable asset base of native trees in New Zealand cities we need more, longer-lived native species, in large public spaces, including a greater proportion of species that bear fruit and nectar suitable for native wildlife. We may then achieve cities with ecological integrity that present multiple historical dimensions, and sequester carbon in legible landscapes.  相似文献   

13.

Context

Mediterranean forests have been fragmented intensively over time, thereby yielding small and isolated forest remnants. They host a rich variety of epiphytes, which may be affected by landscape structure. Previous studies have analyzed the influence of habitat quality on these epiphytic communities, but there is little knowledge of the effects of other fragment features.

Objectives

We evaluated the impacts of forest loss and fragmentation on epiphytic communities (lichens and bryophytes) at plot and fragment scales after controlling the variation in forest structure and management.

Methods

We considered 40 fragments of dense oak forests in a human-modified landscape. We quantified their spatial attributes (size and shape), the quality of the surrounding matrix and the forest stand structure. We modeled community traits, and the presence and abundance of species at fragment and plot scales.

Results

Fragment size, shape, and the quality of the surrounding matrix were key factors that affected epiphytic richness and diversity. Larger and more regularly shaped fragments hosted the richest and most diverse communities, possibly offering a larger core area and thus favoring the entry of typical forest species. A high-contrast matrix was only favorable in small fragments, probably allowing the arrival of propagules. The species-level response was highly variable.

Conclusions

Landscape structure provides powerful explanations of the richness and diversity losses among epiphytes. Forest management should ensure the retention of the largest possible continuous forests. The management strategy of the matrix will depend on the conservation goal, since we observed different effects related with quality and fragment size.
  相似文献   

14.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

15.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

16.
Contemporary landscape ecology continues to explore the causes and consequences of landscape heterogeneity across a range of scales, and demands for the scientific underpinnings of landscape planning and management still remains high. The spatial distribution of resources can be a key element in determining habitat quality, and that in turn is directly related to the level of heterogeneity in the system. In this sense, forest habitat mosaics may be more affected by lack of heterogeneity than by structural fragmentation. Nonetheless, increasing spatial heterogeneity at a given spatial scale can also decrease habitat patch size, with potential negative consequences for specialist species. Such dual effect may lead to hump-backed shape relationships between species diversity and heterogeneity, leading to three related assumptions: (i) at low levels of heterogeneity, an increase in heterogeneity favours local and regional species richness, (ii) there is an optimum heterogeneity level at which a maximum number of species is reached, (iii) further increase in spatial heterogeneity has a negative effect on local and regional species richness, due to increasing adverse effects of habitat fragmentation. In this study, we investigated the existence of a hump-shaped relationship between local plant species richness and increasing forest landscape heterogeneity on a complex mosaic in the French Alps. Forest landscape heterogeneity was quantified with five independent criteria. We found significant quadratic relationships between local forest species richness and two heterogeneity criteria indicators, showing a slight decrease of forest species richness at very high heterogeneity levels. Species richness–landscape heterogeneity relationships varied according to the heterogeneity metrics involved and the type of species richness considered. Our results support the assumption that intermediate levels of heterogeneity may support more species than very high levels of heterogeneity, although we were not able to conclude for a systematic negative effect of very high levels of heterogeneity on local plant species richness.  相似文献   

17.

Context

The anthropocene is characterised by global landscape modification, and the structure of remnant habitats can explain different patterns of species richness. The most pervasive processes of degradation include habitat loss and fragmentation. However, a recovery of modified landscape is occurring in some areas.

Objectives

The main goal is to know how lichen and bryophyte epiphytic richness growing on Mediterranean forests is influenced not only by fragments characteristics but also by the structure of the landscape. We introduce a temporal dimension in order to evaluate if the historical landscape structure is relevant for current epiphytic communities.

Methods

40 well-preserved forest fragments were selected in a landscape with a large habitat loss over decades, but with a recovery of forest surface in the last 55 years. The most relevant fragment and landscape-scale attributes were considered. Some of the variables were measured in three different years to incorporate a temporal framework.

Results

The results showed that variables at fragment scale had a higher influence, whereas variables at the landscape scale were irrelevant. Among all the historical variables analyzed, only the shift in forest fragment size had influence on species richness.

Conclusions

Mediterranean forests had suffered fragmentation along centuries. Their epiphytic communities also suffer the hard conditions of Mediterranean climate. Our results indicate that Mediterranean epiphytic communities may be in a threshold since it they will never be similar to those communities existing previous fragmentation process even a recovery habitat occur or, they may require more time to response to this habitat recovery.
  相似文献   

18.
We used an integrated modeling approach to simulate future land cover and predict the effects of future urban development and land cover on avian diversity in the Central Puget Sound region of Washington State, USA. We parameterized and applied a land cover change model (LCCM) that used output from a microsimulation model of urban development, UrbanSim, and biophysical site and landscape characteristics to simulate land cover 28 years into the future. We used 1991, 1995, and 1999 Landsat TM-derived land cover data and three different spatial partitions of our study area to develop six different estimations of the LCCM. We validated model simulations with 2002 land cover. We combined UrbanSim land use outputs and LCCM simulations to predict changes in avian species richness. Results indicate that landscape composition and configuration were important in explaining land cover change as well as avian species response to landscape change. Over the next 28 years, urban land cover was predicted to increase at the expense of agriculture and deciduous and mixed lowland forests. Land cover changes were predicted to reduce the total number of avian species, with losses primarily in native forest specialists and gains in common synanthropic species such as the American Crow (Corvus brachyrhynchos). The integrated modeling framework we present has potential applications in urban and natural resource planning and management and in assessing of the effects of policies on land development, land cover, and avian biodiversity.  相似文献   

19.
Urban areas are a particular landscape matrix characterized by a fine-grained spatial arrangement of very diverse habitats (urban mosaic). We investigated arthropods to analyse biodiversity-habitat associations along five environmental gradients (age, impervious area, management, configuration, composition) in three Swiss cities (96 study sites). We considered total species richness and species richness within different functional groups (zoophagous, phytophagous, pollinator, low mobility, and high mobility species). Information theoretical model selection procedures were applied and predictions were calculated based on weighted models. Urban areas yielded on average 284 arthropod species (range: 169–361), with species richness correlating mostly with heterogeneity indices (configuration and composition). Species richness also increased with age of urban settlement, while enlarged proportions of impervious area and intensified habitat management was negatively correlated. Functional groups showed contrasted, specific responses to environmental variables. Overall, we found surprisingly little variation in species richness along the gradients, which is possibly due to the fine-grained spatial interlinkage of good (heterogeneous) and bad (sealed) habitats. The highly fragmented nature of urban areas may not represent a major obstacle for the arthropods currently existing in cities because they have probably been selected for tolerance to fragmentation and for high colonisation potential. Given that built areas are becoming denser, increasing spatial heterogeneity of the urban green offers potential for counteracting the detrimental effects of densification upon urban biodiversity. By quantifying the expected effects along environmental gradients, this study provides guidance for managers to set priorities when enhancing urban arthropod species richness.  相似文献   

20.
In coastal southern California, natural riparian corridors occur in a landscape mosaic comprised of human land uses (mainly urban and suburban development) interspersed among undeveloped areas, primarily native shrublands. We asked, does the composition of the landscape surrounding a riparian survey point influence plant species distribution, community composition, or habitat structure? We expected, for example, that invasive non-native species might be more abundant as the amount of surrounding urbanization increased. We surveyed 137 points in riparian vegetation in Orange County, California, along an urbanization gradient. Using logistic regression we analyzed 79 individual plant species’ distributions, finding 20 negatively associated and 12 positively associated with the amount of development within a 1-km radius around the survey points, even after accounting for the effects of elevation. However, after summarizing plant community composition with Detrended Correspondence Analysis we observed that, overall, community composition was not statistically correlated with the amount of development surrounding a survey point once the association between development and elevation was taken into account. Non-native species were not particularly associated with increasing development, but instead were distributed throughout vegetation and urbanization gradients. However, the extent of the tree and herb layers (structural attributes) was associated with development, with the tree layer increasing and the herb layer decreasing as urbanization increased. Thus, although the degree of surrounding urbanization appears to influence the distribution of a number of individual plant species, overall composition of the community in our study system seemed relatively unaffected. Instead, we suggest that community composition reflected larger-scale environmental conditions, such as stream order and other variables associated with elevation, and/or regional-scale disturbances, such as historic grazing or enhanced atmospheric deposition of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号