首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pasture grasses from temperate Japan were tested for infection with barley yellow dwarf viruses (BYDVs) and fungal endophytes. BYDVs from both the MAV and RPV subgroups were detected, but no symptoms attributable to BYDV infection were observed. Not all isolates from the MAV subgroup could be clearly discriminated as MAV or PAV solely on ELISA results, and may have been intermediate serotypes or mixed infections. BYDVs were found to infect fescue ( Festuca arundinacea : 17%), ryegrass ( Lolium perenne : 41%), timothy ( Phleum pratense : 94%) and Poa spp. (20%). Fescue and ryegrass were predominantly infected with RPV and PAV, respectively. The small collections of Poa spp. were only infected with PAV, while timothy was only tested for MAV subgroup viruses. In fescue 26% of tillers were infected with Acremonium coenophialum , and 60% of ryegrass tillers from an ecotype collection were infected with Acremonium lolii. There was no correlation between BYDV infection and the presence of endophytes for the above species or for Epichloe typhina -infected (50%) timothy. An ELISA test for A. lolii did not detect A. coenophialum in fescue or E. typhina in timothy but showed good agreement with epidermal staining of A. lolii in ryegrass leaf sheaths.  相似文献   

2.
Barley yellow dwarf virus in ryegrass and its detection by ELISA   总被引:6,自引:6,他引:0  
The enzyme-linked immunosorbent assay (ELISA) effectively detected PAV- and MAV-like strains of barley yellow dwarf virus (BYDV) in ryegrass. MAV-like BYDV was found in a large proportion of ryegrass plants with foliar symptoms. There was a poor association between foliar symptoms and PAV-like virus, which occurred with similar frequency in plants with and without symptoms. By August 1982, plots of perennial, Italian and hybrid ryegrass sown at Auchincruive in 1980 were extensively infected with PAV- and MAV-like strains of BYDV. Tests on samples from 1981- and 1982-sown plots in August 1983 also indicated early invasion by BYDV. Infection levels of 7–80% were found in 13 commercial crops of perennial ryegrass surveyed near Auchincruive in May 1983. PAV-like BYDV occurred with greater frequency than did MAV-like strains of the virus.  相似文献   

3.
为明确禾草内生真菌和丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)互作对多年生黑麦草Lolium perenne生长发育及叶斑病的影响,设置禾草内生真菌处理(由带有和不带禾草内生真菌种子建立)、AMF(幼套球囊霉Claroideoglomus etunicatum和根内球囊霉Rhizophagus intraradices)单独接种和混合接种处理及不接菌处理(对照),并在植物生长6周后接种或不接种多年生黑麦草叶斑病病原菌根腐离蠕孢Bipolaris sorokiniana,测定各处理多年生黑麦草的发病率、叶绿素含量、净光合速率、水分利用效率、AMF侵染率、P含量和生物量。结果表明:接种病原菌2周后,多年生黑麦草叶斑病的发病率为25.00%~38.75%,禾草内生真菌和幼套球囊霉均在一定程度上降低了多年生黑麦草的发病率,二者共同作用时发病率显著降低了35.48%。禾草内生真菌与AMF互作能在一定程度上提高植物叶绿素含量,促进光合作用,并促进P吸收和植物生长,二者的互作效应因禾草内生真菌与AMF组合而异,但均优于二者单独使用时的效应,其中禾草内生真菌与幼套球囊霉互作对多年生黑麦草生长及叶斑病防治的效果最好。  相似文献   

4.
The incidence of barley yellow dwarf virus (BYDV) in perennial ryegrass ( Lolium perenne ) crops in four areas of south-west and central Scotland was investigated between March 1988 and February 1989. BYDV was detected in 93·8% of the grass swards using an indirect enzyme-linked immunosorbent assay (ELISA). This enabled the seasonal periodicity of the BYDV strains to be monitored over 12 months for the first time in Scotland. The incidence of the RPV, PAV and MAV strains of BYDV declined between March and July 1988, before gradually rising in August. Incidence increased markedly in September, especially of the RPV and MAV strains, and then gradually decreased over the winter months, before stabilizing in February 1989. The incidence of the different strains in perennial ryegrass leys varied between geographical areas and between fields within areas. Most ryegrass samples contained a mixture of the three strains of BYDV. RPV was the most common strain in Ayrshire, while the incidence of PAV was highest in Wigtownshire and that of MAV was highest in Dumfriesshire and Stirlingshire. The incidence of BYDV increased with the age of the sward. The role of perennial ryegrass as a source of virus for the infection of cereals is discussed.  相似文献   

5.
South Australia is in the dry temperate zone where most cereal crops are grown in an area of low rainfall, with a crop-free season from December to April. The incidence of barley yellow dwarf virus (BYDV) was assessed by ELISA from 1989 to 1991 in wheat crops and irrigated pastures of South Australia. The incidence of BYDV was low in most wheat crops of the low-rainfall area in 1989 and 1990 (less than 1% of plants infected), but moderate levels of infection (1–10%) were observed in some early-sown crops. BYDV infection was more widespread in the high-rainfall area (south east of South Australia). A high incidence of BYDV was observed in the irrigated pastures of the three areas surveyed (4–86%). Of the five previously described strains, the Rhopalosiphum padi/Sitobion avenae strain (PAV) was the most common in wheat samples (> 90%). PAV and the R. padi-specific strain (RPV) were found in pasture grasses, alone or in mixed infection. Virus incidence was greater in Festuca spp. (56%) and Lolium perenne (30%) than in other species (2-–9%).  相似文献   

6.
Occurrence of barley yellow dwarf virus in pastures of western France   总被引:1,自引:2,他引:1  
As pasture grasses are preponderant in the agriculture of western France, their role as reservoirs of barley yellow dwarf virus (BYDV) and its aphid vectors has been studied from 1984 to 1986. Aphids were observed on most crops of five pasture grass species (brome grass, cocksfoot, tall fescue, Italian and perennial ryegrass) but in very low numbers. Rhopalosiphum padi was the most numerous species. The incidence of BYDV was high, with levels of infection ranging from 6 to 80% depending on the species of pasture grasses. Fescue pastures were highly infected with BYDV, whereas the virus was not detected in cocksfoot pastures. PAV-, RPV-, MAV-like isolates of BYDV were detected in pasture grasses, but RPV- and MAV-like isolates were only detected from ryegrass and brome grass, respectively. The role of these grasses as source of viruliferous aphids infecting cereals is discussed.  相似文献   

7.
ABSTRACT Gray leaf spot is a serious disease of perennial ryegrass (Lolium perenne), causing severe epidemics in golf course fairways. The effects of temperature and leaf wetness duration on the development of gray leaf spot of perennial ryegrass turf were evaluated in controlled environment chambers. Six-week-old Legacy II ryegrass plants were inoculated with an aqueous conidial suspension of Pyricularia grisea (approximately 8 x 10(4) conidia per ml of water) and subjected to four different temperatures (20, 24, 28, and 32 degrees C) and 12 leaf wetness durations (3 to 36 h at 3-h intervals). Three days after inoculation, gray leaf spot developed on plants at all temperatures and leaf wetness durations. Disease incidence (percent leaf blades symptomatic) and severity (index 0 to 10; 0 = leaf blades asymptomatic, 10 = >90% leaf area necrotic) were assessed 7 days after inoculation. There were significant effects ( alpha = 0.0001) of temperature and leaf wetness duration on disease incidence and severity, and there were significant interactions ( alpha = 0.0001) between them. Among the four temperatures tested, 28 degrees C was most favorable to gray leaf spot development. Disease incidence and severity increased with increased leaf wetness duration at all temperatures. A shorter leaf wetness duration was required for disease development under warmer temperatures. Analysis of variance with orthogonal polynomial contrasts and regression analyses were used to determine the functional relationships among temperature and leaf wetness duration and gray leaf spot incidence and severity. Significant effects were included in a regression model that described the relationship. The polynomial model included linear, quadratic, and cubic terms for temperature and leaf wetness duration effects. The adjusted coefficients of determination for the fitted model for disease incidence and severity were 0.84 and 0.87, respectively. The predictive model may be used as part of an integrated gray leaf spot forecasting system for perennial ryegrass turf.  相似文献   

8.
Three experiments investigating factors influencing the abundance of Rumex spp. (docks) in silage and grazed grassland swards are presented. In Experiment 1, Rumex obtusifolius plants were sown with perennial ryegrass and white clover in pots in March and harvested at either 5- or 10-week intervals between June and October. The 10-week harvest interval increased root dry-matter production of R. obtusifolius compared with the 5-week interval; herbage (above-ground material) production was not significantly affected. In Experiment 2, R. obtusifolius and Rumex crispus population densities in grassland swards were correlated with soil P, K and Mg concentrations, and soil pH. In general, silage swards contained higher population densities than grazed swards. There were significant positive correlations between soil K concentrations and abundance of Rumex spp. in grazed swards and in silage swards. In Experiment 3, R. obtusifolius was sown with perennial ryegrass in pots in March. Treatments consisted of nine rates of K fertilization ranging between the equivalent of 0 and 600 kg K ha−1 year−1. Herbage was harvested at regular intervals (4–6 weeks except during the winter) until May of the following year. In general, perennial ryegrass dry-matter yields were not greatly affected by soil K, whereas limited soil K supply tended to reduce dry-matter production of R. obtusifolius . It is possible that maintenance of moderate soil K concentrations may play a role in limiting abundance of Rumex spp. in grassland.  相似文献   

9.
ABSTRACT Epichlo? typhina perennially and systemically infects grass plants, causing choke disease in which maturation of host inflorescences is suppressed. In seedling-inoculation tests, isolate E8 from perennial ryegrass established and maintained infection in this host but not in orchardgrass. In contrast, isolates E469, E2466, and E2467 from orchardgrass varied in infection frequency and stability in orchardgrass, but all were unable to establish stable infections in perennial ryegrass. To investigate the genetics of host specificity, isolate E8 was crossed with each of the isolates from orchardgrass. Seedlings of parental host species were inoculated with F(1) progeny, and the frequencies of seedling infection and stability in adult plants were assessed. In the E8 x E2466 cross, the F(1) progeny exhibited a wide range of infection frequency and stability in each parental host. In crosses E8 x E469 and E8 x E2467, where the orchardgrass-derived parents infected 5 to 13% of inoculated perennial ryegrass seedlings, the distributions of infection frequencies for the F(1) progeny wereskewed toward levels comparable to that of the parent from perennial ryegrass. In all crosses, most progeny had low frequencies of infection in orchardgrass. However, transgression was evident in a cross of E8 with E469, an isolate that infected orchardgrass seedlings at a low frequency (2 to 3%). The E8 x E469 cross had a few F(1) progeny that infected orchardgrass at high efficiency (up to 81%). A Spearman rank correlation applied to the E8 x E2466 progeny indicated a significant negative correlation between infection frequencies in perennial ryegrass and orchardgrass. Also, there was a significant correlation of infection frequency and stability in perennial ryegrass but not in orchardgrass. To test whether only a few genes governed infection frequency in perennial ryegrass, an E8 x E2466 F(1) progeny (designated E386.04), which had intermediate compatibility with this host, was backcrossed to E8. The progeny of this backcross exhibited a distribution of infection frequencies in perennial ryegrass between that of E386.04 and the backcross parent, suggesting that multiple genes may determine compatibility at the seedling infection stage. The results of these experiments indicated multiple genetic determinants of compatibility or incompatibility with each host, with intermediate or high heritability.  相似文献   

10.
In a field experiment nitrogen (N) fertilizer was applied to small plots of perennial ryegrass ( Lolium perenne ) at rates equivalent to 0, 200, 400 and 600 kg N/ha/yr at each of two levels of potassium (K) 0 and 200 kg K/ha/yr. Plots were cut at 6-week intervals during 1977–79 and dry matter yield was determined. Water-soluble carbohydrate and N content of the foliage were measured at three harvests in 1977. The incidence and severity of Drechslera spp. were assessed at and between harvests; attack by Puccinia coronata was assessed each autumn. Most foliar damage was caused by Drechslera spp. This was increased by N application which also altered the relative proportions of the Drechslera spp. present. K application had no apparent effect on disease incidence. Puccinia coronata was more prevalent on older leaves and on one occasion its incidence was increased by N application.  相似文献   

11.
Recently, glyphosate‐resistant Italian ryegrass (Lolium multiflorum Lam.) was found on rice paddy levees in a western region of Shizuoka Prefecture, Japan. Naturalized populations of Italian ryegrass are frequently infected with fungal Epichloë endophytes. Endophytes often confer benefits to their host grasses. This study investigated the influence of five weed management treatments on glyphosate resistance and endophyte infection in Italian ryegrass that was growing on paddy levees where glyphosate‐resistant individuals were dominant. The weed management treatments were: (i) mowing once before the grass flowered; (ii) mowing once during flowering; (iii) mowing twice during flowering; (iv) glyphosate application before flowering; and (v) no treatment. The seeds were collected from the treatment plots in 2013 and 2014. The seeds were examined for endophyte infection and the seedlings that had been grown from the seeds were tested for the frequency of glyphosate resistance. The seedlings that had been derived from the glyphosate treatment showed higher frequencies of glyphosate resistance than those seedlings that had been derived from all the other treatments. Endophytes were found in all populations of the seeds from the paddy levees, with higher infection rates in the seeds that had been derived from the glyphosate treatment and the twice‐mowed treatment. There was a significant relationship between the endophyte infection frequency in the seeds and glyphosate resistance in the seedlings that had been grown from the same populations. The results indicate that where glyphosate herbicides are frequently used, selection for glyphosate‐resistant Italian ryegrass occurs, and along with this, the frequency of endophyte infection also increases.  相似文献   

12.
Crown rust (caused by Puccinia coronata f. sp. lolii) is a serious foliar disease of the pasture and turfgrass perennial ryegrass (Lolium perenne). Previous genetic studies have detected both qualitative and quantitative resistance mechanisms, and interpretation of the genetic system is complicated by variation within the sexually reproducing pathogen. Resistant and susceptible parental genotypes of ryegrass were identified using a composite urediniospore population collected from three geographically distinct locations. A two-way pseudo-testcross mapping population was obtained as the F1 progeny of the pair-cross between ryegrass parental genotypes Vedette6 and Victorian9. Both parents showed intermediate resistance against a pathogen population collected in a single geographical zone (Hamilton, Victoria), but in the F1 population, significant variation for a range of resistance-associated characters was detected. Statistical analysis of phenotypic data suggested a major gene effect, hence bulked segregant analysis with map-assigned simple sequence repeat (SSR) markers was used to scan the genome. A marker showing strong association with resistance was assigned to linkage group (LG) 2 of perennial ryegrass. Analysis of 11 LG2 SSR markers defined an interval between loci xlpssrh03f03 and xlpssrk02e02 as containing the gene or genes (LpPc1) conferring crown rust resistance. Resistance gene determinants were inherited from both parents, with up to 80% of the total phenotypic variation explained by markers segregating from Vedette6 and up to 26% of the variation explained by markers segregating from Victorian9. The two contributions together resulted in an additive increase in effect, with fully resistant individuals requiring determinants from both parents. A conserved syntenic relationship was observed with linkage group B of Avena strigosa, which is the location of a cluster of resistance genes to the oat form of crown rust. The implications of this study for marker-assisted selection of disease resistance in perennial ryegrass are discussed.  相似文献   

13.
Sim S  Diesburg K  Casler M  Jung G 《Phytopathology》2007,97(6):767-776
ABSTRACT Crown rust (Puccinia coronata f. sp. lolli) is a serious fungal foliar disease of perennial ryegrass (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.), which are important forage and turf species. A number of quantitative trait loci (QTL) for crown rust resistance previously were identified in perennial ryegrass under growth chamber or greenhouse conditions. In this study, we conducted a QTL mapping for crown rust resistance in a three-generation Italian x perennial ryegrass interspecific population under natural field conditions at two locations over 2 years. Through a comparative mapping analysis, we also investigated the syntenic relationships of previously known crown rust resistance genes in other ryegrass germplasms and oat, and genetic linkage between crown rust resistance QTL and three lignin genes: LpOMT1, LpCAD2, and LpCCR1. The interspecific mapping population of 156 progeny was developed from a cross between two Italian x perennial ryegrass hybrids, MFA and MFB. Because highly susceptible reactions to crown rust were observed from all perennial ryegrass clones, including two grandparental clones and eight clones from different pedigrees tested in this study, two grandparent clones from Italian ryegrass cv. Floregon appeared to be a source of the resistance. Two QTL on linkage groups (LGs) 2 and 7 in the resistant parent MFA map were detected consistently regardless of year and location. The others, specific to year and location, were located on LGs 3 and 6 in the susceptible parent MFB map. The QTL on LG2 was likely to correspond to those previously reported in three unrelated perennial ryegrass mapping populations; however, the other QTL on LGs 3, 6, and 7 were not. The QTL on LG7 was closely located in the syntenic genomic region where genes Pca cluster, Pcq2, Pc38, and Prq1b resistant to crown rust (P. coronata f. sp. avenae) in oat (Avena sativa L.) were previously identified. Similarly, the QTL on LG3 was found in a syntenic region with oat genes resistant to crown rust isolates PC54 and PC59. This indicates that the ortholoci for resistance genes to different formae speciales of crown rust might be present between two distantly related grass species, ryegrass and oat. In addition, we mapped four restriction fragment length polymorphism loci for three key ryegrass lignin genes encoding caffeic acid-O-methyltransferase, cinnamyl alcohol dehydrogenase, and cinnamoyl CoA-reductase on LG7. These loci were within a range of 8 to 17 centimorgans from the QTL on LG7, suggesting no tight linkage between them. The putative ortholoci for those lignin biosynthesis genes were identified on segments of rice (Oryza sativa L.) chromosomes 6 and 8, which are the counterparts of ryegrass LG7. Results from the current study facilitate understanding of crown rust resistance and its relationship with lignin biosynthesis, and also will benefit ryegrass breeders for improving crown rust resistance through marker-assisted selection.  相似文献   

14.
Changes in ihe species composition of a ryegrass pasture were examined over a 2 year period from a spring establishment. Seed of S23 perennial ryegrass was sown in main plots, eilher broadcast or drilled, at rates of 15, 25 or 35 kg/ha in a field experiment at Oxford. The whole area was oversown withfour weed grasses (Agrostis siolonifera.Holcus lanatus. Poa annua and P trivialis). Five cultural and three herbicide treatments were applied across the plots. These consisted of three levels of nitrogen (0. 50 and 100 kg N per ha), two companion species (Italian ryegrass and white clover) and 2.4-D, benazolin and methabenzihiazuron applications. Ten weeks after sowing, broad-leaved weeds accounted for nearly half the lotal dry-matter yield, except where controlled by the three herbicides. Grass yields were nol increased by herbicide treatment. The only cultural treatment checking broad-leaved weeds was ihe 35 kg/ha seeding rale. Seven months after sowing, the only treatment which had decreased the abundance of weed grasses was melhabenzthiazuron especially againsi A. stolonifera and Poa spp. Two years afler sowing, perennial ryegrass had only 34% ground cover and had been replaced largely by H. lanatus (38%), Poa spp, (15%) and A. stolonifera (7%), Where methabenzthiazuron had been used the ryegrass ground cover was 48%. with less P. trivialis and A. stolonifera. but H. lanatus was nol altered. White clover decreased H. lanatus cover. In two supplementary pot experiments, methabenzthiazuron sprayed pre-emergence damaged perennial ryegrass unless the seed was covered with at least 4 mm of soil. Only H. lanatmand F. rubra out of sixteen grasses were relatively resistant to methabenzihiazuron when applied at ihe tillering stage, confirming that this herbicide has potential for preventing the ingress of many unsown grasses in new leys.  相似文献   

15.
Moderately severe strains of barley yellow dwarf virus (BYDV) and ryegrass mosaic virus (RMV) significantly reduced the heights and yields of perennial ( Lolium perenne ) and Italian (L. multifiorum) ryegrasses. BYDV caused greater reductions in perennial ryegrass than in Italian, whereas the converse was true of RMV. Both viruses together rarely caused greater damage than the most damaging virus on its own. BYDV reduced the aggressiveness of perennial ryegrass more than of Italian, whereas with RMV the converse was true. In mixtures of perennial and Italian ryegrasses, the perennial was suppressed by the Italian when only BYDV was present, the Italian was suppressed by the perennial when only RMV was present, and the status quo was maintained when both viruses were present, even though they reduced the yield of the mixture by over 16%.  相似文献   

16.
Competiton between seedlings of gorse (Ulex europaeus L.) and perennial ryegrass (Lolium perenne L cv. Grasslands Nui) was studied in a replacement series experiment under glasshouse conditions. Without cutting, the shoot growth of gorse in monoculture exceeded that of ryegrass over 22 weeks but was reduced more by competition from ryegrass than the grass growth was reduced by competition from gorse. The root system of gorse was small compared with that of ryegrass and was further reduced by competition. Cutting three times at 2 or 4 cm reduced the total growth of both species and gorse was affected more than ryegrass. With grass, however, the ‘growth between succeeding cuts declined faster than that of gorse and in the final harvest period, gorse in monoculture oulyielded ryegrass. The relative crowding coefficients of gorse were low compared with those of ryegrass and their products consistently exceeded 1.0. The results are discussed in relation to lirmiting seedling establishment of gorse in the field.  相似文献   

17.
In field experiments methabenzthiazuron at 1.1 kg ai/ha applied pre-emergence gave good control of Poa trivialis L. in perennial ryegrass S23 which was undersown in spring barley (Zephyr); no significant damage to barley or perennial ryegrass resulted from 2.2 kg ai/ha. However this dose applied when barley had three to four leaves decreased the subsequent barley yield. In pot experiments in the glasshouse methabenzthiazuron was active mainly due to uptake through the soil. Much greater damage to barley and perennial ryegrass resulted when herbicide-treated soil was placed below seed level than above the seed. The difference was less marked with P. trivialis. The latter started to develop secondary roots near the soil surface earlier than either perennial ryegrass or spring barley.  相似文献   

18.
A test of comparative in vitro cerato-ulmin wilt toxin production in the aggressive and non-aggressive subgroups of the Dutch elm disease pathogen Ophiostoma ulmi was carried out by turbidity and ELISA methods. Ten non-aggressive, ten EAN aggressive and ten NAN aggressive isolates were tested from a range of geographical sources. In liquid shake cultures the non-aggressive isolates produced the greatest and the NAN aggressives the least mean biomass. Despite considerable variation in cerato-ulmin production by individual isolates in three separate experiments, both the turbidity and ELISA methods showed a clear separation of the non-aggressive and aggressive subgroups. Non-aggressive isolates produced little or no cerato-ulmin (ELISA range of means 0–56.0 ng/ml) and EAN and NAN aggressive isolates moderate to high levels (EAN 1.6–89.0 × 104 ng/ml and NAN 0.2–300 × 104 ng/ml). In the aggressive isolates no correlation was detected between cerato-ulmin production and either biomass or pathogenicity to clonal Commelin elm. The role of cerato-ulmin in the pathogenicity of O. ulmi is discussed.  相似文献   

19.
Gray leaf spot (GLS) disease of perennial ryegrass (Lolium perenne) and kikuyugrass (Pennisetum clandestinum) in golf courses in California was first noted in 2001 and 2003, respectively, and within 5 years had become well established. The causal agent of the disease is the fungus Magnaporthe grisea, which is known to consist primarily of clonal lineages that are highly host specific. Therefore, our objective was to investigate host specificity and population dynamics among isolates associated primarily from perennial ryegrass and kikuyugrass since the disease emerged at similar times in California. We also obtained isolates from additional hosts (tall fescue, St. Augustinegrass, weeping lovegrass, and rice) and from the eastern United States for comparative purposes. A total of 38 polymorphic amplified fragment length polymorphism makers were scored from 450 isolates which clustered by host with high bootstrap support (71 to 100%). Genetic structure between kikuyugrass and perennial ryegrass isolates differed significantly. Isolates from kikuyugrass were genotypically diverse (n = 34), possessed both mating types, and some tests for random mating could not be rejected, whereas isolates from perennial ryegrass were less genotypically diverse (n = 10) and only consisted of a single mating type. Low genotypic diversity was also found among the other host specific isolates which also only consisted of a single mating type. This is the first study to document evidence for the potential of sexual reproduction to occur in M. grisea isolates not associated with rice (Oryza sativa). Moreover, given the significant host specificity and contrasting genetic structures between turfgrass-associated isolates, the recent emergence of GLS on various grass hosts in California suggests that potential cultural practices or environmental changes have become conducive for the disease and that the primary inoculum may have already been present in the state, despite the fact that two genotypes associated with perennial ryegrass and St. Augustinegrass in California were the same as isolates collected from the eastern United States.  相似文献   

20.
Grey leaf spot, caused by Magnaporthe oryzae, causes severe damage on perennial ryegrass (Lolium perenne) turf. In this study, the effects of relative humidity (RH, 88 to 100% at 28°C) on infection, colonization and conidiation of M. oryzae on perennial ryegrass were investigated in controlled humidity chambers. Results showed that the RH threshold for successful M. oryzae infection was ≥92% at 28°C. The advancement of infection on the leaf tissue was further examined with a green fluorescent protein (GFP)‐tagged M. oryzae strain. No appressorium formation was found when the inoculum was incubated at RH ≤ 88%. Additionally, the GFP‐tagged staining provided a rapid method to quantitatively compare the fungal colonization from leaf tissue at different levels of RH. The fluorescence intensity data indicated that the fungal biomass was highest at 100% RH and there was no fluorescence intensity observed at 88% RH or below. Conidiation was only observed when RH was ≥96%, with the most abundant conidiation occurring 8 days after inoculation. Reduced conidiation was associated with decreasing RH, and no conidiation occurred at RH ≤ 92%. This study indicates that infection and conidiation of M. oryzae on perennial ryegrass required different thresholds: 92% and 96% RH for infection and conidiation, respectively. The quantitative data from this research will assist in prediction of grey leaf spot disease outbreaks and of secondary infection of perennial ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号