首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ANDESITE WEATHERING   总被引:1,自引:0,他引:1  
Petrographic and quantitative mineralogical analyses of two andesites and their saprolite (weathered rock) from the Cascade Range in California reveal a mineral weathering sequence in the rocks related to crystal size and composition and to weathering environment. Both the hypersthene andesite and the olivine andesite studied have been subjected to moderate to intensive leaching by acid solutions percolating through the superjacent soil bodies. Although the two parent rocks differ in chemical and mineralogical composition, their weathering to saprolite has followed a similar progression. During early stages of weathering of both rocks, relatively large hypersthene phenocrysts are most resistant. Following in decreasing order of resistance in both cases are plagioclase phenocrysts and finegrained mafic minerals, olivine, and glassy matrix material. Quartz is relatively stable in the earliest weathering stages, but it decreases rapidly with increased weathering. Free iron oxides and clay increase with increased weathering. Amorphous clay dominates the early weathering stages, but as weathering progresses, kaolin increases relative to amorphous clay.  相似文献   

2.
Rock weathering has long been a subject of study for geologists, mineralogists, chemists and soil scientists since the dawn of this century. In methods for investigating rock weathering, three aspects seem to be present. The one is a chemical aspect in which weathering process is considered by comparing chemical composition of fresh parent rock with that of the weathered rock, the difference being attributed to gains or losses of chemica,l elements with respect to a supposed immobile element, usually aluminum. This aspect can elucidate the chemical behaviour of rock, that is, of material as an assemblage of constituent minerals in the environment of weathering. Among many such studies mentioned. PoLYNov's “Cycle of Weathering” (6) is one of the most comprehensive and fruitful acheivements. The second aspect is a mineralogical one, in which interests are directed toward skeletal minerals surviving against severe attacks of weathering. It is commonly observed that some of the original constituent minerals still remain in weathered material after others have been extinguished. The former minerals are more stable than the latter. On the basis of these observations, the sequence of resistantiability or stability to weathering can be determined for many rock forming minerals. GOLDICH's study of rock-weathering (3) is a representative one in this aspect. The third aspect is concerned with clay mineralogy. Primary rock-forming minerals are weathered into very finegrained materials most of which had been believed amorphous until techniques now used in clay mineralogical reserch proved their crystalline state. Besides primary skeletal minerals, weathered materials are now known to consist mainly of both amorphous and crystalline secondary minerals, mostly appearing in minus two micron fraction and being objects of interest in clay mineralogy. Any study of rock weathering hitherto performed stood more or less on the three aspects above mentioned but, all the abovementioned seem to fall into the common tendency of dealing with materials as bulk mass. That is, they were concerned much more with fresh rock versus its weathered end products as a whole rather than with the process or mechanism by which fresh rock changed into weathered material. Thus, in the temperate to subtropical humid region, it is known that, for example, kaolinite minerals, gibbsite, and some of 2: 1 type clay minerals are found in weathered materials of rocks and further that Na, K. Mg. Ca, and Si are leached away, while H, Al, and Fe are concentrated in the weathered products, but it is scarcely understood from what constituent minerals of the parent fresh rock any of the clay minerals now present in the weathered material were derived. Though, a mineralogical or chemical tracing of the courses of decomposing minerals from their initial phases to subsequent modified phases was already pioneered by STEPHEN (8). such a trend is believed, by the author, to be a fourth aspect necessary for further thorough understanding of rock weathering. This way of study may also serve in bridging between experimental data on chemical reactions of specific minerals with reagent solutions on the one hand and observations of mineralogical interrelation of parent minerals to resultant weathering products on the other hand. Granitic rock offers a suitable situation for this fourth aspect because of the ease in picking up mineral grains at various weathering stages due to the coarseness of its constituent minerals and also to its unique mode of physical disintegration.  相似文献   

3.
The clay mineralogy of thirty-two profiles located mainly in the Vale of Strathmore and developed on glacial till derived from Lower Red Sandstone sediments and lavas has been investigated by X-ray diffraction. The soils were selected so that the parent material was related predominantly to one of the rock types common in the Lower Old Red Sandstone succession—namely, marl, sandstone, lava, or conglomerate. Comparison of the < 1.4μm fractions separated from fresh rock samples with those separated from the C horizons of the soils clearly established the dominant influence of parent rock on the soil-clay mineralogy. The clay minerals inherited by the soil often include unusual trioctahedral expansible minerals such as saponite, interstratified vermiculite-chlorite, and smectite-vermiculite, as well as more common types like mica, montmorillonite, and chlorite. Kaolinite is also found but it is not certain that it is only of inherited origin. Weathering of the clays during soil formation brings about complete degradation of the expansible trioctahedral minerals, a process usually well advanced in the B or even at the top of the C horizon, and vermiculitization of mica. The latter process occurs mainly in the A horizon, with concomitant precipitation of interlayer aquohydroxy-aluminium ions thereby forming a vermiculite-chlorite intergrade. Chlorite and kaolinite appear to be little affected by weathering. The weathering transformations are most pronounced in freely drained acid soils (pH < s) and are at a minimum in poorly drained soils and where the pH remains above 6. The susceptibility to weathering of the trioctahedral expansible minerals results in relatively high values for exchangeable magnesium at the base of the profile.  相似文献   

4.
南极Fildes半岛成土过程中不同时期的岩石风化趋势   总被引:1,自引:0,他引:1  
From the view of energy state of material,this paper introduces a concept a concept of weathering potential in carrying out quantitative calculation of the relevant products at different stages of rock-weathering and primary soil-forming processes,elaborates respectively on weathering degree in the bio-weathering layer of rocks and during the formation of soil material and clay,and evaluats the further tendency of weathering in the above-mentioned stages.The authors have discovered that the scales of weathering potential of the materials increase successively in the three stages,which indicates that the products in the above-mentioned three stages must have undergone stronger and stronger weathering in the primitive forming process of soil in Fildes Peninsula,Antarctic.But,Because of relatively weak chemical weathering,it is reasonable that there are much more skeleton grains and little clay in priamry soils in this region.Meanwhile the authors have also verified that the weathering potential of crde rock determines to some extent decrease in the products‘ weathering potential in the different stages in primary soil-forming,thereby plays an important role in the genesis and development of the primary soil in the studied area.  相似文献   

5.
本文应用岩土工程的试验方法及其分类标准,对崩岗发生区的风化壳岩土进行分析.结果表明:1)依据地质成因和风化程度,风化壳可划分为坡积层和风化岩土层;其中,风化岩土层又分为残积土层、全风化层、强风化层,并以粘、石英含量高、粉、长石含量高分别为各自的典型特征.2)依据土的颗粒组成、塑性指数、颗粒的矿物组成,可将风化壳的岩土分为六大类:粘性土、石英砾砂、粉土类、粉砂、长石砾砂和角砾;且对应的风化壳层次分别为坡积层,残积土层,全风化层,强风化层上部、强风化层中部、强风化层底部.3)坡积层与风化岩土层的性质变化大,界限明显;风化岩土层中各层次之间为渐变过渡关系.  相似文献   

6.
利用X射线衍射法估算了福建省221个土壤样品中粘粒云母含量并讨论了与粘粒云母含量变化有关的因素。结果表明母质是影响粘粒云母含量的主要因素。海积物、河积物及页岩上发育的土壤粘粒云母含量一般较高;基性岩上发育的土壤粘粒云母含量一般较低。风化度较高的赤红壤、红壤、黄红壤和黄壤等土类的粘粒云母含量一般较低。风化度较低的C层的粘粒云母含量一般较B层和A层高,但异源母质的堆积可以使A层粘粒云母含量高于B层和C层。  相似文献   

7.
The mineralogy of five soils situated on a south-west to north-east transect of Guanxi Province, south-east China was determined by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and chemical composition. One soil had formed on granite under tropical conditions, the others on sedimentary rocks under subtropical conditions. In all soils, kaolinite dominates the clay fractions, and is accompanied by vermiculite or chloritized vermiculite. In the saprolites of the granite-derived and sandstone-derived soils, the kaolinite has a morphology close to that of hydrated halloysite. The formamide and hydrazine/water tests suggested the presence of both poorly-crystalline (dehydrated halloysite) and well-ordered kaolinite. Gibbsite was identified in the saprolites of the granite-derived and sandstone-derived soils but not in the soils themselves. Gibbsite was also identified in the lowermost horizon of a soil derived from Pleistocene sediments. The upper horizon clay of a Rendzina soil formed on Permian limestone contains much more gibbsite and is much more weathered than the corresponding lower horizon clay. Only in the more humid, southernmost soil can the mineral composition be explained by present-day climatic conditions. In the soils from drier areas, the clay mineral composition reflects weathering that had taken place under moister, paleoclimatic conditions. Some of these paleoclimatic conditions had been conducive to lateritic weathering, as is indicated by the presence of goethite-containing pisolitic nodules in one of the soils and in its parent material. Two of the soils appear to be polymorphic, with one part of the soil having weathered more strongly than the other part.  相似文献   

8.
《CATENA》2001,42(1):1-15
The effects of weathering in a Mediterranean climate on the mineralogy and microfabric of Paleozoic gneiss of the Sila Massif, Calabria, southern Italy, have been studied. Field observations show highly weathered rock forms a residual soil. Micromorphological and mineralogical properties of bedrock and saprolite show that the weathering process is characterized by at least two major stages, having two distinct rock microfabrics. In the first stage, the morphological features of the original rock are preserved and weathering is manifested mainly by microfracturing, and large portions of the rock remain unaltered. The second stage of weathering involves further development of microcracks and progressive chemical attack on the minerals. This latter stage occurs along both compositional and microstructural discontinuities, with etch pitting of feldspar, and neoformation of clay minerals and ferruginous products replacing feldspar, biotite, and iron-bearing garnet. The determination of quantitative petrographic indices provides a measure of the various stages of weathering.  相似文献   

9.
Gibbsite is usually considered as end product of weathering in tropical environments with potentially high leaching rates. However, there are also hints towards gibbsite formation in initial stages of weathering in different climates. This study reports on a systematic approach based on soil forming factors in order to research the conditions of gibbsite formation in northern Thailand highlands. Therefore, three major study sites were chosen, which differ with respect to parent rock, relief, climate and vegetation. The results show that gibbsite is common in soils of the area. Reasons for its occurrence in soils are manifold. It can be a heritage of the parent rock, a result of initial weathering under free draining conditions or an accumulation under intense chemical weathering caused by high rainfall. Especially the investigation in granite and gneiss areas with a high share of primary minerals indicates that gibbsite can be an early and direct transformation without intermediates from micas and feldspars if free drainage is assured. With progressing soil genesis clay formation reduces drainage and favours kaolinite formation. Only sites with extremely high rainfall and low evaporation (high elevations in northern Thailand) show again a dominance of gibbsite in the clay fraction throughout the whole soil profile.  相似文献   

10.
The origin of ped faces in subsoils has been variously ascribed to the activities of organisms, stress-strain history and to alternating wetting and drying cycles. At three sites in the Sydney Basin the orientation of ped faces in the in situ B horizons of soils developed in dolerite and shale were measured and found to be similar to the orientation of planar joints in the parent rock. Joints in the rock, when inherited by the soil material, provided flaws which could be exploited by shrink and swell phenomena, gradually becoming permanent features. Horizontal ped faces appeared to be inherited joint or bedding planes, affected by the slope of the site to the extent that their dip increased in a downslope direction. This work confirmed previous soil fabric studies by Lafeber (1965) and demonstrated fabric anisotropy and inheritance from the parent rock.  相似文献   

11.
Towards the end of the last glacial cycle, repeated re-advances of valley glaciers in the European Alps combined with periglacial processes led to the formation of a variety of climate-related landforms. Independent age measurements of moraines and rock glacier lobes using both in-situ produced and meteoric 10Be allows for the use of soil formation as an age proxy. In this complementary study we present chemical and mineralogical data from five Podzols from Val Mulix in Eastern Switzerland. Two of them developed on granitic Lateglacial moraines (14.9 ka and 10.7 ka, respectively) and three were sampled on lobes of a morphostratigraphically connected relict rock glacier, covering an age range of approx. 10.7 ka to 8.6 ka. Besides the evaluation of the suitability of selected pedosignatures for a relative age separation, we hypothesised that these pedosignatures should give further information about the evolution of the specific sites. Although the soils had a high skeleton content and the oldest soil started its development in a slightly colder climatic phase, typical weathering trends could still be detected. Whereas weathering indices such as the (K + Ca)/Ti ratio or the B-index reflect time trends reasonably well, the mineralogical composition of the fine earth and clay fraction yielded a slightly more inconsistent picture; to a lesser extent, some inconsistencies were also exhibited when using the weathering mass balance approach. This is especially true for the relict rock glacier and it supports the suggested complex development history of these soils as well as the presence of pre-weathered material. Techniques that include several surface soil horizons and the soil skeleton such as the (K + Ca)/Ti ratio, the B-index and the mass balance approach gave more robust results (in terms of the expected chronology) than the ones that only referred to single horizons (clay mineralogy). Errors or variations due to potential reallocation processes within the soil horizons but without a prominent change of the overall soil characteristics are minimised using such an approach. Weathering indexes and the clay mineral assemblage provided a differentiation of soils even within a relatively narrow time range and gave insight into processes that have occurred at the specific sites. The combined relative-numerical dating approach used here not only enables an extended interpretation and mutual control, but ultimately leads to a better understanding of landscape reconstruction and evolution.  相似文献   

12.
The mineralogy of ten profiles developed from hornfelsic rocks on the summit areas of the Merrick and Kells Hills has been investigated by X-ray powder diffraction, thermal, infra-red, and optical methods. The soil clays of the C horizons of all profiles contain 6 to 37 per cent of gibbsite but this mineral is not found in the A horizons. Optical observations reveal that gibbsite is associated with hematitic rock fragments which are considered to represent older soil material–i.e. are pedorelicts. It is suggested that the Merrick soils are polygenetic and consist of two soil stratigraphic units, recent pedogenic effects being superimposed on a basal horizon that has been strongly influenced by preglacial or interglacial weathering.  相似文献   

13.
F. Scheffer  H. Gebhardt 《Geoderma》1977,17(2):145-163
In spite of the fact that Ramann's concept of Braunerde was extensively used throughout the world, some pedogenic processes and soil properties which are important for the formation and existence of Brown Forest Soils (eutrophic brown earths) are still not well known. Hence, a soil was investigated which was classified as a “Braunerde” by Ramann in 1909. The main question was, whether there might be soil constituents such as inorganic amorphous substances (allophanes) which are able to stabilize the brown-earth fabric, or to inhibit clay migration. From chemical data as well as from the magnitude of the pH-dependent CEC, it was deduced that there are no appreciable amounts of allophanes within the soil. The fabric, however, seems to be stabilized by colloid-chemical flocculation of the clay particles caused by large amounts of carbonates and silicates deposited with the parent material (loess). The decalcified solum is still rich in silicates, especially sand and coarse-silt-sized micas and feldspars (60–200 and 20–60 μm fractions, respectively). Since - in comparison - loesses and loess-derived soils of the Central German mountain region contain less silicates, mainly in fine and medium silt fractions (2–6 and 6–20 μm diameter, respectively), the coarser-grained silicates were assumed to be important for maintaining the Ca2+ and Mg2+ saturation of the soil by continuous weathering and thus stabilizing the brown-earth fabric.Although the soil is saturated predominantly with Ca2+ and Mg2+ ions, clay migration proceeds within the upper horizons. This was shown by calculation of the amounts of clay formed by breakdown of micas originally present in the parent material (“clay formation balance”), as well as by micromorphological studies. Furthermore, micromorphological studies and x-ray diffraction data gave some evidence for the migration of preferably finest grained montmorillonitic clays (smectites) penetrated by organic substances (humus). This kind of “selective clay migration” was assumed to be caused by high Ca2+ (or Mg2+) concentrations in soil solution required for flocculation of humus-penetrated (humus-coated) smectites. From the occurrence of these “humus-smectites” the possibility was assumed that the soil studied has been developed from a former Chernozem type.Quantitatively, clay migration does not reach the amounts of clay formation (breakdown of micas) accompanied by precipitation of iron oxides on mineral surfaces (“Verbraunung”). Thus, the soil profile visually and macromorphologically clearly exhibits the features of brown earths. On the other hand, however, some clay migration was observed. Hence, the soil was classified as a “brown earth with some clay migration” (“schwach durchschlämmte Braunerde”).Judging from the results of the “clay formation balance” an appreciable pedogenic (autigenic) clay formation from weathering products of feldspars was excluded for the soil studied.  相似文献   

14.
To evaluate the contribution of rock fragments to the soil's total carbon content, the soil of 26 sites, ranging from the Canadian Arctic to the Jordan desert, was analysed for the content of organic C and total N in both fine earth and skeleton fractions. The soils, uncultivated and cultivated, are derived from 11 parent materials: sandstone, mica-schist, granite, gneiss, basaltic pyroclastites, trachyte, dolomite, beach deposits, clay schist, marl and serpentinite. For each soil horizon the contents of fine earth and skeleton were determined by volume. Both fractions were analysed for bulk density, total and organic C and total N. Our results indicate that rock fragments contain amounts of C and N that depend on the nature of the parent material and on its resistance to the weathering processes. The C and N of both fine earth and skeleton were used to calculate the contents of these elements for three depths. At each depth, the skeleton contributes C and N to the soil depending on its abundance. We conclude that the contribution of the rock fragments to the soil C and N cannot be predicted from the soil taxa, but can from the parent material. Calculations that exclude C and N of the skeleton could lead to errors in the estimates of these two elements in soils.  相似文献   

15.
侵蚀性花岗岩坡地不同地貌部位土壤剖面风化特征研究   总被引:2,自引:0,他引:2  
为揭示发育于侵蚀性风化花岗岩坡地上不同地貌部位土壤剖面的风化发育特征,在浙江省选择了典型的风化花岗岩坡地:浙江省嵊州市水土保持监测站为研究区,在监测站同一坡面不同侵蚀强度的坡顶、坡中、坡底选取3个典型的土壤剖面(140 cm),从下至上等距离(20 cm)采集土壤样品,共采集21个土样。进行了各层土壤基本理化特性和化学全量的分析,并分别计算了3个剖面不同层次的主要化学风化系数及总的风化强度,结果表明:(1)在强烈侵蚀的花岗岩风化残积坡地发育的土壤,总体发育成熟过程较弱,其进一步的发育与典型的地带性土壤的发育有很大的差异,侵蚀过程严重地影响了土壤的进一步成熟,侵蚀强度越大,则土壤发育越差。(2)土壤剖面总的风化强度不大,上下层的递变差异很小,脱硅富铝化过程随着剖面深度的增加风化程度越来越弱。(3)土壤剖面的化学分层不明显,各种风化指标均在60 cm左右形成了一个分界层,其上受水力侵蚀影响明显,其下呈现出的特性以继承残积母质为主。(4)不同地貌部位的风化发育程度排序为:坡底坡中坡顶,其与采样坡面的侵蚀强度排序正好相反。(5)风化程度与有机质和黏粒含量具有较为明显的正比关系,在侵蚀环境下,土壤的物理特性对风化的影响明显,在沉积环境下土壤有机质的影响大于黏粒含量的影响。总之,由于受侵蚀的影响,坡地土壤剖面的淀积层不发育,剖面呈现出的假淀积层不是由淋溶作用形成的,而是具有一定风化程度的风化残积层,结果导致发育于山地丘陵侵蚀性坡地的土壤层次划分不同于常规的土壤层次划分。  相似文献   

16.
A small scarp foot valley cut in blocky Coombe rock contained three layers of calcareous material which had been washed into it, the middle one of which was soil material. Mineralogical analyses showed that there was a lithological discontinuity immediately beneath the soil material but not above it. It seemed possible that there had been a complete inversion of soil horizons by successive erosion phases upslope and deposition in the valley bottom. Micromorphological analyses showed that the particular arrangement of soil fabric in three profiles due to decalcification, gleying, and the reorganization of clay plasma varied logically according to slope position and inferred water regimes. The soil, although thin, had been developed in place. Charcoal flakes from the soil gave a radiocarbon date of 3910±220 years BP. The material that buried the soil is a combination of slopewash and ploughwash initiated by man's clearance and cultivation of the land begun in the late Neolithic or early Bronze Age.  相似文献   

17.
The mineralogical composition and retention properties for radioisotopes (20Sr and 137Cs) of soils developed in five basalt flows of age varying from 6000 years to about four million years occurring in western Victoria were investigated. The trend of mineral weathering has been almost exclusively to amorphous material, kaolinite-plus-halloysite, and chlorite, the more soluble products of weathering having been removed. The most significant changes in clay mineralogical composition with time are the progressive decrease in the Si02/Al2O3 molar ratio of the amorphous material in the clay fraction of the surface horizons, from an initial value of approximately 4 to values of approximately 2, and the progressive increase in the amount of kaolinite-plus-halloysite, both in the topsoil and at depth, with age of the basalt flow. The amount of kaolinite plus halloysite increases from approximately 20 per cent of the clay of soil developed in the basalt flow 6000 years old to approximately 50 per cent of that of soil in basalt about four million years old. Evidence for the presence of halloysite was obtained by electron microscopy studies. The amorphous material and chlorite contents, each of which constitutes between 20 and 50 per cent of the clay fractions, decrease concurrently with the increase in kaolinite-plushalloysite content. Fixation of Sr by whole soil samples was controlled by the organic matter and free iron oxide contents rather than by the mineralogy of the samples. A high proportion of the added Cs was sorbed by whole soil samples. Much of the sorbed Cs was not readily replaced by CaCl, washings but was replaced in part by subsequent washing with NaCl of pH 5.3 and almost entirely by subsequent NH4Cl washings. Much of the Sr and Cs deposited on these soils by rainfall and dry fall-out would be sorbed; the ease of replacement suggests that these elements would be available for further movement through the food chain.  相似文献   

18.
19.
Release of aluminium in Northwest-German Acid Brown soils on loess-sandstone solifluction deposits In soil and clay from root zones (50 resp. 80cm) of acid brown soils, the Si and Al released during weathering was determined by fractionated extraction with 0.5 N NaOH in order to arrive at a quantitative approximation of the possible clay and silicate destruction. Extracted Al was 4-10 times higher than Si, and showed a steep gradient between Ah- and B-horizon. The Al(clay)/Al(soil) ratio varied between 0.5 to 1 depending on the admixture of sandstone material to the loess. Assuming that the clay-extracted Al was derived from the destruction of clay, we arrived at a minimum value for affected clay of 1-4,5% of the soil mass or 10 to 40% of the present clay substance. Clay destruction is discussed as Al-release leaving behind a non-crystalline Si-O-OH lattice.  相似文献   

20.
The soils in Cwmcadian, Merionethshire, have developed in uniform Silurian mudstones. This rock consists of fundamental primary particles of silt and clay size. These are released on weathering in the same ratio as they occur in the rock. Because of the simple mode of weathering, silt may be used as an internal standard against which to assess gains and losses of mobile soil constituents during pedogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号