首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Swedish Environmental Research Institute (IVL) has monitored deposition of acidifying compounds in Sweden. The monitoring programmes were initiated by various air quality protection associations, and regional forest and environmental authorities. The purpose is to quantify sulphur (S) and nitrogen (N) deposition to forests, and to illustrate possible acidification of the soil. Actual deposition of S and N is compared with critical loads. Deposition is investigated by precipitation studies in open field areas and by throughfall studies in forest stands. Soilwater chemistry is examined in the forest stands and used as indication of soil conditions. For most of the study sites, data on needle loss, forest growth, and soil chemistry are available from the National Board of Forestry. All available data are combined in a computer database for evaluation. Evaluation of data during 1985–94 shows that regional deposition monitoring illustrates the size and distributional pattern of S and seasalts. Monitoring data can identify certain regions receiving heavy loads of N, which can be found mainly in southern Sweden. Soilwater analyses indicates that large areas in Sweden have heavily acidified forest soils, low pH-values, low levels of calcium (Ca2+), magnesium (Mg2+), and potassium (K+), and raised levels of inorganic aluminium (iAl). Forest sites in the coastal regions of southern and south-western Sweden also showed raised inorganic N levels in soilwater. The relationship between deposition load and effects on soil chemistry is recognised by a correlation between S deposition and iAl levels in soilwater. Another correlation was found between N deposition (throughfall) and N levels in soilwater.  相似文献   

2.
Chongqing is among the heaviest polluted cities in China. Combustion of coal with relatively high sulfur content causes high sulfur emission and deposition in the area. Effects on soils and waters of the acid deposition in the Chongqing area have been studied in the field at a forested site outside the city. Deposition chemistry and fluxes, soil and soil water chemistry as well as surface water chemistry are presented for the period 1996–1998. There are some stress symptoms at the forest in the area and severe forest damage has been reported at Nanshan, closer to Chongqing center. Monitoring of the acidification situation in the area must be followed closely as impacts may be expected if the deposition is not reduced in the future. The deposition of sulfur, H+ as well as calcium at the site is high. Wet deposition of sulfur is estimated to 4.7 – 5.7 g S m?2 yr?1 during the three years sampled; dry deposition is probably of similar size. Annual volume-weighted pH in bulk deposition was 4.0 – 4.2 and the calcium wet deposition flux was 2.6 – 3.6 g Ca2+ m?2. There are considerable seasonal variations in the concentrations, related to the seasonal variations in precipitation amount (dry winter, wet summer). The soils at the site are acid with median base saturation of 12% and 8% in the topsoil and subsoil, respectively. In soil water, aluminum concentrations are typically in the range 3–8 mg L?1. However, due to the high base cation deposition, the Al/(Ca2++Mg2+) molar ratio is below unity in most samples, indicating little damage of forest due to aluminum in soil water.  相似文献   

3.
Bulk precipitation, throughfall, and soil water chemistry were studied from November 1983 to November 1984 at two ridge-top Appalachian deciduous forest sites to isolate causes of differing episodic stream acidification. The Fork Mountain site in West Virginia, which exhibited little episodic stream acidification, had lower deposition of H+ and SO inf4 sup2? and greater reductions of H+ in the water circulating through the forest canopy, forest floor, and mineral soil than the Peavine Hill site in Pennsylvania. Greater neutralization at Fork Mountain was linked to higher Ca and Mg carbonate contents in the sandstone and shale soil parent materials. Fork Mountain had greater amounts of exchangeable bases in the organic and mineral soil horizons. Neither site appeared to be accumulating SO inf4 sup2? in the soil, with Peavine Hill losing 56% more than was received in bulk deposition. Anions in soil leachate at Fork Mountain were largely balanced by Ca2+ and Mg2+, while at the Peavine Hill site A1" was the dominant cation. Results suggest that the typically-low carbonate content of sandstone and shale soil parent materials commonly found in Appalachian forests may be a key parameter controlling soil and stream acidification. Data for the one-year period also suggest bulk deposition of H+ was 63% greater at Peavine Hill than Fork Mountain.  相似文献   

4.
Johnson  D.W.  Hanson  P.J.  Todd  D.E.  Susfalk  R.B.  Trettin  C.F. 《Water, air, and soil pollution》1998,105(1-2):251-262
To investigate the potential effects of changing precipitation on a deciduous forest ecosystem, an experiment was established on Walker Branch Watershed, Tennessee that modified the amount of throughfall at -33%, ambient (no change), and +33% using a system of rain gutters and sprinklers. We hypothesized that the drier treatments would cause: 1) disproportionate changes in soil water flux, 2) increased total ionic concentrations in soil solution that would in turn cause 3) decreased SO4 2-/Cl- ratios, 4) decreased HCO3 - concentrations, and 5) increased ratios of Al to (Ca2+ + Mg2+) and of (Ca2+ + Mg2+) to K+. Hypothesis 1 was supported by simulation results. Hypotheses 2 and 3 were supported in part by field results, although interpretation of these was complicated by pre-treatment biases. Hypotheses 4 and 5 were not supported by the field results. Comparisons of field data and Nutrient Cycling Model (NuCM) simulations were favorable for most ions except Cl- and K+. The disparities may be due to underestimation of soil buffering in the case of Cl- and overestimation of soil buffering in the case of K+ in the model. Long-term simulations with NuCM suggest that reducing water inputs will slow the rate of soil acidification and P loss, but will not materially affect growth or ecosystem N status.  相似文献   

5.
A survey of leaf and needle losses of European forests in 1993 revealed that 23% of the total forested area had defoliation of more than 25%. The focus of this defoliation is in Central Europe, namely in Poland, Slowakia, Czech Republic, and Germany. The annual surveys of leaf losses and discoloration indicated only small changes during the last years for the coniferous forests in Germany. However, the increasing leaf losses of oak and beech during the last years were alarming. Evaluating the potential relation between air pollutant deposition, soil changes and forest damage, we focus here on the recent changes in deposition and soil conditions, and their implication on tree root development and drought susceptability of trees. While deposition of SO4 2?, H+ and Ca2+ in many Central European forests decreased in the last decade, input of NH4 + and NO3 ? remained high or even increased. The H+ load of many forest soils today is thus still high compared to weathering rates, but the proportion of the H+ load resulting from turnover of deposited N has increased. Recent effects of changing depositions on acid forest soils were: depletion of soil Al-pools, release of formerly stored soil SO4 2?, accumulation of N in soil organic matter, increasing N availability to trees and decreasing concentration of Ca2+ in the soil solution. We hypothesise that soil acidification and increased N availability will decrease the fine root biomass of trees and shift the rooting zone to upper soil layers. Increased above ground growth, observed in many areas of Europe, will furthermore decrease the root/shoot ratio. This development will finally cause increased drought susceptability of trees and is thus of destabilizing nature. The proposed chain of events might be overlapped by other effects of air pollutants on forest ecosystems, namely direct effects of gases on leaves, nutritional inbalances, and interactions with pests.  相似文献   

6.
Increasing human demands for Earth’s resources are hastening many environmental changes and creating a need to incorporate the routine monitoring of ecosystem functions into forest management.Under global change and anthropogenic disturbances,soil carbon (C) cycling in terrestrial ecosystems is undergoing substantial changes that result in the transformation between soil C sources and sinks.Therefore,the forest C budget requires an understanding of the underlying soil C dynamic under environment...  相似文献   

7.
A water quality survey has been performed on selected lakes and streams in southwest China. The purpose of the study was to measure the concentrations of acidic deposition and surface water chemistry in a region of severe air pollution, forest decline, and relatively sensitive geology to acidic deposition. We show that, although there are some high elevation lakes of low acid neutralizing capacity (ANC<150μeq L?1, acidification of lakes has not occurred in southwest China due to production of base cations in soil and dry deposition of dust that serves to neutralize acidic deposition. Water chemistry is buffered by high base cation concentrations (Ca2+, Mg2+, Na+, and K+ greater than 300μeq L?1, and pH values are always greater than 6.5.  相似文献   

8.
High nitrogen, especially ammonium, input has been observed in Shichinohe, Aomori Prefecture, northeastern Japan. The monitoring study on soil and soil solution has been carried out to determine soil acidification status since 1996. Soils and soil solutions in Minamitonai and Haginosawa are not strongly acidic. Fluctuations in nitrate concentrations coincided with sodium (Na+) or calcium (Ca2+). Produced protons due to nitrification were exchanged with Ca2+ or neutralized by weathering process. Exchangeable Ca2+ accumulated in surface layers, particular in the older Japanese cedar (Cryptomeria japonica) stand (42 years old). Exchangeable Ca2+ affected soil solution chemistry and the Ca2+ concentration was significantly higher in the older Japanese cedar stand than that in the younger stand (22 years old). Base cations, especially Ca2+, accumulation prevented soil (solution) acidification in Shichinohe site.  相似文献   

9.
The effects on nitrification and acidification in three subtropical soils to which (NH4)2SO4 or urea had been added at rate of 250 mg N kg−1 was studied using laboratory-based incubations. The results indicated that NH4+ input did not stimulate nitrification in a red forest soil, nor was there any soil acidification. Unlike red forest soil, (NH4)2SO4 enhanced nitrification of an upland soil, whilst urea was more effective in stimulating nitrification, and here the soil was slightly acidified. For another upland soil, NH4+ input greatly enhanced nitrification and as a result, this soil was significantly acidified. We conclude that the effects of NH4+ addition on nitrification and acidification in cultivated soils would be quite different from in forest soils. During the incubation, N isotope fractionation was closely related to the nitrifying capacity of the soils.  相似文献   

10.
11.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

12.
Soil respiration is comprised primarily of root and microbial respiration, and accounts for nearly half of the total CO2 efflux from terrestrial ecosystems. Soil acidification resulting from acid deposition significantly affects soil respiration. Yet, the mechanisms that underlie the effects of acidification on soil respiration and its two components remain unclear. We collected data on sources of soil CO2 efflux (microbial and root respiration), above- and belowground biotic communities, and soil properties in a 4-year field experiment with seven levels of acid in a semi-arid Inner Mongolian grassland. Here, we show that soil acidification has contrasting effects on root and microbial respiration in a typical steppe grassland. Soil acidification increases root respiration mainly by an increase in root biomass and a shift to plant species with greater specific root respiration rates. The shift of plant community from perennial bunchgrasses to perennial rhizome grasses was in turn regulated by the decreases in soil base cations and N status. In contrast, soil acidification suppresses microbial respiration by reducing total microbial biomass and enzymatic activities, which appear to result from increases in soil H+ ions and decreases in soil base cations. Our results suggest that shifts in both plant and microbial communities dominate the responses of soil respiration and its components to soil acidification. These results also indicate that carbon cycling models concerned with future climate change should consider soil acidification as well as shifts in biotic communities.  相似文献   

13.
The relation between soil acidification and element cycling   总被引:2,自引:0,他引:2  
Controversy about the contribution of acidic deposition to soil acidification partly arises from different concepts of soil acidification. Differentiating between actual and potential soil acidification has proved to be appropriate for properly identifying and quantifying the natural and anthropogenic sources of protons. Actual soil acidification is primarily manifested by leaching of cations from the soil, regulated by the mobility of major anions. Leaching of HCO3 ? and RCOO? occurs naturally whereas leaching of NO3 ? and SO4 2? is mainly caused by land use in agricultural soils and by acidic deposition in forest soils. Potential soil acidification is primarily due to accumulation of atmospherically derived N and S. This potential acid threat is partly realized by mineralization processes after the removal of vegetation.  相似文献   

14.
A model deciduous forest soil (Schaffenaker loamy sand) was treated for 8 mo in the greenhouse in 25 cm reconstructed columns with simulated throughfall at pH 6.0 or 4.0, and SO4 2? levels of 12.8 or 24.8 mg L?1. Red oak seedlings grown in the microcosms showed no growth or foliar element response to the treatments. Sulfate loading had a greater impact on soil and leachate chemistry than pH. Higher available soil P in the A, horizon was associated with the pH 6.0 and high SO4 2?2 treatment combination. High SO4 2? loading also reduced exchangeable K+ in the A1?. Other soil horizons were unaffected by either treatment. Leachate chemistry was not significantly altered by througfall pH, but significantly greater export of Na+, Ca2+, Mg2+, Al3+, and NO3 ?, and lower SO4 2? loss, occurred with low SO4 ? input. Comparatively half as much NO3 ? loss was associated with high SO4 2? deposition. The high rate of NO3 ? leaching appeared responsible for greater equivalent mass loss of cations from the low SO4 2? treatment. Leachate removal of SO4 2? approximated input after 8 mo. The capacity of this soil to adsorb SO4 2? appeared relatively limited in the absence of normal element cycling. The sulfate component of simulated deciduous forest throughfall was shown to have a potentially greater impact than pH on ion leaching from forest soil. Additional consideration of the role of SO2? 4 deposition, in the context of throughfall rather than incident precipitation, is warranted in studies of acidic deposition effects on internal forest soil processes.  相似文献   

15.
A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m^-2 year^-1), and a medium N (10 g m^-2 year^-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4^+ and NO3^- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3^- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type, and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.  相似文献   

16.
Nitrogen (N) deposition is a major threat to the semiarid Mediterranean ecosystems. We simulated a gradient of N deposition (0, 10, 20 and 50 kg N ha?1 year?1?+?6.4 kg N ha?1 year?1 ambient deposition) in a Mediterranean shrubland from central Spain. In autumn 2011 (after 4 years of experimental duration), soil cores were taken to extract the soil fauna. Acari (45.54%) and Collembola (44.00%) were the most represented taxonomical groups, and their abundance was negatively related to soil pH. Simulated N deposition had an impact on the total number of individuals in soil as well as on Collembola and Pauropoda abundance. Collembola abundance increased with N loads up to 20 kg N ha-1 year-1 and then decreased. This response was attributed to soil acidification (between 0 and 20 kg N ha-1 year-1) and increased soil ammonium (between 20 and 50 kg N ha-1 year-1). Pauropoda were favoured by additions of 50 kg N ha-1 year-1, and it was the only taxonomical group whose abundance was exclusively related to N deposition, suggesting their potential as bioindicators. Contrary to predictions, there was a negative relationship between soil faunal abundance and plant diversity. In conclusion, soil faunal communities from semiarid Mediterranean ecosystems in central Spain seem to be primarily influenced by soil chemistry (mainly pH) but are also susceptible to increased N deposition. The main drivers of change under increased N deposition scenarios seem to be soil acidification and increased ammonium in soils where nitrate is the dominant mineral N form.  相似文献   

17.
Dise  N.B.  Matzner  E.  Gundersen  P. 《Water, air, and soil pollution》1998,105(1-2):143-154
To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3 -) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one year's data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4 + in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.  相似文献   

18.
As acid deposition declines, recovery from acidification is delayed by the fact that the soil processes that earlier buffered against acidification are now being reversed. Monitoring of within catchment processes is thus desirable. However, soil sampling is destructive and not suitable for long-term monitoring at a single site, whereas sampling of soil water with suction lysimeters may be more suitable. In this paper we evaluate 8–11 years of soil water chemistry from E- and B-horizons in three acid forest soil plots within monitored catchments. Five years of sampling also included the C-horizon. To our knowledge, this is the first long-term lysimeter study including the E-horizon showing recovery from acidification, and one of few studies including the B-horizon. Soil water concentrations of SO4 decreased significantly between –9.5 and –1.4 μeq L-1 yr-1, with much higher rates of change at two southern sites compared to a northern site, where levels and changes of deposition were lower. The average annual bulk deposition of S ranged between 3 kg S ha-1 at the northernmost site to 11 kg S ha-1 at the southernmost site. The SO4 decline in E-horizons was smaller than the decline in deposition, which indicated leaching of SO4 from the O-horizon. At the two southern sites, a weaker decline in SO4 in the B-horizon compared to the E-horizon indicated desorption of SO4. The negative trends in SO4 were to a large extent balanced by decreases in base cations but there were also tendencies of recovery from acidification in soil solution at the southern sites by increasing pH and ANC. However, these were contradicted by increasing Al concentrations. A high influence of marine salts in the early 1990s may have delayed the recovery. Decreasing trends of the Ca/(H+)2 ratio in the soil solution, most pronounced at one of the southern sites, suggested that the soils were becoming more acidic, although the soil solution tended to recover.  相似文献   

19.
To evaluate ecosystem response to changing atmospheric deposition, element budgets were established over the period from 1973 to 1991 for a Norway Spruce (Picea abies (L.) Karst.) site. Budgets for Na+, Cl?, Ca2+, Mg2+, N, S and H+ were based on total deposition and seepage water fluxes. The deposition of Ca2+, Mg2+, particularly, of S and H+ decreased with time, while calculated N deposition remained constant at a high level. The decrease in Ca2+ deposition led to a reduction of Ca2+ fluxes with seepage water. The decrease of Mg2+ deposition did not have an effect on the output fluxes of Mg2+. The reversibility of soil and seepage water acidification by reduced S deposition was delayed by the release of previously accumulated soil SO 4 2? . The highest NO 3 ? fluxes were observed during the period of 1986 to 1988; NO 3 ? fluxes in general demonstrated a considerable annual and periodic variation. Total N accumulation in the ecosystem amounted to nearly 590 kg ha?1 yr?1 during the observation period. The major sink of N in the spruce site is the aggrading humus layer. The results emphasize the need for measurements over several years to make conclusions regarding the function of ecosystems in response to atmospheric deposition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号