共查询到20条相似文献,搜索用时 15 毫秒
1.
Delphine Manka'abusi Dsir J. P. Lompo Christoph Steiner Mariko Ingold Edmund Kyei Akoto-Danso Steffen Werner Volker Hring George Nyarko Bernd Marschner Andreas Buerkert 《植物养料与土壤学杂志》2020,183(4):500-516
To quantify carbon (C) and nitrogen (N) losses in soils of West African urban and peri‐urban agriculture (UPA) we measured fluxes of CO2‐C, N2O‐N, and NH3‐N from irrigated fields in Ouagadougou, Burkina Faso, and Tamale, Ghana, under different fertilization and (waste‐)water regimes. Compared with the unamended control, application of fertilizers increased average cumulative CO2‐C emissions during eight cropping cycles in Ouagadougou by 103% and during seven cropping cycles in Tamale by 42%. Calculated total emissions measured across all cropping cycles reached 14 t C ha?1 in Ouagadougou, accounting for 73% of the C applied as organic fertilizer over a period of two years at this site, and 9 t C ha?1 in Tamale. Compared with unamended control plots, fertilizer application increased N2O‐N emissions in Ouagadougou during different cropping cycles, ranging from 37 to 360%, while average NH3‐N losses increased by 670%. Fertilizer application had no significant effects on N2O‐N losses in Tamale. While wastewater irrigation did not significantly enhance CO2‐C emissions in Ouagadougou, average CO2‐C emissions in Tamale were 71% (1.6 t C ha?1) higher on wastewater plots compared with those of the control (0.9 t C ha?1). However, no significant effects of wastewater on N2O‐N and NH3‐N emissions were observed at either location. Although biochar did not affect N2O‐N and NH3‐N losses, the addition of biochar could contribute to reducing CO2‐C emissions from urban garden soils. When related to crop production, CO2‐C emissions were higher on control than on fertilized plots, but this was not the case for absolute CO2‐C emissions. 相似文献
2.
Urban and periurban agriculture (UPA) contributes significantly to meeting increasing food demand of rapidly growing urban populations in West African cities. The often intensive high‐input vegetable production within UPA results in large positive nutrient balances, being presumably linked to strong nutrient leaching which needs quantification. This study aimed at estimating leaching losses of mineral N and P in three representative urban gardens of Niamey, Niger, using ion‐exchange‐resin cartridges installed below the crop rooting zone at 0.6 m soil depth. In 2007, a year with below‐average annual rainfall (425 mm as compared to 542 mm), mean leaching of mineral N amounted to 5.9 and 7.3 kg N ha–1 for two gardens with > 80% sand fraction and only 2.2 kg N ha–1 for a garden with 40% silt and clay. Apparent annual P leaching was 0.7 kg P ha–1 in all three gardens. Additional multiannual studies are necessary to assess the effect of inter‐ and intraannual variation in precipitation on nutrient leaching in intensive UPA vegetable production of semiarid West Africa. 相似文献
3.
With a world population now > 7 billion, it is imperative to conserve the arable land base, which is increasingly being leveraged by global demands for producing food, feed, fiber, fuel, and facilities (i.e., infra‐structure needs). The objective of this study was to determine the effect of varying fertilizer‐N rates on soil N availability, mineralization, and CO2 and N2O emissions of soils collected at adjacent locations with contrasting management histories: native prairie, short‐term (10 y), and long‐term (32 y) no‐till continuous‐cropping systems receiving five fertilizer‐N rates (0, 30, 60, 90, and 120 kg N ha–1) for the previous 9 y on the same plots. Intact soil cores were collected from each site after snowmelt, maintained at field capacity, and incubated at 20°C for 6 weeks. Weekly assessments of soil nutrient availability along with CO2 and N2O emissions were completed. There was no difference in cumulative soil N supply between the unfertilized long‐term no‐till and native prairie soils, while annual fertilizer‐N additions of 120 kg N ha–1 were required to restore the N‐supplying power of the short‐term no‐till soil to that of the undisturbed native prairie soil. The estimated cumulative CO2‐C and N2O‐N emissions among soils ranged from 231.8–474.7 g m–2 to 183.9–862.5 mg m–2, respectively. Highest CO2 fluxes from the native prairie soil are consistent with its high organic matter content, elevated microbial activity, and contributions from root respiration. Repeated applications of ≥ 60 kg N ha–1 resulted in greater residual inorganic‐N levels in the long‐term no‐till soil, which supported larger N2O fluxes compared to the unfertilized control. The native prairie soil N2O emissions were equal to those from both short‐ and long‐term no‐till soils receiving repeated fertilizer‐N applications at typical agronomic rates (e.g., 90 kg N ha–1). Eighty‐eight percent of the native soil N2O flux was emitted during the first 2 weeks and is probably characteristic of rapid denitrification rates during the dormant vegetative period after snowmelt within temperate native grasslands. There was a strong correlation (R2 0.64; p < 0.03) between measured soil Fe‐supply rate and N2O flux, presumably due to anoxic microsites within soil aggregates resulting from increased microbial activity. The use of modern no‐till continuous diversified cropping systems, along with application of fertilizer N, enhances the soil N‐supplying power over the long‐term through the build‐up of mineralizable N and appears to be an effective management strategy for improving degraded soils, thus enhancing the productive capacity of agricultural ecosystems. However, accounting for N2O emissions concomitant with repeated fertilizer‐N applications is imperative for properly assessing the net global warming potential of any land‐management system. 相似文献
4.
Sven Goenster Martin Wiehle Martina Predotova Jens Gebauer Abdalla Mohamed Ali Andreas Buerkert 《植物养料与土壤学杂志》2015,178(3):413-424
Intensification of homegardens in the Nuba Mountains may lead to increases in C and nutrient losses from these small‐scale land‐use systems and potentially threaten their sustainability. This study, therefore, aimed at determining gaseous C and N fluxes from homegarden soils of different soil moisture, temperature, and C and N status. Emissions of CO2, NH3, and N2O from soils of two traditional and two intensified homegardens and an uncultivated control were recorded bi‐weekly during the rainy season in 2010. Flux rates were determined with a portable dynamic closed chamber system consisting of a photo‐acoustic multi‐gas field monitor connected to a PTFE coated chamber. Topsoil moisture and temperature were recorded simultaneously to the gas measurements. Across all homegardens emissions averaged 4,527 kg CO2‐C ha?1, 22 kg NH3‐N ha?1, and 11 kg N2O‐N ha?1 for the observation period from June to December. Flux rates were largely positively correlated with soil moisture and predominantly negatively with soil temperature. Significant positive, but weak (rs < 0.34) correlations between increasing management intensity and emissions were noted for CO2‐C. Similarly, morning emissions of NH3 and increasing management intensity were weakly correlated (rs = 0.17). The relatively high gaseous C and N losses in the studied homegardens call for effective management practices to secure the soil organic C status of these traditional land‐use systems. 相似文献
5.
Nongma Zongo Juliane Dao Désiré Jean-Pascal Lompo Kathrin Stenchly Christoph Steiner Delphine Manka'abusi Michel Papaoba Sedogo Andreas Buerkert Rainer Georg Joergensen 《植物养料与土壤学杂志》2023,186(2):188-195
Background
Little is known about the effects of gypsum application to remediate saline–sodic soils in the tropics and the role of microbial indicators in soil reclamation.Aims
Our study aimed at (1) remediating a highly weathered, irrigated sodic Lixisol under prolonged urban crop production by clean water and gypsum application and (2) to determine the remediation effects on soil microbial indices.Methods
A three-factorial on-farm experiment with maize (Zea mays L.) was used to study effects on soil microbial biomass of (1) soil degradation at two levels of salinity, (2) irrigation with clean water and wastewater, and (3) the impact of added gypsum during a typical growing season.Results
At the high-degradation site, the 0.5 M K2SO4 extractable carbon (C) content was 40% higher than at the low-degradation site. In addition, microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were 20% lower than at the low-degradation site, while fungal ergosterol was even 40% lower, leading to a 33% lower ergosterol/MBC ratio. Wastewater irrigation increased MBN but decreased ergosterol content at the low-degradation site while having no effect at the high-degradation site. Gypsum amendment led to higher MBN at the low-degradation site but to lower MBN at the high-degradation site. Gypsum amendment always increased the ergosterol content whereby this increase was stronger at the low-degradation site, especially in combination with wastewater irrigation.Conclusions
From a microbial perspective, high soil degradation levels should be avoided by treatment of a saline–sodic wastewater prior to its use for irrigation rather than relying on future remediation strategies of affected field sites. 相似文献6.
Delwendé Innocent Kiba François Lompo Emmanuel Compaore Lalajaona Randriamanantsoa Papaoba Michel Sedogo Emmanuel Frossard 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(1):59-69
Abstract Non-sorted solid urban wastes (SUW) are used by periurban cereal farmers in Africa. There is however limited information on how these SUW affect soil quality and cereal production and quality. In order to answer this question we identified around Ouagadougou (Burkina Faso) sites cultivated with sorghum (Sorghum bicolor (L.) Moench) that had received SUW for less than 5 years, for more than 5 years and less than 10 years and for more than 10 years. We sampled soils at 0–15 and 15–30 cm depth and we analysed pH, total carbon (C), nitrogen (N) and inorganic phosphate (P) content and P and heavy metals availability. We also measured at some of these sites sorghum production and nutrient and metal contents in sorghum grain and straw. Our results show that the 0–15 cm horizon of the soils that had received SUW for less than 5 years had lower pH, available P and heavy metals contents and produced lower yields than those that had been amended with SUW for more than 10 years. Maximum grain yield was observed in the sites that had been amended for more than 5 years but less than 10 years. There were no clear effects of SUW application time on the heavy metal contents of sorghum grain and straw. The increases in nutrient and heavy metals content observed in the 15–30 cm horizon of soils that had been amended for more than 10 years point out to the risks of element transfer to deeper horizons. Our results suggest that a complete sorting of organic matter from SUW and its further composting as presently recommended, is not necessary. Simply removing dangerous items from the SUW such as plastics, glass and batteries, would be sufficient. Adding this sorted substrate for 5 to 10 years to cereal fields would be sufficient to reach optimal yields, thereafter this substrate should be added to other surfaces. 相似文献
7.
Little is known about nutrient fluxes and nutrient‐use efficiencies in urban and peri‐urban agriculture (UPA) of rapidly expanding cities in developing countries. Therefore, horizontal flows of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) as well as leaching losses of mineral N and P were measured over 2 years in three representative agricultural production systems of Kabul. These comprised 21 gardens and 18 fields dedicated to vegetable farming, cereal farming, and table‐grape production (vineyards). Across sites (fields and gardens) biennial inputs averaged 375 kg N ha–1, 155 kg P ha–1, 145 kg K ha–1, and 15 kg C ha–1 while with harvests 305 kg N ha–1, 40 kg P ha–1, 330 kg K ha–1, and 7 kg C ha–1 were removed. In vegetable gardens, biennial net balances were 80 kg N ha–1, 75 kg P ha–1, –205 kg K ha–1, and 4 kg C ha–1, whereas in cereal farming biennial horizontal balances amounted to –155 kg N ha–1, 20 kg P ha–1, –355 kg K ha–1, and 5 kg C ha–1. In vineyards, corresponding values were 295 kg N ha–1, 235 kg P ha–1, 5 kg K ha–1, and 3 kg C ha–1. Annual leaching losses in two selected vegetable gardens varied from 70 to 205 kg N ha–1 and from 5 to 10 kg P ha–1. Night soil and irrigation water were the major sources among the applied nutrient inputs in all studied farming systems, contributing on average 12% and 25% to total N, 22% and 12% to total P, 41% and 53% to total K, and 79% and 10% to total C, respectively. The results suggest that soils in extensive cereal fields are at risk of N and K depletion and in vegetable gardens of K depletion, while vineyards may be oversupplied with nutrients possibly contributing to groundwater contamination. This merits verification. 相似文献
8.
Closed‐chamber systems are commonly used to determine gaseous C and N emissions from agricultural soils. We investigated the effects of eight cuvette surfaces on two standard gas concentrations of NH3, N2O, CO2, and CH4 under laboratory conditions. Cuvette surface materials differentially affected gas adhesion or recovery as a function of the type and the concentration of the gases. Given the strong effects on results of gas measurements in closed‐chamber systems, both the type and the concentration of the measured gases need to be considered in selecting cuvette surface materials. 相似文献
9.
The effect of presubmergence and green manuring on various processes involved in [15N]‐urea transformations were studied in a growth chamber after [15N]‐urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+‐N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+‐N from applied fertilizer, it maintained higher NH4+‐N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9 % (T1), 23.9 % (T2), and 36.4 % (T3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N. 相似文献
10.
水稻土和菜田添加碳氮后的气态产物排放动态 总被引:1,自引:0,他引:1
【目的】动态连续监测添加碳氮底物后各气体产物—O2、 NO、 N2O、 CH4和N2的排放,对土壤碳氮转化过程和气体产生过程做更深入的理解,揭示不同土地利用方式典型红壤的温室气体产生机制。【方法】采集长江中游金井小流域不同土地利用方式稻田和菜地土壤为研究对象,利用全自动连续在线培养检测体系(Robot系统),通过两组试验分别研究土壤碳氮转化过程中各气体产物的动态变化。试验1采用菜地和稻田土壤进行好气培养,设置不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖6个处理。试验2采用稻田土壤进行淹水培养,设不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg铵态氮+1%秸秆、 缺氧条件下添加40 mg/kg铵态氮+1%的葡萄糖、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖8个处理。培养温度均为20℃,土壤水分含量为70% WFPS (土壤孔隙含水量),培养周期为15天。【结果】从菜地和稻田土壤不同碳氮添加处理气态产物及无机氮的动态变化可看出: 1)菜地土壤好气培养初期硝化作用产生了大量N2O; 受低碳和低含水量的限制,反硝化作用较弱。当提供充足碳源和厌氧条件,出现N2O和NO的大量排放。2)在好气稻田和淹水稻田培养过程中,反硝化作用是N2O产生的主要途径。3)稻田土壤中,提供充足碳源和厌氧条件,各气态产物出现的顺序依次是NO、 N2O和N2,与三种气体在反硝化链式反应过程中的生成顺序一致。淹水稻田加铵态氮和碳源处理N2为主要产物,添加硝态氮处理后,N2O成为主要气态产物。当土壤碳源充足时,反硝化过程进行彻底,反硝化产物以终产物(N2)为主。4)在稻田土壤出现厌氧或添加碳源条件下,均检测到大量CH4产生; 且在甲烷产生的同时,NO-3几乎消耗殆尽。【结论】金井小流域典型红壤菜地N2O主要来自于硝化作用,好气和淹水稻田N2O主要来源于反硝化作用; 当碳源充足和厌氧时,菜地及稻田反硝化作用增强; 反硝化产物组成、 产物累积量及出峰顺序与碳源和氧气浓度有关。 相似文献
11.
J. A. Binns R. A. Maconachie A. I. Tanko 《Land Degradation \u0026amp; Development》2003,14(5):431-444
In sub‐Saharan Africa, urban and peri‐urban food production has been identified as an important resource for meeting the challenges of rapidly growing cities, and the positive aspects of such production have been well documented in the literature. This paper examines some of the health and environmental concerns associated with urban and peri‐urban agriculture (UPA). Empirical evidence from the city of Kano in northern Nigeria suggests that there is currently much reason for concern as industrial and domestic toxins are reaching dangerously high levels. As soils and water channels become increasingly polluted, the sustainability of urban and peri‐urban food production is questioned. Since the health implications of long‐term exposure to toxins are unclear, it is suggested that coordinated longitudinal research involving urban planners, agricultural scientists and health specialists is urgently needed. In addition, it remains crucial that government and institutional actors effectively monitor and enforce both environmental and zoning by‐laws, if the health and environmental constraints of UPA are to be overcome, and the future sustainability of production is to be assured. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
12.
Narendra K. Lenka Sangeeta Lenka K. K. Singh Ajay Kumar Satish B. Aher Dharmendra Singh Yashona Pradip Dey Pawan Kumar Agrawal A. K. Biswas Ashok Kumar Patra 《植物养料与土壤学杂志》2019,182(4):509-514
Rising carbon dioxide (CO2) concentration causes fertilization effects resulting in enhanced crop biomass and yields and thus likely enhances nutrient demand of plants. Hence, this field study was carried out to investigate the effects of elevated CO2 and N on biomass yield, nutrient partitioning, and uptake of major nutrients by soybean (Glycine max L.) using open‐top chambers (OTCs) of 4 m × 4 m size. Soybean was grown in OTCs under two CO2 [ambient and elevated (535 ± 36.9 mg L?1)] and four N levels during July to October 2016. The four N levels were N0, N50, N100, and N150 referring to 0, 50, 100, and 150% recommended dose of N. Both CO2 and N significantly affected biomass and grain yield, though the interaction was non‐significant. CO2 enrichment produced 30–65% higher biomass and 26–59% higher grain yield under various N levels. As compared to the optimum N application (N100), the CO2‐mediated increment in biomass yield decreased with either lower or higher N application, with the response being lowest at N150. As compared to ambient concentration, elevated CO2 resulted in significant reduction of seed P concentration at all N application levels but at N150, an opposite trend was observed. The decrease in seed P was maximum at N0 and N50 (7–9%) and by 3% at N100, whereas there was a gain of 7.5% at N150. The seed N and K concentrations were not affected either by CO2 or N application. Total N, P, and K uptake at harvest were significantly affected by CO2 and N, but not by CO2 × N interaction. Elevated CO2 resulted higher uptake of N by 18–61%, P by 23–62%, and K by 22–62% under various N treatments. 相似文献
13.
【目的】认识碳、氮和pH及其与植物的交互作用对垂直流人工湿地真菌反硝化作用的影响,为真菌反硝化作用的调控提供依据。【方法】采用4种常见的水生植物(黄菖蒲、美人蕉、水葱和伞草),在20个垂直流人工湿地中设置了4种单独栽培处理。运行5个月后,分别从20个湿地中收集0-30 cm的细砂样品,利用微宇宙培养的方法,检验不同碳源、氮源补充和pH梯度对细砂样品中真菌反硝化潜力的影响。【结果】双因素方差分析表明,垂直流人工湿地中碳源、氮源与植物种类之间的相互作用对真菌反硝化潜力作用不明显(P 0.05),而pH与植物种类之间的相互作用对真菌反硝化潜力作用显著(P 0.05)。7种碳源中的葡萄糖和琥珀酸钠的应用最能促进湿地填料中真菌反硝化潜力的提高(P 0.05),而在4种氮源中亚硝酸钠是最能提高真菌反硝化潜力的氮源(P 0.05)。与未进行酸碱处理(pH 6.89)相比,调节pH到2.8显著降低了真菌反硝化潜力(P 0.05),而调节pH到5.6或8.4均不同程度地提高了真菌反硝化潜力。【结论】本研究突出了葡萄糖、琥珀酸钠和亚硝酸盐在调节真菌反硝化潜力中的重要性,并发现在pH 5.6~8.4范围内,湿地填料中的真菌反硝化潜力较大。 相似文献
14.
有机肥部分替代化肥氮对叶菜产量和环境效应的影响 总被引:6,自引:0,他引:6
针对叶菜类蔬菜有机肥氮替代化肥氮的最佳替代比例及对经济效益和环境效应综合评价较缺乏等问题,本研究采用田间试验,对包心菜和小青菜进行等氮水平下不同比例有机肥替代化肥处理,包括:纯化肥氮(0M),25%、50%、75%和100%有机肥替代化肥(25%M、50%M、75%M和100%M),研究不同处理下蔬菜产量、经济效益、土壤氨挥发和氧化亚氮排放。结果表明, 25%M处理下包心菜和小青菜产量均达最高,且与0M处理相比包心菜和小青菜的产量分别增加15.0%(P0.05)和16.3%(P0.05)。25%M比0M处理经济效益分别增加11.7%和5.4%,但在50%M、75%M和100%M处理下经济效益为负增长。25%M处理下,氨挥发累积排放量在包心菜和小青菜季分别为42.1kg·hm~(-2)和12.9kg·hm~(-2),比0M处理分别降低23.4%(P0.05)和41.6%(P0.05); 0M和25%M处理间氧化亚氮累积排放量无显著差异, 25%M处理在包心菜和小青菜季的氧化亚氮累积排放量分别为0.74 kg·hm~(-2)和3.06 kg·hm~(-2);与25%M处理相比, 50%M、75%M和100%M处理下氧化亚氮排放分别增加33.7%~60.8%(P0.05)、50.0%~134.3%(P0.05)和56.8%~185.6%(P0.05)。基于此,提出叶菜类蔬菜有机肥氮替代化肥氮的适宜替代比例在25%左右时可实现最佳的增效减排效果。 相似文献
15.
P. Smith A. Bhogal P. Edgington H. Black A. Lilly D. Barraclough F. Worrall J. Hillier G. Merrington 《Soil Use and Management》2010,26(4):381-398
The aim of this study was to assess the consequences of feasible land‐use change in Great Britain on GHG emissions mainly through the gain or loss of soil organic carbon. We use estimates of per‐area changes in soil organic carbon (SOC) stocks and in greenhouse gas (GHG) emissions, coupled with Great Britain (GB) county‐level scenarios of land‐use change based on historical land‐use patterns or feasible futures to estimate the impact of potential land‐use change between agricultural land‐uses. We consider transitions between cropland, temporary grassland (<5 yr under grass), permanent grass (>5 yr under grass) and forest. We show that reversion to historical land‐use patterns as present in 1930 could result in GHG emission reductions of up to ca. 11 Mt CO2‐eq./yr (relative to a 2004 baseline), because of an increased permanent grassland area. By contrast, cultivation of 20% of the current (2004) permanent grassland area for crop production could result in GHG emission increases of up to ca. 14 Mt CO2‐eq./yr. We conclude that whilst change between agricultural land‐uses (transitions between permanent and temporary grassland and cropland) in GB is likely to be a limited option for GHG mitigation, external factors such as agricultural product commodity markets could influence future land‐use. Such agricultural land‐use change in GB could have significant impacts on Land‐use, Land‐Use Change and Forestry (LULUCF) emissions, with relatively small changes in land‐use (e.g. 5% plough out of grassland to cropland, or reversion of cropland to the grassland cover in Nitrate Vulnerable Zones of 1998) having an impact on GHG emissions of a similar order of magnitude as the current United Kingdom LULUCF sink. In terms of total UK GHG emissions, however, even the most extreme feasible land‐use change scenarios account for ca. 2% of current national GHG emissions. 相似文献
16.
17.
Kerstin Michel Thomas Terhoeven‐Urselmans Renate Nitschke Phillip Steffan Bernard Ludwig 《植物养料与土壤学杂志》2009,172(1):63-70
The presence of relatively inert organic materials such as char has to be considered in calibrations of soil C models or when calculating C‐turnover times in soils. Rapid and cheap spectroscopic techniques such as near‐infrared (NIRS) or mid‐infrared spectroscopy (MIRS) may be useful for the determination of the contents of char‐derived C in soils. To test the suitability of both spectroscopic techniques for this purpose, artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals) and forest‐floor Oa material were produced. The total C content of these mixtures (432 samples) ranged from 0.5% to 6% with a proportion of char‐derived C amounting to 0%, 20%, 40%, 50%, 60%, or 80%. All samples were scanned in the visible and near‐IR region (400–2500 nm). Cross‐validation equations for total C and N, C and N derived from char (Cchar, Nchar) and Oa material were developed using the whole spectrum (first and second derivative) and a modified partial least‐square regression method. Thirty‐six samples were additionally scanned in the middle‐IR and parts of the near‐IR region (7000–400 cm–1 which is 1430–25,000 nm) in the diffuse‐reflectance mode. All properties investigated were successfully predicted by NIRS as reflected by RSC values (ratio of standard deviation of the laboratory results to standard error of cross‐validation) > 4.3 and modeling efficiencies (EF) ≥ 0.98. Near‐infrared spectroscopy was also able to differentiate between the different coals. This was probably due to structural differences as suggested by wavelength assignment. Mid‐IR spectroscopy in the diffuse‐reflectance mode was also capable to successfully predict the parameters investigated. The EF values were > 0.9 for all constituents. Our results indicated that both spectroscopic techniques applied, NIRS and MIRS, are able to predict C and N derived from different sources in soil, if closed populations are considered. 相似文献
18.
On the basis of long‐term fertilization experiments in Skierniewice, being conducted since 1923 at the Experimental Field of Warsaw Agricultural University, the fate (or balance) of nitrogen for a period of 35 years and that of phosphorus and potassium for 20 years, was studied. The balance includes N, P and K rates applied in mineral fertilizers and farmyard manure (FYM), uptake of these nutrients by the crop plants and the changes in the content of total N and total P and of slow release K in the soil during that time. The nitrogen balance shows a loss of this nutrient of 11—14 kg N ha—1 y—1, which corresponds to 15% of the applied ammonium nitrate on fields without FYM but to 23% on fields with FYM, in spite of crop yields being considerably greater on fields treated with FYM. The phosphorus balance indicated that in the 0—70 cm soil layer less than 4% of P from superphosphate was not found. In the treatment not fertilized with potassium for many years, the plants took up 49 kg K ha—1 y—1 from slow release forms because the fraction of available K did not change during that period. When calculating the potassium balance only 1.6% of K from potash salt were not found in plots without FYM but 12.3% of the applied KCl were not recovered in treatments with FYM. The comparison of the P‐ and K‐uptake from organic and mineral fertilizer in the two crop rotations indicates a higher P‐ and K‐efficiency from FYM than from inorganic fertilizer. 相似文献
19.
The Argentine Pampa is one of the major global regions for the production of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]), but intense management practices have led to soil degradation and amplified greenhouse‐gas (GHG) emissions. This paper presents preliminary data on the effect of maize‐soybean intercrops compared with maize and soybean sole crops on the short‐term emission rates of CO2 and N2O and its relationship to soil moisture or temperature over two field seasons. Soil organic carbon (SOC) concentrations were significantly greater (p < 0.05) in the maize sole crop and intercrops, whereas soil bulk density was significantly lower in the intercrops. Soil CO2 emission rates were significantly greater in the maize sole crop but did not differ significantly for N2O emissions. Over two field seasons, both trace gases showed a general trend of greater emission rates in the maize sole crop followed by the soybean sole crop and were lowest in the intercrops. Linear regression between soil GHG (CO2 and N2O) emission rates and soil temperature or volumetric soil moisture were not significant except in the 1:2 intercrop where a significant relationship was observed between N2O emissions and soil temperature in the first field season and between N2O and volumetric soil moisture in the second field season. Our results demonstrated that intercropping in the Argentine Pampa may be a more sustainable agroecosystem land‐management practice with respect to GHG emissions. 相似文献
20.
Antonio Castellano-Hinojosa Jesús Gonzlez-Lpez Antonio Vallejo Eulogio J. Bedmar 《植物养料与土壤学杂志》2020,183(1):99-109
The effect of the combined application of urease and nitrification inhibitors on ammonia volatilization and the abundance of nitrifier and denitrifier communities is largely unknown. Here, in a mesocosm experiment, ammonia volatilization was monitored in an agricultural soil treated with urea and either or both of the urease inhibitor N‐(n‐butyl) thiophosphoric triamide (NBPT) and the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP), with 50% and 80% water‐filled pore space (WFPS). The effect of the treatments on the abundance of bacteria and archaea was estimated by quantitative PCR (qPCR) amplification of their respective 16S rRNA gene, that of nitrifiers using amoA genes, and that of denitrifiers by qPCR of the norB and nosZI denitrification genes. After application of urea, N losses due to NH3 volatilization accounted for 23.0% and 9.2% at 50% and 80% WFPS, respectively. NBPT reduced NH3 volatilization to 2.0% and 2.4%, whereas DMPP increased N losses by up to 36.8% and 26.0% at 50% and 80% WFPS, respectively. The combined application of NBPT and DMPP also increased NH3 emissions, albeit to a lesser extent than DMPP alone. As compared with unfertilized control soil, both at 50% and 80% WFPS, NBPT strongly affected the abundance of bacteria and archaea, but not that of nitrifiers, and decreased that of denitrifiers at 80% WFPS. Regardless of moisture conditions, treatment with DMPP increased the abundance of denitrifiers. DMPP, both in single and in combined application with NBPT, increased the abundance of nitrification and denitrification genes. 相似文献