首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Records for yearling scrotal circumference (SC; n = 7,580), age at puberty in heifers (AP; n = 5,292), age at first calving (AFC; n = 4,835), and pregnancy, calving, or weaning status following the first breeding season (PR1, CR1, or WR1, respectively; n = 7,003) from 12 Bos taurus breeds collected at the Meat Animal Research Center (USDA) between 1978 and 1991 were used to estimate genetic parameters. Age at puberty (AP) was defined as age in days at first detected ovulatory estrus. Pregnancy (calving or weaning) status was scored as one for females conceiving (calving or weaning) given exposure during the breeding season and as zero otherwise. The final model for SC included fixed effects of age of dam at breeding (AD), year of breeding (Y), and breed (B) and age in days at measurement as a covariate. Fixed effects in models for AP and AFC were AD, Y, B, and month of birth. Fixed effects in models for PR1, CR1, and WR1 included AD, Y, and B. For all traits, random effects in the model were direct genetic, maternal genetic, maternal permanent environmental, and residual. Analyses for a three-trait animal model were carried out with SC, AP, and a third trait (the third trait was AFC, PR1, CR1, or WR1). A derivative-free restricted maximum likelihood algorithm was used to estimate the (co)variance components. Direct and maternal heritability estimates were 0.41 and 0.05 for SC; 0.16 and 0.03 for AP; 0.08 and 0.00 for AFC; 0.14 and 0.02 for PR1; 0.14 and 0.03 for CR1; and 0.12 and 0.01 for WR1. Genetic correlations between direct and maternal genetic effects within trait were -0.26, -0.63, -0.91, -0.79, -0.66, and -0.85 for SC, AP, AFC, PR1, CR1, and WR1, respectively. Direct genetic correlations between SC and AP and between those traits and AFC, PR1, CR1, and WR1 ranged from -0.15 (between SC and AP) to 0.23 (between AP and WR1). Estimates of heritability indicate that yearling SC should respond to direct selection better than AP, AFC, PR1, CR1, and WR1. Variation due to maternal genetic effects was small for all traits. No strong genetic correlations were detected between SC and female reproductive traits or between AP and the other female traits. These results suggest that genetic response in female reproductive traits through sire selection on yearling SC is not expected to be effective.  相似文献   

2.
A divergent selection experiment for serum IGF-I concentration began at the Eastern Ohio Resource Development Center in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d period. Real-time ultrasound measurements of backfat thickness and longissimus muscle area were taken on d 56 and 140 of the postweaning test. Only ultrasound data from calves born from fall 1995 through spring 1999 were included in the analysis. At the time of this study, IGF-I measurements were available for 1,521 bull and heifer calves, and ultrasound data were available for 636 bull and heifer calves. Data were analyzed by multiple-trait, derivative-free, restricted maximum likelihood methods. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were 0.26 +/- 0.07, 0.32 +/- 0.08, 0.26 +/- 0.07, and 0.32 +/- 0.08, respectively. Direct heritabilities for ultrasound estimates of backfat thickness ranged from 0.17 +/- 0.11 to 0.28 +/- 0.12, whereas direct heritabilities for longissimus muscle area ranged from 0.20 +/- 0.10 to 0.36 +/- 0.12, depending on the time of measurement and the covariate used for adjustment (age vs. weight). Direct genetic correlations of IGF-I concentrations with backfat thickness at d 56 and 140 and with longissiumus muscle area at d 56 and 140 averaged 0.02, 0.20, -0.08, and 0.23, respectively, when age was used as the covariate for both IGF-I and ultrasound measurements. Corresponding genetic correlations when age was used as the covariate for IGF-I and weight was used as the covariate for ultrasound measurements were 0.05, -0.07, -0.22, and -0.04, respectively. Therefore, the positive associations of serum IGF-I concentration with backfat thickness and longissimus muscle area at d 140 seem to have been partially mediated by weight. Results of this study do not indicate strong associations of serum IGF-I concentration with fat thickness or muscling of bulls and heifers during the postweaning feedlot period.  相似文献   

3.
Data for the current study were obtained from a divergent selection experiment in which the selection criterion was the average serum IGF-I concentrations of 3 postweaning blood samples collected from purebred Angus calves. Multiple-trait derivative-free REML procedures were used to obtain genetic parameter estimates for IGF-I concentrations and for BW and BW gains measured from birth to the conclusion of a 140-d postweaning performance test. Included in the analysis were 2,674 animals in the A(-1) matrix, 1,761 of which had valid records for IGF-I concentrations. Direct heritability estimates +/- SE for IGF-I concentration at d 28, 42, and 56 of the postweaning period and for mean IGF-I concentrations were 0.44 +/- 0.07, 0.51 +/- 0.08, 0.42 +/- 0.07, and 0.52 +/- 0.08, respectively. Heritability estimates for maternal genetic effects ranged from 0.10 +/- 0.05 to 0.20 +/- 0.06. The proportion of total phenotypic variance due to the maternal permanent environmental effect was essentially zero for all measures of IGF-I concentrations. Genetic correlations of IGF-I concentrations with weaning and post-weaning BW ranged from 0.07 +/- 0.12 to 0.32 +/- 0.11 and generally demonstrated an increasing trend during the postweaning period. Averaged across the various measures of IGF-I, the genetic correlation of IGF-I with preweaning gain was 0.14, whereas the genetic correlation with postweaning gain was 0.29. Genetic correlations between IGF-I and BW gain were positive during all time intervals, except between weaning and the beginning of the postweaning test and from d 84 to 112 of the postweaning period. Environmental and phenotypic correlations of IGF-I with BW and BW gains were generally positive, but small. These results indicate that postweaning serum IGF-I concentration is moderately to highly heritable and has small positive genetic, environmental, and phenotypic correlations with BW other than birth weight and with pre- and postweaning gain. Therefore, if IGF-I proves to be a biological indicator of an economically important trait (e.g., efficiency of feed use for growth) in beef cattle, it should be possible to rapidly change IGF-I concentrations via selection without significantly altering live weight or rate of gain.  相似文献   

4.
The objectives of this study were to examine differences in scrotal circumference, sperm motility, and percentage of normal sperm cells between two lines of Angus beef cattle divergently selected for blood serum IGF-I concentration. Data were obtained from an ongoing experiment involving 100 spring-calving (50 high and 50 low line) and 100 fall-calving (50 high and 50 low line) purebred Angus cows. Scrotal circumference, percentage of motile sperm cells, and percentage of normal sperm cells did not differ between high and low IGF-I line yearling bulls (P = .79, .50, and .56, respectively). The IGF-I concentrations measured at d 28, 42, and 56 of the postweaning test are abbreviated as IGF28, IGF42, and IGF56, respectively. Coefficients for the quadratic regression of scrotal circumference on IGF28 and IGF42 tended to be negative (P = .07 and .08, respectively), as did the coefficient for the quadratic regression of the percentage of motile sperm cells on IGF42 (P = .08). The coefficient for the linear regression of percentage of normal sperm cells on IGF28 was positive (P = .02). The coefficient for the quadratic regression of percentage of normal sperm cells on IGF56 was negative (P = .04). Coefficients for the quadratic regression of scrotal circumference and percentage of normal sperm cells on mean IGF-I concentrations were negative and important (P = .04 and .08, respectively). Thus, scrotal circumference and percentage of normal sperm cells are related to blood serum IGF-I concentration in yearling Angus bulls.  相似文献   

5.
The objectives of this study were to estimate heritability for scrotal circumference (SC) and semen traits and their genetic correlations (rg) with birth weight (BRW). Semen traits were recorded for Line 1 Hereford bulls (n = 841), born in 1963 or from 1967 to 2000, that were selected for use at Fort Keogh (Miles City, MT) or for sale. Semen was collected by electroejaculation when bulls were a mean age of 446 d. Phenotypes were BRW, SC, ejaculate volume, subjective scores for ejaculate color, swirl, sperm concentration and motility, and percentages of sperm classified as normal and live or having abnormal heads, abnormal midpieces, proximal cytoplasmic droplets (primary abnormalities), bent tails, coiled tails, or distal cytoplasmic droplets (secondary abnormalities). Percentages of primary and secondary also were calculated. Data were analyzed using multiple-trait derivative-free REML. Models included fixed effects for contemporary group, age of dam, age of bull, inbreeding of the bull and his dam, and random animal and residual effects. Random maternal and permanent maternal environmental effects were also included in the model for BRW. Estimates of heritability for BRW, SC, semen color, volume, concentration, swirl, motility, and percentages of normal, live, abnormal heads, abnormal midpieces, proximal cytoplasmic droplets, bent tails, coiled tails, distal cytoplasmic droplets, and primary and secondary abnormalities were 0.34, 0.57, 0.15, 0.09, 0.16, 0.21, 0.22, 0.35, 0.22, 0.00 0.16, 0.37, 0.00 0.34 0.00, 0.30, and 0.33, respectively. Estimates of rg for SC with color, volume, concentration, swirl, motility, and percentages of live, normal, and primary and secondary abnormalities were 0.73, 0.20, 0.77, 0.40, 0.34, 0.63, 0.33, -0.36, and -0.45, respectively. Estimates of rg for BRW with SC, color, volume, concentration, swirl, motility, and percentages live, normal, and primary and secondary abnormalities were 0.28, 0.60, 0.08, 0.58, 0.44, 0.21, 0.34, 0.20, -0.02, and -0.16, respectively. If selection pressure was applied to increase SC, all of the phenotypes evaluated would be expected to improve. Predicted correlated responses in semen characteristics per genetic SD of selection applied to SC were 0.87 genetic SD or less. If selection pressure was applied to reduce BRW, the correlated responses would generally be smaller but antagonistic to improving all of the phenotypes evaluated. Predicted correlated responses in SC and semen characteristics per genetic SD of selection applied to BRW were less than 0.35 genetic SD.  相似文献   

6.
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow's capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the “Program for Genetic Improvement of the Nelore Breed” (PMGRN — Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP.  相似文献   

7.
Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be a useful selection criterion when efforts are directed toward improvement of marbling scores and quality grades of beef cattle.  相似文献   

8.
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.  相似文献   

9.
Age at first calving (AFC) measures the entry of heifers into the beef cattle production system. This trait can be used as a selection criterion for earlier reproductive performance. Using data from Nelore cattle participating in the 'Program for Genetic Improvement of the Nelore Breed' (PMGRN-Nelore Brazil), bi-trait analyses were performed using the restricted maximum likelihood method, based on an AFC animal model and the following traits: female body weight adjusted to 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted to 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. The heritability estimates for AFC ranged from 0.02 ± 0.02 to 0.04 ± 0.02. The estimates of additive direct heritabilities (with standard error) for BW365, BW450, SC365, SC450, SC550 and SC730 were 0.36 ± 0.07, 0.38 ± 0.07, 0.48 ± 0.07, 0.65 ± 0.07, 0.64 ± 0.07 and 0.42 ± 0.07, respectively, and the genetic correlations with AFC were −0.38, −0.33, 0.10, −0.13, −0.13 and 0.06, respectively. In the herds studied, selection for SC365, SC450, SC550 or SC730 should not cause genetic changes in AFC. Selection based on BW365 or BW450 would favor smaller AFC breeding values. However, the low magnitude of direct heritability estimates for AFC in these farms indicates that changes in phenotypical expression depend mostly on non-genetic factors.  相似文献   

10.
Genetic parameters for stayability to six ages (ST1, . . ., ST6), for five measures of stayability to calving (SC2, . . ., SC6), and for five measures of stayability to weaning (SW2, . . ., SW6), were estimated using records of 2,019 Hereford cows collected from 1964 to 1979 from a selection experiment with a control line and three lines selected for weaning weight, yearling weight, and an index of yearling weight and muscle score. The model included birth year of the cow as a fixed effect and the cow's sire as a random effect. Analyses were performed with 1) a generalized linear mixed model for binary data using a probit link with a penalized quasi-likelihood function, and 2) with a linear mixed model using REML. Genetic trends were estimated by regressing weighted means of estimated transmitting abilities (ETA) of sires by birth year of their daughters on birth year. Environmental trends were estimated by regressing solutions for year of birth on birth year. Estimates of heritability (SE) for ST were between 0.09 (0.08) and 0.30 (0.14) for threshold model and between 0.05 (0.04) and 0.19 (0.09) for linear model. Estimates of heritability from linear model analyses transformed to an underlying normal scale were between 0.09 and 0.35. Estimates of heritability (SE) for SC were between 0.29 (0.10) and 0.39 (0.11) and between 0.18 (0.09) and 0.25 (0.08) with threshold and linear models. Estimates of heritability transformed to an underlying normal scale were between 0.30 and 0.40. Estimates of heritability (SE) for SW were between 0.21 (0.14) and 0.47 (0.19) and between 0.12 (0.08) and 0.26 (0.12) with threshold and linear models, respectively. Estimates of heritability transformed to an underlying normal scale were between 0.21 and 0.50. Estimates of genetic and environmental trends for all lines were nearly zero for all traits. Correlations between ETA of sires for stayability to specific ages, for stayability to calving, and for stayability to weaning with threshold and linear models ranged from 0.09 to 0.82, from 0.68 to 0.90, and from 0.67 to 0.87, respectively. Selection for stayability would be possible in a breeding program and could be relatively effective as a result of the moderate estimates of heritability, which would allow selection of sires whose daughters are more likely to remain longer in the herd. Selection for weaning and yearling weights resulted in little correlated response for any of the measures of stayability.  相似文献   

11.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

12.
Orchiopexy of the cryptorchid (CR) testis and castration of the scrotal testis were performed in three unilaterally CR beagles at six months of age. Induction rates for ejaculated sperm hyperactivation (HA) and the acrosome reaction (AR) in vitro in these orchiopexied dogs were compared with five those in normal beagles one year later. Canine spermatozoa were incubated for 9 hr at 38 degrees C under 5% CO2 in air in canine capacitation medium at a concentration of 30 x 10(6) sperm/ml. HA was observed using high-speed videomicrography. The AR spermatozoa were evaluated by the triple stain technique. As a result, there was no significant difference between 'the CR dogs after orchiopexy' (CDO) and the normal dogs (ND) with respect to sperm motility just after ejaculation. However, sperm motility of CDO decreased markedly during incubation. There was a significant difference in sperm motility between CDO (Mean +/- SD; 47 +/- 12%) and ND (80 +/- 9%) after three hours of incubation (p less than 0.01). No significant difference was observed between CDO and ND with respect to the HA rate of motile spermatozoa throughout the incubation period. The peak of HA rate was found in both CDO (58 +/- 5%) and ND (61 +/- 16%) after seven hours of incubation. The AR rate of spermatozoa in CDO was lower than that in ND after six hours of incubation. The AR rate of CDO (26 +/- 4%) was significantly lower than ND (46 +/- 5%) after eight hours of incubation (p less than 0.01). It is assumed that there might be relation between a rapid decrease of motility and low AR rate in spermatozoa of CDO during incubation.  相似文献   

13.
The objective of this study was to determine an appropriate method for using yearling scrotal circumference observations and heifer pregnancy observations to produce EPD for heifer pregnancy. We determined the additive genetic effects of and relationship between scrotal circumference and heifer pregnancy for a herd of Hereford cattle in Solano, New Mexico. The binary trait of heifer pregnancy was defined as the probability of a heifer conceiving and remaining pregnant to 120 d, given that she was exposed at breeding. Estimates of heritability for heifer pregnancy and scrotal circumference were .138+/-.08 and .714+/-.132, respectively. Estimates of fixed effects for age of dam and age were significant for heifer pregnancy and bull scrotal circumference. The estimate of the additive genetic correlation between yearling heifer pregnancy and yearling bull scrotal circumference was .002+/-.45. Additional analyses included models with additive genetic groups for scrotal circumference EPD for heifer pregnancy or heifer pregnancy EPD for scrotal circumference to account for a potential nonlinear relationship between scrotal circumference and heifer pregnancy. Results support the development of a heifer pregnancy EPD because of a higher estimated heritability than previously reported. The development of a heifer pregnancy EPD would be an additional method for improving genetic merit for heifer fertility.  相似文献   

14.
Reproductive and growth data were obtained on 779 and 564 yearling beef heifers and bulls, respectively, that had sires with yearling scrotal circumference data at the San Juan Basin Research Center, Hesperus, CO. Partial regression coefficients of reproductive and growth traits on inbreeding (FXC) and age of the individual and adjusted scrotal circumference of sire (SCSI) were obtained. Growth and reproductive traits of heifers and growth and breeding soundness traits of bulls were analyzed. Separate analyses for each sex were performed, but least squares models were similar. Models included fixed effects of breed, birth year (BY), age of dam (AOD) and the covariates FXC, age (day of birth in heifer analyses) and SCSI. Scrotal circumference of sire was adjusted for age, FXC, AOD and BY using values obtained in a separate analysis. Seminal traits improved as age increased, and there was a seasonal effect present for age of puberty. Inbreeding had a detrimental effect on reproductive traits. Partial regression coefficients for the reproductive traits on SCSI were: age of puberty, -.796 d/cm; age of first calving, -.826 d/cm; julian day of first calving, -.667 d/cm; julian day of second calving, .597 d/cm; most probable producing ability, .132 %/cm; percent sperm motility, -.74 %/cm; percent primary sperm abnormalities, .08 %/cm; percent secondary sperm abnormalities, .92 %/cm; percent normal sperm, -1.28 %/cm; total breeding soundness examination score, .28 units/cm and scrotal circumference, .306 cm/cm. A heritability of .39 was obtained for scrotal circumference.  相似文献   

15.
Effects of selection for 2-yr-old heifer calving ease (reduced calving difficulty score) on phenotypic differences between select and control lines of cattle for birth, growth, yearling hip height, and pelvic measurements were estimated. The selection objective was to decrease calving difficulty score in 2-yr-old heifers, while either maintaining or increasing yearling weight. The control line objective was to maintain or increase yearling weight by the same amount as the select lines and to maintain or proportionally increase birth weight. Select and control lines were formed in 4 purebred and 3 composite populations. Selection began in 1992 and select (n = 6,926) and control (n = 2,043) line calves were born from 1993 through 1999. Selection was based on EBV calculated from a 4-trait BLUP with observations on 2-yr-old calving difficulty scores, birth weight, weaning weight, and postweaning gain. Calving difficulty was scored on a scale from 1 (unassisted) to 7 (caesarean). All birth traits in select lines differed significantly from control lines. Averaged over 7 yr, select lines calved 3.0 +/- 0.5 d earlier, had 1.8 +/- 0.5 d shorter gestations, were 2.99 +/- 0.32 kg lighter at birth, had 5.6 +/- 1.5% fewer calves assisted at birth (averaged across dam ages), and 2-yr-old heifers had 0.80 +/- 0.08 lower calving difficulty score. Select lines averaged 19.8% lower 2-yr-old heifer calving assistance, but there was no difference in calving assistance of older cows, resulting in a highly significant interaction of selection and dam classification. Preweaning ADG was increased 15 +/- 9 g/d (1.7%) in select lines. Increased preweaning gain offset decreased birth weights in select lines, resulting in weaning weights that did not differ (P = 0.71). Postweaning ADG (P = 0.16) and yearling weight (P = 0.41) also did not differ. Increased preweaning ADG in select lines was not maintained after weaning. Select line hip heights were 0.70 +/- 0.21 cm shorter when measured as yearlings. Pelvic height, width, and area of select heifers measured 25 to 74 d after yearling weights were not significantly different. The differences between select and control lines significantly changed over the course of the experiment for some traits. In the final 2 yr of the experiment, select lines had 3.9 kg lower birth weight and 1.3 cm shorter hip heights. Selection can be used effectively to reduce 2-yr-old calving difficulty and calving assistance while maintaining or increasing yearling weight.  相似文献   

16.
There is limited genetic information relating calving difficulty and body weights to other productive and reproductive traits. Such information is useful for specifying selection criteria and for predicting economic consequences of selection. Genetic, maternal, and environmental covariances of six productive and reproductive measurements with calving difficulty, birth weight, 200-d weight, and 168-d postweaning gain were estimated in 12 experimental populations of cattle. Calf (direct) genetic effects resulting in longer gestation length were associated with increased calving difficulty and birth weight. Maternal genetic effects of increased gestation length and heavier birth weight were significantly associated. Lighter birth weight and reduced calving difficulty were associated with earlier heifer age at puberty. Increases in direct genetic effects of calving difficulty, 200-d weight, and postweaning gain were associated with a small increase in direct effect of scrotal circumference. Increased direct genetic effects of scrotal circumference were correlated with maternal effects decreasing calving difficulty and increasing 200-d weight. Direct effects of the skeletal measurements, yearling hip height, and heifer pelvic area were positively correlated with direct effects of calving difficulty, birth weight, 200-d weight, and postweaning gain, positively correlated with maternal effects for birth weight and 200-d weight, and negatively correlated with maternal calving difficulty. Percentage of retail product was positively associated with calving difficulty and negatively associated with 168-d gain. Predicted genetic change in calving difficulty resulting from one standard deviation of selection for either calving difficulty score or birth weight was much larger than for any other traits. Selection for 200-d weight, 168-d postweaning gain, hip height, pelvic area, or scrotal circumference was predicted to have opposite effects on direct and maternal calving difficulty. Estimated genetic correlations indicate some small to moderate relationships between calving difficulty and the measured productive and reproductive traits. However, selection for reduced calving difficulty should be based on calving difficulty score and(or) birth weight because of their superiority in predicted genetic change.  相似文献   

17.
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 ± 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 ± 0.01, 0.48 ± 0.02, and 0.19 ± 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 ± 0.07 (WW), -0.13 ± 0.08 (ADG), and -0.11 ± 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that longterm selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.  相似文献   

18.
Estimates of heritabilities and genetic correlations for calving ease over parities were obtained for the Italian Piedmontese population using animal models. Field data were calving records of 50,721 first- and 44,148 second-parity females and 142,869 records of 38,213 cows of second or later parity. Calving ability was scored in five categories and analyzed using either a univariate or a bivariate linear model, treating performance over parities as different traits. The bivariate model was used to investigate the genetic relationship between first- and second- or between first- and third-parity calving ability. All models included direct and maternal genetic effects, which were assumed to be mutually correlated. (Co)variance components were estimated using restricted maximum likelihood procedures. In the univariate analyses, the heritability for direct effects was .19 +/- .01, .10 +/- .01, and .08 +/- .004 for first, second, and second and later parities, respectively. The heritability for maternal effects was .09 +/- .01, .11 +/- .01, and .05 +/- .01, respectively. All genetic correlations between direct and maternal effects were negative, ranging from -.55 to -.43. Approximated standard errors of genetic correlations between direct and maternal effects ranged from .041 to .062. For multiparous cows, the fraction of total variance due to the permanent environment was greater than the maternal heritability. With bivariate models, direct heritability for first parity was smaller than the corresponding univariate estimate, ranging from .18 to .14. Maternal heritabilities were slightly higher than the corresponding univariate estimates. Genetic correlation between first and second parity was .998 +/- .00 for direct effects and .913 +/- .01 for maternal effects. When the bivariate model analyzed first- and third-parity calving ability, genetic correlation was .907 +/- .02 for direct effects and .979 +/- .01 for maternal effects. Residual correlations were low in all bivariate analyses, ranging from .13 for analysis of first and second parity to .07 for analysis of first and third parity. In conclusion, estimates of genetic correlations for calving ease in different parities obtained in this study were very high, but variance components and heritabilities were clearly heterogeneous over parities.  相似文献   

19.
Although the second largest chromosome of the genome, the X chromosome is usually excluded from genome-wide association studies (GWAS). Considering the presence and importance of genes on this chromosome that are involved in reproduction, the aim of this study was to evaluate the effect of its inclusion in GWAS on reproductive traits (scrotal circumference [SC], early pregnancy [P16] and age at first calving [AFC]) in a Nelore herd. Genotype data from 3,263 animals with the above-mentioned phenotypes were used. The results showed an increase in the variances explained by the autosomal markers for all traits when the X chromosome was not included. For SC, there was an increase of more than 10% for the windows on chromosomes 2 and 6. For P16, the effect was increased by almost 20% for windows on chromosome 5. The same pattern was found for AFC, with an increase of more than 10% for the most important windows. The results indicate that the noninclusion of the X chromosome can overestimate the effects of autosomes on SC, P16 and AFC not only because of the additive effect of the X chromosome itself but also because of its epistatic effect on autosomal genes.  相似文献   

20.
Data on breeding soundness examinations (BSE) and performance traits were obtained on 549 yearling beef bulls at the San Juan Basin Research Center, Hesperus, Co from 1976 to 1984. Genetic parameters estimated for components of BSE included percent motility (PMOT), percent primary abnormalities (PPRIM), percent secondary abnormalities (PSEC), percent normal sperm (PNOR), scrotal circumference (SC) and BSE score (BSESC). Performance traits included birth weight, weaning weight, yearling weight and average daily gain. The least squares model included birth year, age of dam and breed as fixed effects, sire/breed as a random variable, and age and percent inbreeding as covariates. Paternal half-sib estimates of heritability were PMOT, .08 +/- .07; PPRIM, .31 +/- .09; PSEC, .02 +/- .05; PNOR, .07 +/- .06; BSESC, .10 +/- .06 and SC, .40 +/- .09. Phenotypic correlations among BSE components and growth traits were generally favorable. Genetic correlations involving percent secondary abnormalities were highly variable with large standard errors. Seminal traits improved as age increased and became poorer as inbreeding increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号