首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluated the heat stress response pattern of dual-purpose Guzerá cattle for test-day (TD) milk yield records of first lactation and estimated genetic parameters and trends related to heat stress. A total of 31,435 TD records from 4,486 first lactations of Guzerá cows, collected between 1986 and 2012, were analysed. Two random regression models considered days in milk (DIM) and/or temperature × humidity-dependent (THI) covariate. Impacts of −0.037, −0.019 and −0.006 kg/day/THI for initial and intermediate stages of lactation were observed when considering the mean maximum daily temperature and humidity to calculate THI. Heritability estimates ranged from 0.16 to 0.35 throughout lactation and THI values, suggesting the possibility to expect gains from selection for such trait. The variable trajectory of breeding values for dual-purpose Guzerá sires in response to changes in THI values confirms that the genotype × environment interaction due to heat stress can have some effect on TD milk yield. Despite the high dairy performance of Guzerá cattle under heat stress, estimated genetic trends showed a progressive reduction in heat tolerance. Therefore, new strategies should be adopted to prevent negative impacts of heat stress over milk production in Guzerá animals in future.  相似文献   

2.
Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test‐day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM‐REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test‐day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non‐additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were ? 0.223 and ? 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible.  相似文献   

3.
We examined the effects of heat stress (HS) on production traits, somatic cell score (SCS) and conception rate at first insemination (CR) in Holsteins in Japan. We used a total of 228 242 records of milk, fat and protein yields, and SCS for the first three lactations, as well as of CR in heifers and in first‐ and second‐lactation cows that had calved for the first time between 2000 and 2012. Records from 47 prefectural weather stations throughout Japan were used to calculate the temperature–humidity index (THI); areas were categorized into three regional groups: no HS (THI < 72), mild HS (72 ≤ THI < 79), and moderate HS (THI ≥ 79). Trait records from the three HS‐region groups were treated as three different traits and trivariate animal models were used. The genetic correlations between milk yields from different HS groups were very high (0.91 to 0.99). Summer calving caused the greatest increase in SCS, and in the first and second lactations this increase became greater as THI increased. In cows, CR was affected by the interaction between HS group and insemination month: with summer and early autumn insemination, there was a reduction in CR, and it was much larger in the mild‐ and moderate‐HS groups than in the no‐HS group.  相似文献   

4.
本试验在连续3年时间里测定了上海地区热应激周期变化对泌乳中期奶牛生产性能和牛奶品质的影响。通过实地测定并计算分析,绘制了上海地区热应激周期变化图谱,揭示了整个热应激周期中不同热应激程度的分布状况。研究对比了自然生产环境下无热应激与中度热应激对奶牛生产性能和牛奶品质的影响,发现中度热应激极显著降低了奶牛采食量、产奶量、乳脂校正乳产量、能量校正乳产量、乳脂率、乳蛋白含量、总固体含量(P<0.01),而且显著增加了乳中尿素氮含量(P<0.05)。在热应激周期变化研究中发现,中度热应激显著升高泌乳奶牛的直肠温度和呼吸频率(P<0.05),而且呼吸频率比直肠温度对热应激变化的反应更快、更敏感。热应激周期变化对奶牛干物质采食量、产奶量的影响取决于热应激程度,2012年整个热应激周期的热应激程度比较低,热应激周期变化对奶牛干物质采食量、产奶量无显著影响(P>0.05),但是2013年热应激程度更加严重,热应激周期变化对奶牛干物质采食量、产奶量产生了极显著影响(P<0.01)。在牛奶品质中,受热应激影响最大的是乳蛋白合成量(P<0.01)。2012年和2013年2个热应激周期变化对其他乳成分含量没有显著影响(P>0.05),但是两年的热应激周期变化都导致乳蛋白含量显著下降(P<0.05)和乳中尿素氮含量显著升高(P<0.05)。尤其值得注意的是,2012年热应激周期变化并没有导致奶牛采食量下降(P>0.05),而且产奶量也没有显著性差异(P>0.05),但是仍然出现了乳蛋白含量下降和乳中尿素氮含量升高(P<0.05)。这表明热应激周期变化改变了泌乳中期奶牛氮代谢的途径,发生了氮营养重分配(repartitioning)现象,而且这种现象不依赖于采食量和产奶量,可以称之为“热应激乳蛋白降低征”(heat-stressed milk protein decrease syndrome,HS-MPD)。  相似文献   

5.
Not all parameters are trustworthy and practical to use as parameters to determine heat stress in dairy cattle. The temperature-humidity index (THI) is still the best, simplest and most practical index (parameter) for measurement of environmental warmth which cause heat stress in dairy cattle. It is practical, easy to determine and relatively trustworthy to use body temperature and respiratory rate as parameters to determine heat stress in dairy cattle. These physiological parameters must always be used together with THI values to determine and evaluate heat stress in dairy cattle. For practical purposes, plasma cortisol concentration and milk composition cannot be used as parameters to determine heat stress in dairy cattle although good indications of acute or chronic heat stress can be obtained. Vanillic acid is a break-down product of adrenalin found in milk, but before its concentration in milk can be used as an indicator/parameter of heat stress in dairy cows, more about the pharmacodynamics of adrenaline in the milk has to be known. Selection and breeding of dairy cows on the basis of their adaptibility to heat stress using the most practical heat stress parameters will ensure that their offspring will have superior performance in the prevailing environmental conditions.  相似文献   

6.
The temperature–humidity index (THI) is widely used to characterize heat stress in dairy cattle. Diet composition is known to induce variation in metabolic‐associated heat production. However, the relationships between THI and diet are poorly characterized with regard to performance and intake behaviour. Therefore, the objectives were to evaluate the impact of THI on water intake (WI), dry matter intake (DMI) and the frequency of drinking and feeding bouts in lactating dairy cows offered four dietary treatments: each contained 20% grass silage and additionally (i) 20% maize silage, 60% concentrate (M‐HC); (ii) 60% maize silage, 20% concentrate (M‐LC); (iii) 20% pressed beet pulp silage, 60% concentrate (BPS‐HC); or (iv) 60% pressed beet pulp silage, 20% concentrate (BPS‐LC) (DM basis). Individual WI and DMI were recorded from April to July 2013. Furthermore, dietary effects on milk production and reticular pH were estimated. Milk yield was lowest for M‐LC, while energy‐corrected milk was similar for all diets. Milk fat percentage was higher and milk protein amount lower for cows offered both LC diets. Reticular pH below 6.3, 6.0 and 5.8 lasted longest for BPS‐LC. WI was higher for HC diets. However, the frequency of drinking bouts was not influenced by the ration. Lower DMI occurred for BPS‐LC compared to M‐LC. Frequency of feeding bouts was significantly higher for LC diets. THI was significantly related to WI, DMI as well as drinking and feeding bouts. Per increasing THI, WI increased slightly more for LC diets and DMI decreased more for HC diets. Frequency of drinking bouts increased slightly higher for BPS rations per rising THI, while the decrease in feeding bouts was highest for M‐HC. In conclusion, TMR composition and moderate heat stress impacted WI and DMI of dairy cows, while both dietary energy density and ruminal filling might intensify the THI impact.  相似文献   

7.
不同温湿指数环境下奶牛阴道温度的变化规律   总被引:1,自引:0,他引:1  
为探究不同温湿指数(THI)环境下奶牛阴道温度的变化规律,试验分别在高THI(78.5±3.2)、中THI(70.4±4.1)、低THI(56.3±5.5)环境下连续7d监测15头健康妊娠奶牛的阴道温度及所在牛舍内外的温度和相对湿度。结果表明:高THI环境下奶牛平均阴道温度、日极值均差、测期极值差极显著高于中、低THI环境下奶牛相应的测值(P<0.01);奶牛日平均阴道温度和日平均THI、日最高阴道温度和日受热时长的相关系数r分别是0.811、0.896(P<0.01);引起日平均阴道温度、日最高阴道温度开始快速升高的日平均THI、日最大THI分别为71.4、77.3,日受热时长为10.6h时日最高阴道温度变化出现拐点。由此可见,高THI环境下奶牛阴道温度变化幅度大;相比THI,日受热时长会影响奶牛阴道温度的变化。  相似文献   

8.
Estimates of heat stress relief needs for Holstein dairy cows   总被引:3,自引:0,他引:3  
Estimates of environmental heat stress are required for heat stress relief measures in cattle. Heat stress is commonly assessed by the temperature-humidity index (THI), the sum of dry and wet bulb temperatures. The THI does not include an interaction between temperature and humidity, although evaporative heat loss increases with rising air temperature. Coat, air velocity, and radiation effects also are not accounted for in the THI. The Holstein dairy cow is the primary target of heat stress relief, followed by feedlot cattle. Heat stress may be estimated for a variety of conditions by thermal balance models. The models consist of animal-specific data (BW, metabolic heat production, tissue and coat insulation, skin water loss, coat depth, and minimal and maximal tidal volumes) and of general heat exchange equations. A thermal balance simulation model was modified to adapt it for Holstein cows by using Holstein data for the animal characteristics in the model, and was validated by comparing its outputs to experimental data. Model outputs include radiant, convective, skin evaporative, respiratory heat loss and rate of change of body temperature. Effects of milk production (35 and 45 kg/d), hair coat depth (3 and 6 mm), air temperature (20 to 45 degrees C), air velocity (0.2 to 2.0 m/s), air humidity (0.8 to 3.9 kPa), and exposed body surface (100, 75, and 50%) on thermal balance outputs were examined. Environmental conditions at which respiratory heat loss attained approximately 50% of its maximal value were defined as thresholds for intermediate heat stress. Air velocity increased and humidity significantly decreased threshold temperatures, particularly at higher coat depth. The effect of air velocity was amplified at high humidity. Increasing milk production from 35 to 45 kg/d decreased threshold temperature by 5 degrees C. In the lying cow, the lower air velocity in the proximity of body surface and the smaller exposed surface markedly decrease threshold temperature. The large variation in thresholds due to environmental and animal factors justifies the use of thermal balance-based indices for estimating heat stress. Such an approach may make possible estimates of threshold temperatures at which heat stress relief is required for widely different cattle types and environmental situations.  相似文献   

9.

This study aimed to determine the trends in milk production, fertility, temperature-humidity index (THI), and herd size in dairy herds from the Laguna region in northern Mexico. Records of 16 dairy herds of Holstein cows from January 2002 to December 2016 were used. Milk production was categorized in low and high levels. Milk production and fertility were analyzed using generalized equation estimation procedures by a model of repeated measures that included the effect of year, month, and productive level, an interaction for month × productive level, and herd effect was nested in productive level. For THI, a generalized linear model that included the effects of year and month was used. Dairy herds with high levels of milk production yielded more milk than those with low levels (P?<?0.001). Milk production in 2002 and 2016 was 27.4?±?0.6 and 32.3?±?0.7 L/cow/day, respectively. Fertility fluctuated throughout the study. Dairy herds with high levels of milk production recorded higher fertility than those with low levels (P?<?0.001). From October to April, THI was <?70, whereas it was >?73 from May to September, indicating that cows were in heat stress (20 h/day). The median herd size was 995 and 2569 cows in 2002 and 2016, respectively. In conclusion, in large herds, milk production increased over the years of study, whereas fertility showed a wave cycle; nonetheless, when THI was >?73, both milk production and fertility decreased.

  相似文献   

10.

In this study, we examined factors that affected milk production by cows raised in a temperate climate area. We conducted this study on a large dairy farm containing approximately 2000 Holstein cows, located in a temperate climate area. We collected 7803 calving records for 4069 cows from 2012 to 2016. We then assessed the effect of hot weather on milk yield by examining three climate factors: season, maximum temperature (MAX), and the temperature and humidity index (THI). We found that increases in heat stress caused linear decreases in milk yield (P?<?0.05). Additionally, the effects of the three climate factors on milk yield varied depending on cow parity and days open (P?<?0.05). Thus, management procedures should consider cow parity and lactating stage to minimize the negative effects of heat stress on milk production. We also found that the lowest Akaike information criterion value was obtained in our model when using THI for 305-day milk yield. This suggests that THI is a more accurate variable for evaluating heat stress than MAX or season.

  相似文献   

11.
November-March are the hottest months of the year with the highest monthly mean "temperature-humidity index" (THI) in South Africa and Namibia. These 5 months are associated with severe heat stress in dairy cattle, are of critical importance for their performance and may have great economic implications for the owner as well as for the dairy industry. Firstly, compared with the existing Livestock Weather Safety index (LWSI), more relevant meteorological data can be generated when mapping South Africa and Namibia according to the LWSI modified for lactating dairy cattle (LDC). Secondly, compared with the observed true THI values alone, more relevant data on heat stress and its deleterious effects on dairy cattle performance, become available when mapping South Africa and Namibia according to the combined observed true and predicted THI values. Minimum precautions against heat stress in dairy cattle are recommended depending on THI values as classified by the LWSI for LDC.  相似文献   

12.
Utility of weather information from on-farm and weather stations was evaluated for the application in studies on the genetics of heat stress. Daily milk yield of 31 primiparous Holstein cows was collected at Tifton, GA, from April 28 to July 19, 1993. Weather information was recorded on-farm and was available from weather stations in Georgia. Analyses used daily average of temperature–humidity index (THI). Effects of threshold of heat stress and the rate of decline in milk after the threshold were estimated. With on-farm weather data, threshold was at THI = 22 and rate of decline was − 1.12 kg of milk per unit of THI measured 2 days before milking. At the Tifton weather station, 3 km away from the farm, the threshold was THI = 20 and the rate was the same. With data from Macon, Columbus, Atlanta, and Athens stations, the threshold was at 20, 21, 20, and 20, respectively, and the rate of decline with a 2 day lag was − 0.88, − 1.02, − 0.90, and − 0.97 kg of milk per unit of THI. Subsequent analysis included 2260 test day records from the same farm from 1993 to 2003 and weather data from Tifton station. The highest rate of decline on milk yield of − 0.22 kg per unit of THI occurred at the threshold of 20 and no lag. For data restricted to 1999–2003, the threshold increased to 22 and the rate to − 0.46 kg per THI unit. Public stations provide satisfactory information for national genetic evaluation for heat stress. Critical parts in such an evaluation are modeling of test days and accounting for changes among farms and weather stations over time.  相似文献   

13.
We used test‐day records and daily records from provincial weather stations in Japan to evaluate heat tolerance (HT) in Holstein cows according to a random regression test‐day model. Data were a total of 1,641,952 test‐day records for heritability estimates and 17,245,694 test‐day records for genetic evaluation of HT by using milk yield and somatic cell score (SCS) in Holstein cows that had calved for the first time in 2000 through 2015. Temperature–humidity index (THI) values were estimated by using average daily temperature and average daily relative humidity records from 60 provincial Japanese weather stations. The model contained herd–test‐day, with lactation curves on days in milk within month–age group as a fixed effect. General additive genetic effect and HT of additive genetic effect were included as random effects. The threshold value of THI was set to 60. For milk yield, estimated mean heritabilities were lower during heat stress (THI = 78; 0.20 and 0.28) than when below the heat stress threshold (THI ≤ 60; 0.26 and 0.31). For SCS, heritability estimates (range 0.08–0.10) were similar under all heat stress conditions. Genetic trends of HT indicated that EBVs of HT are changing in an undesirable direction.  相似文献   

14.
基于DHI数据,选择高产与低产的德宏奶水牛各15头作为实验动物。在平均温湿指数(THI)在72以上的饲养环境中进行为期27d的试验,对奶水牛的泌乳量、乳品质、热应激相关激素的浓度和生理参数进行了测试分析。相比高产奶水牛,低产奶水牛的体细胞数量较高,非脂乳固体含量却相对较低(P〈0.05),其他乳品质参数在两组间无显著性差异。在热应激条件下,低产组奶水牛的促肾上腺皮质激素(adrenocomcotropic hormone,ACTH)浓度相对较低,而皮质醇(cortisol,Cor)浓度却相对较高,反映代谢水平的胰岛素(insulin,INS)和T3浓度相对较高。从热应激相关激素浓度和乳成分来看,  相似文献   

15.
16.
We used daily records from provincial Japanese weather stations and monthly test‐day records of milk production to investigate the length of the lags in the responses of cows’ milk yield and somatic cell score (SCS) to heat stress (HS). We also investigated the HS thresholds in milk yield and SCS. Data were a total of 17,245,709 test‐day records for milk and SCS in Holstein cows that had calved for the first time between 2000 and 2015, along with weather records from 60 weather stations. Temperature–humidity index (THI) values were estimated by using average daily temperature and average daily relative humidity. Adjusted THI values were calculated by using temperature, relative humidity, wind speed, and solar radiation. The model contained herd, calving year, month of test day, age group, days in milk, and THI as a fixed effect. THIs for each day from 14 days before the test day until the test day were used to represent the HS effects. The HS occurring 3 days, and between 8 and 10 days, before the test day had the greatest effect on the milk yield and SCS, respectively. The threshold THI values for the HS effect were about 60–65 for both traits.  相似文献   

17.
热应激对荷斯坦奶牛体温和呼吸的影响   总被引:1,自引:0,他引:1  
本试验旨在研究热应激对不同泌乳阶段奶牛直肠温度、皮肤温度和呼吸频率的影响。选用不同泌乳阶段、胎次相近的荷斯坦奶牛18头,按泌乳天数分为泌乳前期、泌乳中期和泌乳后期3组,每组6个重复,根据牛舍温湿指数(THI)变化情况,进行热应激与非热应激的自身对照试验。结果表明:热应激极显著增加各泌乳阶段奶牛的直肠温度、皮肤温度和呼吸频率(P<0.01);THI与各泌乳阶段奶牛的直肠温度、皮肤温度、呼吸频率呈显著正相关(P<0.05);在同一环境下,不同泌乳阶段奶牛的直肠温度、皮肤温度及呼吸频率无显著差异(P>0.05)。热应激严重影响奶牛的直肠温度、皮肤温度和呼吸频率,与泌乳中、后期奶牛相比,热应激对泌乳前期奶牛的影响趋于较大。  相似文献   

18.
The present objective of the study was to investigate the effect of fans cooling on dairy cow in northern mountainous region of Hebei in summer.Two cowsheds with the same structure and feeding technics were used to investigate the effect of fans on indoor temperature and humidity, physiological parameters and milking performance of dairy cow.The results showed that the average ambient temperature in cowshed with fans was 1.5℃ lower than that of the control cowshed, and the average wind velocity was 0.49 m/s higher than that of the control cowshed, reaching to 0.66 m/s.Temperature-humidity index (THI) of cowshed with fans was significantly lower than that of the control shed during the period of fans running (P<0.05).Besides, the rectal temperature and respiration rate of dairy cows in cowshed with fans were significantly lower than of the control cowshed (P<0.05), and the milk yield per cow per day was 17.0% higher than that of the control cowshed (P<0.05), however, the milk fat, milk protein and milk sugar were no significant difference from the control (P>0.05).Overall, fans could decrease indoor environment, moderate heat stress and increase performance and health of dairy cows in northern mountainous region of Hebei.  相似文献   

19.
The genetic parameters of milk fat percentage (FP), milk protein percentage (PP), somatic cell score (SCS), milk yield of 305 days (MYD), age at first calving (AFC),calving interval (CI) and linear classification scores (LCS) were estimated using the DHI data of 2008 to 2016 in Ningxia area of 27 444 Holstein dairy cows and type records. With the aid of DMU v 6.0 AI-REML software, DMU combined with EM algorithm and multi character animal model was used to model the influence factors of the birth season, herd, year, parity and individual additive genetic effect. The results showed that FP, PP, SCS, MYD, AFC, CI and LCS's heritability were 0.14, 0.19, 0.19, 0.31, 0.37, 0.10, 0.07, respectively. At the same time, the breeding value, genetic correlation and CPI2 values of different traits were calculated. The genetic evaluation for dairy cows in Ningxia, could be more in-depth understanding of the basic situation of the herd, to provide basic data for the construction of dairy cow breeding matching selection, planning and selection index.  相似文献   

20.
试验旨在研究冀北山区夏季奶牛舍风机的降温效果。选择结构和饲养工艺相似的两栋舍饲散栏牛舍,分析安装风机对舍内温热环境、奶牛生理指标及产奶性能的影响。结果表明,安装风机舍的昼夜均温比对照舍低1.5℃,平均风速比对照舍高0.49 m/s,可达0.66 m/s。风机开启期间安装风机舍温湿指数(THI)显著低于对照舍(P<0.05)。此外,安装风机舍的奶牛直肠温度和呼吸频率显著低于对照舍(P<0.05),且每头牛每天产奶量比对照舍显著提高了17.0%(P<0.05),但乳脂率、乳蛋白和乳糖与对照舍相比差异均不显著(P>0.05)。由此可见,冀北山区奶牛舍安装风机可改善舍内温热环境,缓解奶牛热应激,提高奶牛的产奶性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号