共查询到17条相似文献,搜索用时 203 毫秒
1.
基于GF-1卫星遥感的冬小麦面积早期识别 总被引:11,自引:21,他引:11
GF-1号卫星是中国高分卫星系列首颗卫星,自2013年04月26日发射以来,提供了大量的2 m/8 m/16 m空间分辨率的卫星数据,成为中国农业遥感监测的主要数据源之一。该文以GF-1卫星携带的16 m空间分辨率的宽视场(wide field view,WFV)传感器为主要数据源,采用2013年10月2日、10月17日、11月7日和12月5日4个时相的数据,以多尺度分割后的对象为基本分类单元,采用分层决策树分类的方法对冬小麦面积进行提取,并利用地面样方数据对分类结果进行了精度验证。结果表明,北京市顺义区冬小麦面积7 095 hm2,分类总体精度达到96.7%,制图精度为90.0%,其他未分类类别精度为97.3%,Kappa系数为0.8。研究区内冬小麦的播种时间可以分为10月1-5日早播、10月6-10日中播、10月11-15日中晚播、10月16-20日晚播等4个时间段,不同播期对应着归一化植被指数(normalized difference vegetation index,NDVI)不同的变化规律,是分层的基础,结合波段反射率、波段反射率和、波段反射率比值等参数的变化规律,通过分层可以有效的剔除草坪、桃树等容易同冬小麦混淆的地物类型,GF-1/WFV提供的多时相遥感数据能够可靠的反映冬小麦发育变化的规律,是冬小麦面积准确提取的基础,在农作物面积遥感监测业务运行中具有较大的开发应用潜力。 相似文献
2.
农作物种植面积遥感抽样调查的误差影响因素分析 总被引:3,自引:3,他引:3
空间抽样技术在农作物种植面积调查中具有不可替代的作用,各抽样要素(抽样率、抽样调查单元尺寸及布局)对于抽样精度的影响至关重要。该文以湖南省晚稻为研究对象,设计了9种抽样调查单元和31种抽样率水平,以晚稻面积百分比为分层标志进行空间分层抽样,分析抽样格网大小、抽样率及样本空间分布格局对面积估算精度的敏感性及控制途径,并建立3种影响因素对面积估算的综合评估模型。结果表明:1)作物面积估计的平均抽样误差随抽样格网尺寸的增加而增加(R2=0.92),当抽样格网控制在5 km以内时,平均误差基本限制在5%以下,标准差变幅稳定在0.12以内;2)作物面积估计的平均抽样误差随抽样率的增加而逐渐降低(R2=0.82),当抽样率达到0.4%时,平均误差基本限制在5%以内,标准差变幅稳定在0.12以内;3)在抽样率确定的情况下,样本的空间分布是影响抽样精度的重要因素,随着样本空间分布由近似均匀分布向随机分布再向集群分布变化,作物面积估计量的平均抽样误差逐渐增大,当样本空间分布的方差均值比指标0.7时,平均误差控制在5%以内,标准差变幅稳定在0.1以内;4)得到3种影响因素对面积估算精度的定量评估模型。该成果揭示了农作物种植面积抽样过程中样方尺寸、抽样率和样本空间分布对精度影响的敏感性,为农作物种植面积监测空间抽样方案的选取以及确定特定的抽样方案可以达到的面积估算水平提供了理论基础。 相似文献
3.
基于遥感与多变量概率抽样调查的作物种植面积测量 总被引:6,自引:4,他引:6
针对传统抽样调查工作中调查基础资料时效性不高和野外调查工作量较大等问题,该文提出了一种遥感与MPPS(multivariate probability proportional to size)抽样调查相结合的农作物种植面积测量方法。利用第2次农业普查数据进行抽样框的编制;利用时序中分辨率遥感数据进行农作物种植面积的分类;在中分辨率遥感分类图的基础上进行MPPS抽样;采用高空间分辨率遥感数据对抽选样本进行面向对象的分类;根据MPPS抽样方法进行总体农作物种植面积的推断;计算CV值,评价抽样精度,以国家统计局公布数据为标准进行总体面积精度评价。以辽宁省北镇市为研究区对该方法进行了测试。结果显示,该方法能够有效的提取县级农作物种植面积,农作物种植面积提取精度优于92%。 相似文献
4.
面向省级农作物种植面积遥感估算的分层方法 总被引:5,自引:3,他引:5
针对当前遥感抽样估算中分层标志缺乏遥感识别误差描述的问题,该文探讨了基于农作物遥感识别结果的不同分层方法的抽样效率。以江苏省为研究区,采用2阶段分层,采用数字高程模型(digital elevation model,DEM)标准差进行一阶段分层,在一阶段分层的基础上,分别采用农作物识别种植规模、遥感识别破碎度、种植结构以及种植结构与破碎度指标进行二阶段分层。试验结果表明:种植结构与破碎度指标的分层效率最高,相对效率达到5.90,该分层指标融合了遥感分类结果反演出的种植结构和破碎度,不但能够有效地反映出农作物区域的景观特征,同时也较为合理地反映出区域间作物种植的差异性,为提高省级农作物种植面积遥感抽样估算效率提供有力的参考。 相似文献
5.
基于遥感抽样的国家尺度农作物面积统计方法评估 总被引:3,自引:9,他引:3
国外从20世纪70年代已将遥感用于农业统计,中国从起步至今也有20多年的历史。遥感以其准确、及时、客观的优势推动了农业统计的进步,但对于遥感统计的精度评估一直不甚明确,影响了遥感监测的可信度和遥感技术优势的充分发挥。该文首先分析了目前国内外农业遥感统计的主要方法及其评估方式,针对中国大尺度农作物面积遥感统计方法的实际,采用多种指标对其进行评估,目的是对遥感统计调查的准确度予以明确的定义和计算。采用亚米级差分GPS采样获取足量样本的方法,对L andsat TM提取的水稻面积进行验证,基于原始的误差矩阵计算得出生产者精度为89.53%,用户精度为95.37%,总体精度为87.02%,地面实测数据和图像解译结果的相关系数为0.96;引入误差指标σ来直接反映分类结果较真值的总体误差,当σ〉0时,遥感解译结果较实际偏小,反之偏大,计算得到水稻遥感解译面积的σ值平均为0.084。 相似文献
6.
基于分层抽样的中国水稻种植面积遥感调查方法研究 总被引:20,自引:19,他引:20
及时准确的统计水稻种植面积对国家和区域的粮食生产、贸易及粮食安全预警有重要意义。传统的按行政单元逐级上报和农业产量抽样调查方法在数据获取过程中受人为因素的干扰,难以避免的出现诸如错报、漏报、空报等问题。遥感技术具有及时、准确、客观的特点,对于农作物种植面积监测具有其他方法不可替代的优势。但是,一般的作物面积遥感监测是全覆盖或典型地区调查。在大尺度农作物遥感调查时,全面普查(卫星遥感数据全覆盖)的方法在时间和经费方面是不可行的,以典型调查代替总体的方法缺乏科学依据。科学合理的抽样方法是可运行的大尺度作物面积监测的关键因素。研究在背景数据库的支持下,以土地利用数据库为辅助变量,设计了基于分层抽样的中国水稻种植面积遥感监测方法。以全国稻田面积为总体,采用1∶5万比例尺标准地形图幅为分层抽样的抽样单元。以遥感与地面调查相结合的方法监测样本的当年和上一年水稻种植面积,在给定精度条件下估算水稻种植面积年际变化率。结合上年统计部门发布的水稻种植面积统计数据,推算当年水稻种植面积。该项研究为农业部全国水稻遥感监测提供了可行的大尺度水稻遥感监测的运行方案。 相似文献
7.
8.
基于NDVI加权指数的冬小麦种植面积遥感监测 总被引:8,自引:2,他引:8
该文针对农业信息服务中冬小麦种植面积调查业务的现状与需求,提出了一种基于NDVI(normal difference vegetation index)时间序列的冬小麦NDVI加权指数(WNDVI,weighted NDVI index)影像算法,可在训练样本、验证样本选择的基础上实现冬小麦面积的自动提取,并以河北省安平县及周边地区2013-2014年度冬小麦面积提取为例,采用GF-1/WFV(wide field view)数据进行了算法实现。算法的主要思路是在时序影像基础上,通过冬小麦NDVI加权指数影像的构建,扩大冬小麦地类与其他地类的差异,结合自适应的阈值获取方法,区分冬小麦地类,获取冬小麦作物面积。算法包括冬小麦时间序列影像的获取、基于网格的样本点设置、构建冬小麦 NDVI 加权指数影像、迭代确定冬小麦NDVI加权指数提取阈值、精度验证这5个部分。影像的获取根据冬小麦的生长时间确定,保证每月1景GF-1/WFV无云影像,并进行预处理及NDVI计算;同时将研究区划分为一定数量的网格,每个网格再等分为2×2个子网格,根据目视解译、专家知识、实地调查等方法,确定左上网格中心点及右下网格中心点的地物类型。统计该期所有左上网格点冬小麦及其他地物的NDVI均值,冬小麦NDVI大于其他地物的将该期影像的权值设置为1,否则设置为?1,将所有时相NDVI影像进行加权平均,即可获取冬小麦NDVI加权指数影像。获取冬小麦NDVI加权指数影像后,还需设置合适的阈值提取冬小麦。该文选用右下网格点目视解译分类结果作为阈值提取依据,具体方法是将冬小麦指数从小到大按照一定间隔划分,作为冬小麦 NDVI 加权指数提取阈值,将各阈值二值法运用,与右下网格点的冬小麦提取的目视解译结果对比,精度最高的就是最优冬小麦 NDVI 加权指数分割阈值。在所有网格中,以初始识别获取的冬小麦面积为准,等概率选择10个样方作为精度验证样方进行验证。精度验证结果表明分类总体精度达到94.4%,Kappa系数达0.88。该文通过构建冬小麦NDVI加权指数,将比较复杂的多个参数转换为一个参数,并且农学意义明确,相比传统的NDVI时序影像进行冬小麦面积的提取,具有自动化程度高、面积提取精度高、分类结果稳定的特点,已经在全国农作物面积遥感监测业务中进行了应用。 相似文献
9.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算 总被引:1,自引:4,他引:1
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。 相似文献
10.
11.
12.
秸秆焚烧过火区面积是秸秆焚烧影响评估的重要参数之一。该文针对卫星遥感秸秆焚烧过火面积估算中因作物秸秆焚烧后农田翻耕速度较快,对卫星观测频次要求高,且由于下垫面多种类型混杂,对卫星空间分辨率要求高的双重问题,提出利用风云三号气象卫星数据高观测频次和高分一号数据高空间分辨率特点,基于卫星遥感图像光谱分析和混合像元分解技术的多源卫星遥感农作物秸秆焚烧过火区面积估算方法。使用该方法对河南省驻马店市平舆县和正阳县进行了秸秆焚烧面积估算,并采用高分一号数据进行了验证,平均精度达到94%以上,说明该文提出的方法既解决了秸秆焚烧过火区监测的高时效需求问题,又保证了过火区面积估算精度。 相似文献
13.
基于多时相GF-6遥感影像的水稻种植面积提取 总被引:1,自引:1,他引:1
为获取高精度水稻种植面积提取方法和分析红边信息在作物识别能力上的优越性,该研究选取辽宁省盘锦市为研究区域,利用2020年水稻关键物候期的多时相高分6号宽幅相机(GF-6 WFV)遥感影像,构建归一化植被指数(Normalized Difference Vegetation Index,NDVI)、归一化水体指数(Normalized Difference Water Index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)和归一化差异红边1指数(Normalized Difference Red-Edge 1 Index,NDRE1),根据各地物类型进行时序分析,在获得水稻面积粗提取结果的基础上对其他地类进行掩膜,准确提取水稻种植面积。对2020年盘锦市水稻提取结果进行精度分析,结果表明,基于实测数据进行精度验证的总体精度为94.44%,基于目视解译数据进行精度验证的总体精度和Kappa系数分别为95.60%和0.91。根据目视解译数据对有无红边波段参与的水稻提取结果进行对比分析可知,红边波段的引入使总体分类精度、水稻制图精度和Kappa系数分别提高了3.20个百分点、6.00个百分点和0.06。该研究证明红边波段可以有效降低作物的错分、漏分情况,对水稻精准估产和丰富农作物遥感监测方法具有重要作用,显示出国产红边卫星数据在作物分类、面积提取方面具有巨大应用潜力。 相似文献
14.
基于GF-1/WFV数据的冬小麦条锈病遥感监测 总被引:2,自引:2,他引:2
条锈病是冬小麦常见病害,利用遥感影像对条锈病病害区域进行准确监测具有重要意义。该文利用GF-1/WFV影像,结合条锈病地面光谱数据分析,采用冬小麦条锈病遥感监测指数(wheat stripe rust index,WSRI)对河南西华县冬小麦条锈病发病范围进行了估测。首先,利用冬小麦NDVI加权指数(weighted NDVI index,WNDVI)获取冬小麦种植区域。其次,利用影像4个波段反射率之和提取不同冬小麦品种的分布范围,值较高的为条锈病高抗品种(郑麦系列),较低的则是条锈病易感品种(矮壮系列)。再次,构建冬小麦条锈病指数(wheat stripe rust index,WSRI),结合地面实地调查的条锈病分布数据,通过设定合理的WSRI指数划分阈值,提取条锈病染病区域并进行精度验证。结果表明,研究区内小麦条锈病空间分布识别的总体精度在84.0%以上,具有区域监测应用的潜力。该方法简单,可操作性强,表明宽波段GF-1影像结合WSRI指数的技术,是一种比较可行的小麦条锈病遥感监测方案。 相似文献
15.
为确保灌区水文过程与营养物流失过程模拟更接近于真实过程,进一步提高模拟精度,该研究综合考虑作物种植结构空间位置的准确性与作物种植结构数据的精度2个因素,利用GF-1 16 m遥感影像对耕地作物进行分类提取,并对土地利用类型图进行修正,从而分析比较作物种植结构空间位置的订正与作物种植结构数据精度的提高分别对SWAT(Soil and Water Assessment Tool)模型模拟精度的影响。结果表明:作物种植结构空间位置的订正或作物种植结构数据精度的提高均可提高径流和硝态氮模拟效率。经作物种植结构空间位置的订正和数据精度的提高可使得模型在径流模拟中,率定期和验证期决定系数R2分别达到了0.76和0.82,效率系数分别达到了0.69和0.79,相对误差分别降低至3.50%和-0.30%;在硝态氮模拟中,率定期和验证期决定系数R2分别达到了0.70和0.63,效率系数分别达到了0.55和0.53,相对误差分别降低至10.06%和6.42%。综合订正作物种植结构空间位置和提高作物种植结构数据精度可有效提高SWAT模型在灌区的模拟精度。 相似文献
16.
利用遥感技术及时、准确地掌握主要粮食作物种植面积,对相关部门制定农业生产和农村政策具有重要的意义。针对目前商业软件(ERDAS、ENVI等)存在业务性不强、数据组织管理无序、难以操作等问题,设计并实现了一套适合粮食作物种植面积遥感测量业务软件系统。该系统以遥感技术和空间抽样技术为支撑,采用3层软件架构模式,实现了遥感图像处理、粮食作物面积测量、海量遥感数据管理等功能,具有业务流程明确、数据管理有效、升级快速便捷的特点,能够很好地满足业务化运行需要。通过2009年北京市冬小麦面积遥感测量业务运行,证明该系统能够简单、快速准确地测量出冬小麦的种植面积,达到满足业务化测量精度和时效的要求。 相似文献
17.
针对仅利用单一遥感影像数据获取农作物信息精度不够问题,该文选择冬小麦主产地河南省兰考县乡镇作为研究区,以2017年多时相中分辨率Landsat8 OLI影像和Google earth上下载的亚米级高分影像为遥感数据源,结合光谱差异和农田地块信息实现冬小麦的精确提取。该算法首先构建不同时相决策树模型,分别实现2个时相的冬小麦区域初步提取;其次通过将对高分影像多尺度分割产生的地块信息分别与2个时相冬小麦播种面积初步区域相互叠加,完成地块单元控制下的冬小麦播种面积分地块统计,并通过设定不同统计阈值,分析落在每一地块单元下的冬小麦区域,生成基于地块单元的冬小麦播种面积分布图;最后通过多时相交叉验证,获取最终冬小麦播种区域。结果表明:该方法能更加准确提取冬小麦种植面积,保持较低的误判率(1.3%)水平下,得到较高的提取正确率(95.9%),较通过对比单一Google earth高分辨率影像获取冬小麦精度(85.6%)高,该研究对通过融合多源多时相影像数据获取农作物提供参考。 相似文献