首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
苗间锄草机器人信息获取方法的研究   总被引:5,自引:4,他引:1  
该文以移栽类蔬菜用苗间锄草机器人信息获取方法为研究对象,根据锄草机器人对实时性的要求,研究了以最小耗时和最大包容准确度为目标的信息获取方法。在RGB空间内利用植物G分量值的优势去除土壤等背景干扰,根据机器人前进方向上蔬菜苗株次序排列及苗株与杂草在形态特征和分布规律上的差异,设计了图像行像素直方图的参数组合方法,确定了苗株中心沿机器人前进方向的一维坐标。试验表明,锄草机器人前进速度在0~3km/h时,苗株一维坐标检测平均误差为±5mm,算法平均耗时小于20ms。该方法能够满足系统实时检测的技术要求,为锄草机器人田间作业奠定了基础。  相似文献   

2.
为提高株间锄草刀定位精度、降低机器视觉受外界因素的影响,该文提出里程信息融合机器视觉的方法对锄刀定位数据进行优化。通过分析定位数据校正和视觉滞后补偿的原理,设计了模糊逻辑校正器,通过模糊规则将模糊校正系统简化为单输入单输出形式,采用Mamdani模糊推理方法获得视觉数据可信度决策表,将可信度作为加权值生成校正锄刀定位数据,并提出采用实时里程信息作为视觉滞后补偿量的方法,给出补偿公式。田间刀苗距优化静态试验表明,视觉刀苗距误差为9.88 mm,优化后刀苗距误差为6.06 mm;动态试验表明,视觉数据出错率为4.8%~6.6%,刀苗距变化曲线显示,优化方法可有效过滤视觉坏点或不稳定的数据点,将视觉滞后纳入衡量标准,不同车速下动态优化后刀苗距平均误差为5.30~7.08 mm,较优化前降低了25%左右。研究结果表明,锄草刀定位数据优化方法可有效提高机器视觉静态和动态获取刀苗距的精度。该研究为提高株间锄草技术的锄刀定位精度提供了参考。  相似文献   

3.
基于机器视觉的株间机械除草装置的作物识别与定位方法   总被引:4,自引:11,他引:4  
株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的作物,棉苗正确识别率为95.8%,生菜苗正确识别率为100%,该方法为株间机械除草装置避苗和除草自动控制提供了基本条件.  相似文献   

4.
针对目前温室生菜株间自动化除草装置缺乏问题,该研究设计了基于凸轮摆杆机构的轻量化电动株间除草装置,采用机器视觉对生菜苗进行识别定位,运动控制系统根据车速和保护半径区域实时计算凸轮各工作段转速,控制一对除草铲摆动避苗除草。以除草装置前进速度、推程段凸轮转速、除草铲入土深度作为试验因素,以伤苗率、除草率和株间除草单体避苗功耗为试验指标,采用响应面分析法,进行三因素三水平田间试验,分析各因素相互作用对作业性能指标的影响。试验结果表明,除草铲入土深度对除草率影响最显著(P<0.01),前进速度对伤苗率影响最显著(P<0.01),推程段凸轮转速和除草铲入土深度对株间除草单体避苗功耗影响最显著(P<0.01)。在最优组合为前进速度0.56 m/s,推程段凸轮转速242 r/min,除草铲入土深度12.8 mm时,实际作业除草率为93.22%,伤苗率2.87%,单体避苗平均功耗 55.2 W,各项性能指标基本满足温室散叶生菜株间低伤苗除草作业需求。  相似文献   

5.
除草机器人机械臂的逆向求解与控制   总被引:9,自引:7,他引:2  
设计了一种基于机器视觉导航和杂草识别的除草机器人模型,该机器人能沿作物行间自主行走并能准确地识别和“清除”杂草。设计了除草机器人的机械臂除草执行系统,求取了机械臂运动学逆解,用VC++开发了控制程序。试验显示,图像处理算法所需时间少,能够适应户外自然光线在一定范围的变化,机械臂能够平稳动作并精确定位杂草目标。  相似文献   

6.
农业机器人视觉导航的预测跟踪控制方法研究   总被引:5,自引:6,他引:5  
农用拖拉机的视觉导航技术可以帮助人员远离某些高温、高湿以及有毒害的作业环境,提高作业的自动化智能化程度,还能实现精确定点作业以促进农业可持续发展等。该文首先分析了轮式拖拉机跟踪引导路径的行为特点,建立起相应的非线性随机数学模型。而后,基于卡尔曼滤波的思想融合了各传感器的观测值给出预测跟踪控制方法。避免了视觉系统为主的计算耗时导致状态反馈滞后而产生的不利影响,改善了导航控制的鲁棒性和精度。仿真和初步试验结果都表明了此方法的有效性。  相似文献   

7.
基于知识的视觉导航农业机器人行走路径识别   总被引:7,自引:5,他引:7  
目前的农业生产方式引起了环境污染、生态恶化等诸多问题,研制具有精确作业能力的视觉导航农业机器人因而被较多关注。针对导航视觉系统采集的农田非结构化自然环境彩色图像,探讨了用于行走路径识别的适宜的彩色特征,并结合农田作业时农业机器人行走路径的特点,运用路径知识启发机制识别出行走路径。与传统的阈值分割算法的对比处理试验表明,此识别算法可以明显地改善路径识别效果。  相似文献   

8.
智能喷雾机器人的喷雾性能试验评价   总被引:1,自引:1,他引:0  
摘要:该文对智能喷雾机器人温室对靶喷雾性能进行了试验评价。喷雾机器人采用视觉传感器采集植株和病害图像,提供病灶定位和病情信息。3自由度直角坐标系施药机械臂驱动变量喷嘴进行施药,根据病灶位置和病害程度选择性开闭喷嘴。试验对喷杆定位精度定量和药液节省率进行了试验分析。温室对靶施药机器人在3种病情等级下进行了试验,与传统施药方式相比,药液节省率达到60%以上,实现了对黄瓜等篱笆型植物精准施药。  相似文献   

9.
温室精准对靶喷雾机器人研制   总被引:3,自引:3,他引:0  
对靶喷雾是目前农业信息技术领域的一个研究热点。根据靶标的尺度不同,对靶喷雾有不同的层次。对作物植株单体甚至是单个叶片内病害区域进行对靶喷雾是当前的一个难点。该文研发了一套温室内移动对靶喷雾系统,实现了对黄瓜等篱架型植物以0.2 m×0.2 m区域为靶标的精准喷雾。系统主要由移动平台、机械臂、病害信息诊断和变量喷嘴4部分组成。移动平台采用高架导轨安装模式,可根据黄瓜垄地位置停车。4自由度的直角坐标系机械臂吊装在平台下,与喷杆配合每垄可实现1.2 m×1.2 m区域的作业。病害信息诊断以图像分析为主要手段,构建了双目视觉图像采集系统,将1.2 m×1.2 m的采集区域划分为36个0.2 m×0.2 m的单元,根据分析结果确定每个单元的病害等级。1.2 m长的喷杆上均布6个喷嘴,每个喷嘴每次对应一个区域单元,并根据病害等级程度控制喷嘴的喷雾时间来实现变量喷雾。  相似文献   

10.
用于草莓收获机器人的果实定位和果柄检测方法   总被引:3,自引:2,他引:3  
介绍了一种用于草莓收获机器人的果实定位和果柄检测方法。利用基于OHTA颜色空间的图像分割方法从背景中分割草莓通过计算二值化草莓blob的惯性主轴来判断草莓的姿态,根据草莓的成熟度实现了果实的选择性采摘。试验证明这种方法的平均判别速度为1 s,果柄误判率为7%,在采摘过程中仅对5%的果实造成损伤,满足草莓机器人的收获速度和精度要求。  相似文献   

11.
基于爪齿余摆运动的株间机械除草装置研制与试验   总被引:3,自引:7,他引:3  
为了实现作物株间区域精确机械除草,设计了一种利用除草爪齿余摆运动原理的株间机械除草装置,研究了装置的除草和避苗工作原理,建立了相应数学模型并分析了除草爪齿余摆运动的参数对除草效果的影响,获得了合理的工作参数。在试验平台上进行了基于爪齿余摆运动的株间机械除草装置避苗试验研究,试验结果表明,基于爪齿余摆运动的株间机械除草装置除草爪齿避苗和除草切换控制快速可靠,室内试验的伤苗率小于8%;能够满足株距20cm及以上栽种的作物株间除草要求,可以保证每个株间区域均有除草爪齿进入实施除草;除草装置的前进速度不影响进入株间区域的除草爪齿数量,但前进速度的增加会导致伤苗率增大;进入株间区域的除草爪齿数量与作物栽种株距均匀性无关,仅与作物栽种的株距有关。该文为爪齿余摆株间除草装置精准控制提供依据。  相似文献   

12.
基于余摆运动的株间机械除草爪齿避苗控制算法   总被引:2,自引:3,他引:2  
为准确控制以余摆运动为原理的株间机械除草装置的除草爪齿避让作物,提出了基于余摆运动的株间机械除草爪齿避苗控制算法,介绍了爪齿余摆运动株间机械除草爪齿避苗控制算法的基本原理,根据余摆线运动特点推导出了除草爪齿避苗判断表达式,并设计了除草爪齿的旋转角速度控制器和除草爪齿避苗控制器。利用MATLAB对除草爪齿避苗控制算法进行了仿真分析,结果表明该算法能准确控制除草爪齿避让作物,前进速度对株间区域除草覆盖率影响小,但会受除草爪齿爪尖旋转半径影响,除草爪齿旋转半径越大,进入株间区域的除草爪齿根数越少,株间区域除草覆盖率降低。在试验平台上进行了验证试验,平均每个株间区域进入的爪齿根数和株间区域除草覆盖率与仿真分析结果一致。  相似文献   

13.
基于LabVIEW的八爪式机械株间除草装置控制系统   总被引:9,自引:9,他引:0  
基于LabVIEW设计了八爪式机械株间除草装置的控制系统,采用除草铲齿与作物之间的距离作为阈值实现株间除草控制,对八爪株间除草装置控制进行了试验验证。通过对试验数据的分析,得到八爪除草装置在控制系统的作用下能够满足株间除草和绕苗的要求,使平均株距在30 cm以上的作物的伤苗率控制在10%以内,株间间隙覆盖率达到50%以上,并得出伤苗原因与台车位移误差、电磁装置吸合时间、铲齿初始位置有关。  相似文献   

14.
苗间除草部件入土深度PID自动控制系统设计与台架试验   总被引:3,自引:3,他引:3  
除草部件入土深度(松土深度)对苗间机械除草装置的作业性能有较大影响。为提高大豆苗间机械除草装置除草部件入土深度的稳定控制、降低伤苗率和埋苗率,该文提出了基于超声波测距的苗间机械除草部件入土深度控制方法。在梳齿式苗间机械除草装置研究基础上,设计了除草部件入土深度控制系统。建立了除草部件入土深度调节液压控制系统的数学模型,并对建立的传递函数在Matlab/Simulink中进行了仿真和PID校正。仿真结果表明:该系统采用PID控制算法对期望松土深度值进行跟踪调节,其稳态响应时间为0.48 s,静差为0.06~0.09 mm。在室内苗间除草台架上进行了超声测距动态试验与松土深度控制试验。超声测距试验表明:应用HC-SR04型超声波模块并结合设计的仿形台对地表进行动态测距不再受地表苗、草等影响,在0.278、0.556和0.833 m/s 3种行进速度下,针对各个样本点的位置与人工测量相比,二者平均对照误差分别为:4.95、5.36和5.90 mm,最大对照误差分别为:6.6、7.4和8.3 mm。除草部件入土深度控制台架试验表明:控制系统能够实现苗间机械除草作业松土深度的稳定控制,在土槽行进速度0.278 m/s时,松土深度可稳定控制在(30±8)mm范围内,满足苗间除草的深度控制要求。该研究为解决苗间除草部件松土深度稳定控制问题提供新思路和借鉴。  相似文献   

15.
为提高除草剂的有效利用率、降低环境污染,该文研制了一种靶向灭草机器人,建立机器人的药液喷洒动力学模型是提高对靶施药精度的关键。在综合考虑多种影响因素前提下,采用空气动力学原理建立了液滴在喷洒过程中的动力学模型,并推导出液滴的落地点公式;在此基础上通过计算机数值模拟得出了液滴群的落地覆盖区域,同时分析了液滴阻力特性及各工作参数对运动过程的影响;在室内无风条件下,应用高速摄像技术进行了喷洒试验,将液滴群的实际落地覆盖区域与理论覆盖区域比对,相对误差为8%~13%,同时采用吸水纸称质量法分析了药液有效覆盖区域的沉积量分布特性。研究结果表明:借由药液喷洒动力学模型得出的理论药液覆盖区域与试验结果具有一定的吻合性,验证了模型的适用性。该研究可为搭建相关靶向喷洒系统提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号