首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
目的 鞋印是刑事侦查的重要物证之一,如何对积累的大量鞋印花纹图像进行自动归类管理是刑事技术迫切需要解决的问题之一。与其他类图像不同,鞋印花纹图像具有种类多但数目未知、同类花纹分布不均匀且同类花纹数目少的特点。基于鞋印花纹图像的这些特点,用目前典型的聚类算法对鞋印花纹图像集进行聚类,并不能取得很好的效果。在对鞋印花纹图像进行分析的基础上,提出一种K步稳定的鞋印花纹图像自动聚类算法。方法 对已标记的鞋印花纹图像进行统计发现,各类鞋印花纹之间在特征空间上存在互不相交的区域(本文称为隔离带)。算法的核心思想是寻找各类鞋印花纹之间的隔离带,来将各类分开。过程为:以单调递增或递减的方式调整特征空间中判定两点为一类的阈值,得到数据集的多次划分;若在连续K次划分的过程中,某一类的成员不发生变化,则说明这K次调整是在隔离带中进行的,即聚出一类,并从数据集中删除已标记的数据;选择下一个阈值对剩余的数据集进行划分,输出K步不变的类;依此类推,直到剩余数据集为空,聚类完成。结果 在两类公开测试数据集和实际鞋印花纹数据集上进行实验,本文算法的主要性能指标都超过典型算法,其中在包含5792枚实际鞋印花纹数据集上的聚类准确率和F-Measure值分别达到了99.68%和95.99%。结论 针对鞋印花纹图像特点,提出了一种通过寻找各类之间的隔离带进行自动聚类的算法,并在实际应用中取得了很好的效果。且算法性能受参数的变化以及类的形状影响较小。本文算法同样适用于具有类似特点的其他数据集的自动聚类。  相似文献   

2.
为了降低储粮害虫特征空间的维数,并去除粮虫特征之间的信息冗余,需要对特征选择后的特征进行压缩处理。运用基于总体类内离散度矩阵K-L变换的特征压缩和基于距离可分性准则的特征压缩2种压缩方法,分别在累积贡献率为88.11%和99.13%的情况下,将粮虫的10维特征压缩为5维。应用压缩后的5维特征,由基于模糊决策的模糊分类器对粮仓中常见的9类粮虫进行识别分类,识别率分别为93.33%和95.56%。结果证实了基于距离可分性准则的特征压缩更适合于粮虫的特征压缩。  相似文献   

3.
为实现鲜烟叶采收部位的数字化识别,进一步提升采收鲜烟叶素质的一致性,利用轮廓纹理特征和线性判别分析(LDA)技术对不同着生部位鲜烟叶进行研究,首先,对采集的鲜烟叶图像进行图像缩放、灰度化、二值化等预处理操作,提取狭长度、矩形度等4个轮廓特征参数,进而提取鲜烟叶图像的灰度共生矩阵(GLCM)特征,并通过LDA进行特征降维,之后利用K近邻算法(KNN)对鲜烟叶部位进行分类。结果表明,所提取未经降维处理的轮廓纹理特征在不同分类模型中的识别准确率均达到0.80以上,可有效反映鲜烟叶部位特征。相对于主成分分析(PCA)处理和未经降维处理,采用LDA降维处理的模型识别准确率最高。所构建的基于KNN算法的鲜烟叶部位识别模型,其精确率、召回率、F1分数、准确率均达到0.99,能够较好地识别鲜烟叶着生部位。  相似文献   

4.
刘连忠  张武  朱诚 《安徽农业科学》2012,40(26):12877-12879
[目的]介绍一种根据小麦病害图像的颜色特征进行病害识别的方法。[方法]首先对小麦叶部图像进行预处理,利用小波变换进行病害部位增强和去噪;然后基于病害部位的非绿特征进行图像分割,得到只包含病害像素的图像;对病害图像颜色进行统计,得到R、G、B分量的均值,并用相对于绿色分量的均值比作为颜色特征值;最后通过分析样本图像得到每种病害的特征值范围,利用颜色特征值对未知样本进行病害识别。[结果]采用该方法对小麦叶锈病、条锈病、白粉病进行识别,平均准确率达到98%。[结论]为小麦病害的诊断与诊治提供了理论依据。  相似文献   

5.
[目的]提出一种基于轮廓特征的目标识别方法对猪的行为进行分类和识别。[方法]先采用背景减除法提取运动目标的轮廓,并利用HSV彩色空间模型的色度和饱和度信息消除阴影对目标检测的影响,再运用其轮廓的边界矩特征构建一个轮廓特征向量模型,分析比较待测行为姿态轮廓特征向量与每类标准模板之间的欧氏距离,对猪的4种行为即正常行走、低头站立、抬头站立和躺卧进行分类。[结果]该方法能够有效对猪的4种行为进行分类,准确率达80%以上。[结论]该项研究对养殖场中猪的精神状态和异常行为识别进行了有益的探索。  相似文献   

6.
目的在树种图像识别时会存在类内差异、类间相似的现象,因此导致基于单一人工特征的传统识别方法难以达到理想的识别效果。针对这一问题,本文基于卷积神经网络,提出一种将图像深层特征和人工特征融合的树种图像深度学习识别方法。方法将6类常见树种(樟子松、山杨、白桦、落叶松、雪松和白皮松)图像作为研究对象。首先,通过裁剪、水平翻转、旋转等操作,对原始树种图像集进行数量扩增,并划分为训练集和测试集,建立本次树种识别实验的图像库;其次,将本文模型设计为3路并列网络,分别选取RGB图像、HSV图像、LBP-HOG图像,从图像像素、色彩、纹理和形状的角度出发,对上述树种图像进行识别。一方面构建适合本文实验的CNN深度学习模型,将训练集样本中RGB图像和相对应的HSV图像作为第1路和第2路CNN模型的输入,进行树种图像深层特征提取;另一方面,对训练集进行高斯滤波去噪和人工提取LBP-HOG特征来代表纹理、形状特征,作为第3路CNN模型的输入。然后,将3路模型各自得到的特征在最后一层全连接层进行汇总,作为softmax分类器的最终分类依据。最后,为检验本文方法的可行性,利用上述特征和训练集对SVM分类器、BP神经网络以及现有的深度学习LeNet-5模型、VGG-16模型进行训练,对测试集进行识别验证,来比较最终的识别效果。结果本文提出的多特征融合CNN模型,训练准确率为96.13%,平均验证识别准确率为91.70%。基于单路训练的CNN树种识别模型中,RGB图像作为训练输入值时,识别率最高,为75.21%,HSV特征识别率次之,LBP-HOG特征最差;多特征融合情况下,基于RGB + H通道 + LBP条件下,验证识别准确率最高,达到93.50%;RGB + HSV + LBP + HOG组合识别率不增反降,识别率为89.50%。同样的特征或特征组合条件下,SVM、BP神经网络、LeNet-5模型和VGG-16模型所获得的识别率均低于本文模型的识别率。结论基于RGB + H通道 + LBP特征融合条件下,运用3路并列CNN模型,对本文6类树种图像进行识别的识别率最高,克服了在单一特征情况下识别率低的问题,识别效果也非常理想,实现了从大量不同树种图像中自动识别出具体类别。   相似文献   

7.
谈蓉蓉 《安徽农业科学》2010,38(26):14756-14757
提出了利用支持向量机(SVM)分类的方法对采集图像进行识别。采用计算机图像处理技术针对棉花苗期杂草图像进行分割,提取棉花与杂草的形状特征参数;选取最有效的特征数据组合输入SVM进行分类学习训练,实现杂草的有效识别。结果表明,使用该方法获得的图像识别效率较高,在同等条件下,速度优于人工神经网络。  相似文献   

8.
针对原木端面存在相交圆、阴影等导致原木轮廓难以获得完整的圆轮廓问题,提出了基于圆弧的原木轮廓识别方法.首先分析了圆弧在数字化图像中的性质,从各种边缘线条中区分出圆弧边缘;其次,定义验证模型,以判断识别结果是否为合格圆.结果表明,该方法可以从大量干扰的边缘中找到轮廓,并利用部分轮廓边缘识别原木端面.  相似文献   

9.
计算机辅助小麦图像识别应用中颜色特征基本参量的表达   总被引:7,自引:0,他引:7  
在计算机辅助图像处理中,运用颜色特征进行图像的分类和识别是简便而有效的一种方法。然而,颜色特征的表达和提取是否准确、合理直接决定着分类和识别的可靠性。本文在重点分析RGB、HIS和L*a*b*三种常用颜色模式基本参量含义及相互间关系的基础上,结合小麦图像自身的特点,通过对30幅小麦图像在三种颜色模式下的9个基本参量进行主成分分析,建立了应用于小麦图像识别的颜色特征基本参量表达式,并对这三种颜色模式的9个基本参量进行了分类,提出了确定而有意义的表征小麦颜色特征的主成分指标。结果如下:基于第一主成分的分类指标综合表达出小麦冠层的亮绿色特点,分类结果具有较高的准确性和可靠性;第二主成分指标主要表达小麦冠层黄绿颜色变化的特点,能够形成连续的量化指标空间。第三主成分指标主要表达小麦正常绿色的情况,在图像获取亮度差异较小时可以进行小麦正常绿色值的评价。  相似文献   

10.
针对边坡表面状态发生的变化检测,提出了一种新的智能检测方法。人工设置两类标识体,一类为定位标识,一类为观测标识。用图像识别方法对标识体的质心进行提取和计算,通过一定的判别准则来判断边坡的表面位移状况。具体处理方法为先将图像转换到HIS空间,根据设定的颜色提取感兴趣区域。进行图像边缘二值化处理,计算出感兴趣区域的中心坐标值。实验证明,该方法具有鲁棒性好、检测准确率高等特点。  相似文献   

11.
植物花粉图像识别系统研究--Ⅰ. 图象处理及特征提取   总被引:2,自引:0,他引:2  
本文论述了植物花粉图象识别系统设计中的图象处理及特征提取等问题。该系统设计采用VisualC 6.0 编程工具,在Windows95平台上实现了花粉图象的采集、变换、增强、边缘检测和分割等,并可提取花粉图象的轮廓、结构和纹理等识别特征,为花粉图象识别系统的核心部门——分类器的设计奠定了基础。  相似文献   

12.
提出一种利用隐马尔可夫模型建立目标特征匹配库来识别图像中局部遮挡目标的新方法。该方法首先通过SIFT算法提取目标SIFT特征,然后采用隐马尔可夫模型对目标所有的SIFT特征进行训练,得到目标SIFT特征对应的模型输出概率范围,将该概率范围作为目标特征匹配库。在对图像中的目标进行识别时,利用目标特征匹配库可以把目标特征从图像所有特征中识别出来,即使目标遮挡比例为60%时,该方法仍能识别出目标。实验结果表明,新方法可以精准地识别出图像中被遮挡目标,能够很好地解决遮挡情况下的目标识别问题。与现有局部遮挡目标识别算法相比,新方法所取得的目标识别率均有所提高。  相似文献   

13.
依据微藻个体及成像的特点,给出了矩形度、能量、熵、惯性矩、相关度和局部平稳度等形状和纹理参数作为识别的特征值,并利用仿生模式识别算法对海洋微藻实现自动识别。利用文中给出的方法,对在海域中随机采集的不同形状、大小、纹理的微藻混合图像进行识别实验,结果显示,该方法能够准确识别出图像中不同种及同种不同状态下的藻体,说明该方法在微藻图像识别中是有效和可行的。  相似文献   

14.
基于叶片外形特征的植物识别研究   总被引:10,自引:0,他引:10  
提出了一种基于植物叶片形状特征的方法对叶片进行识别,首先对叶片进行预处理,其中包括滤波和阈值分割,然后提取叶片的相对特征参数,得到了8个特征参数。使用BP神经网络对现有的几种叶片进行分类,选择隐含层数、调节学习效率、动量因子等参数。在VC 6.0环境下循环计算、调整权值、阈值,最终识别成功,并达到了87.5%的平均识别率。  相似文献   

15.
针对单依靠颜色或形状将采摘期玫瑰花从图像中分割出来难度较大的问题,研究一种基于神经网络的食用玫瑰花图像识别算法。将处于采摘期的玫瑰花正面图像作为识别对象,先提取HSI色彩空间下的S分量,用最大类间方差法(Otsu)进行分割;再提取目标图像灰度共生矩阵下的纹理特征,选取区分度高的纹理特征,结合BP神经网络,建立识别模型。试验结果表明:该方法正确识别率85%,识别率主要受试验样本开放标准选取的影响,而受光照影响不敏感,是一种较好的识别方法。  相似文献   

16.
基于图像处理技术,对4种苜蓿叶部病害进行识别研究。利用结合K中值聚类算法和线性判别分析的分割方法对病斑图像作分割,获得了较好的分割效果。结果表明:该分割方法在由4种病害图像数据集整合成的汇总图像数据集上综合得分的平均值和中值分别为0.877 1和0.899 7;召回率的平均值和中值分别为0.829 4和0.851 4;准确率的平均值和中值分别为0.924 9和0.942 4。进一步提取病斑图像的颜色特征、形状特征和纹理特征共计129个,利用朴素贝叶斯方法和线性判别分析方法建立病害识别模型,并结合顺序前向选择方法实现特征筛选,分别获得最优特征子集;同时利用这2个最优特征子集,结合支持向量机(Support vector machine,SVM)建立病害识别模型。比较各模型的识别效果,发现利用所建线性判别分析模型下的最优特征子集,结合SVM建立的病害识别模型识别效果最好,训练集识别正确率为96.18%,测试集识别正确率为93.10%。由此可见,本研究所建基于图像处理技术的病害识别模型可用于识别上述4种苜蓿叶部病害,为苜蓿病害的诊断和鉴别提供了一定依据。  相似文献   

17.
语音识别系统中多种特征参数组合的抗噪性   总被引:2,自引:0,他引:2  
构建了基于连续隐马尔可夫模型(CHMM)的汉语数字串语音识别系统,为了提高系统在噪音环境下的鲁棒性,抑制平稳噪声及去除信道卷积噪声的影响,引入了动态参数,实验仿真表明采用MFCC参数及一阶、二阶差分及倒谱化明显提高了噪声环境下语音识别系统的识别性能。  相似文献   

18.
Based on the demisyllableas the recognition primitive(unit), in this paper, a 3-stage recognition structure is presented. It combines the pattern matching method based on speech production model with the feature rule method based on"knowledge", and permit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号