首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to evaluate profiles of serum concentrations of LH, pituitary content of LH and GnRH receptors, and hypothalamic content of GnRH in undernourished, ovariectomized ewes. In earlier studies, pulsatile secretion of LH diminished as duration of undernutrition progressed in prepubertal or adult ovariectomized ewes. Ewes having similar body condition scores (CS) of 5 to 9 (1 = extremely thin, 5 = moderate, 9 = obese) were fed maintenance or low-energy diets (100% and 60% of NRC requirements, respectively). Blood samples for analysis of LH were collected at 15-min intervals for 4 h at initiation of the project and immediately prior to slaughter. Serum concentrations of LH did not differ (P greater than .05) among groups at the initial sampling period. At slaughter, ewes with CS less than or equal to 2 (n = 7) had lost 26.8 kg (42% of initial weight). Ewes with CS greater than or equal to 3 (n = 12) had lost an average of 13.7 kg (18% of initial weight). Concentrations of LH in ewes with final CS greater than or equal to 3 was similar (P greater than .05) to that observed during the initial sampling period. However, release of LH was reduced (P less than .01) in ewes with CS less than or equal to 2 compared with ewes with CS greater than or equal to 3 (2.6 vs 9.5 and 3.2 vs 10.5 ng/ml for basal and mean concentrations, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The episodic release of luteinizing hormone (LH) and growth hormones (GH) was studied in three suckling regimens and two breeds of Spanish suckled cows. Parda de Montaña (PA) cows (n = 21) were assigned to once‐daily, twice‐daily or ad libitum (ADLIB) suckling. Pirenaica (PI) cows (n = 7) were used to evaluate the breed effect in twice‐daily suckling. Coccygeal blood samples were collected twice weekly during lactation to determine the interval from calving to first ovulation through peripheral progesterone. On day 32 ± 3 post‐partum, jugular blood samples were drawn at 15 min intervals during 8 h to analyse circulating LH and GH. The interval to first ovulation was greater in PA cows suckling ADLIB than in restricted suckling treatment (RESTR1), whereas in RESTR2 it did not differ from the other two treatments. There were no differences between PA and PI cows in the interval to first ovulation. RESTR1 cows showed a tendency to have shorter LH peak widths than ADLIB cows. PA cows showed a tendency to have longer LH peak widths than their PI counterparts. There were no differences across treatments or breeds in any of the GH measures of secretion. The LH release was more affected by breed than by suckling frequency, whereas that of GH was not influenced by any of these parameters. The variables that best allowed discrimination between ADLIB and restricted nursing systems were the interval to post‐partum first ovulation, LH peak number and the mean GH concentration.  相似文献   

4.
Plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were determined over a 24-h period using radioimmunoassay in sheep injected with corn oil (control) or various doses of zeranol or estradiol-17 beta. Injection of .333, 1 or 10 mg of zeranol caused dose-related increases (P less than .01) in plasma PRL (peak levels at 12 to 18 h) and LH (peak levels at 12 to 20 h) in ovariectomized ewes. Similarly, PRL and LH increased following doses of 33 or 100 microgram of estradiol. Before the LH surge, plasma LH levels were significantly depressed (4 to 8 h). Plasma FSH levels were significantly decreased 4 to 8 h after zeranol and estradiol injection. Slight surges of FSH were observed at times similar to those of LH, but the peak level was never greater than control levels. Injection of 1 mg of zeranol or 100 microgram of estradiol into wethers resulted in a 24-h pattern of PRL secretion not significantly different of LH concentration and significantly prolonged inhibition of FSH secretion. These results indicate similarities in the effects of zeranol and estradiol on anterior pituitary hormone secretion within groups of animals of the same sex or reproductive state. Differences in secretion and plasma concentrations of LH, FSH and PRL due to underlying sexual dimorphism are maintained and expressed even when animals are challenged with structurally different compounds of varying estrogenic potencies.  相似文献   

5.
Hypothalamic neurons that control the luteinizing hormone (LH) and growth hormone (GH) axes are localized in regions that also express neuropeptide Y (NPY). Increased hypothalamic expression of NPY due to diet restriction has been associated with suppressed secretion of LH and enhanced secretion of GH in numerous species. However, these physiological relationships have not been described in cattle. Thus, two studies were conducted to characterize these relationships using ovariectomized (Experiment 1) or ovariectomized estrogen-implanted (Experiment 2) cows. In Experiment 1, four well-nourished, ovariectomized cows received third cerebroventricular (TCV) injections of 50 and 500 micrograms of NPY in a split-plot design. Venous blood was collected at 10-min intervals from -4 hr (pre-injection control period) to +4 hr (postinjection treatment period) relative to TCV injection. NPY suppressed (P < or = 0.04) tonic secretion of LH irrespective of dose and tended to stimulate (P < or = 0.10) an increase in tonic secretion of GH. In Experiment 2, six ovariectomized cows that were well nourished and implanted with estradiol received TCV injections of 0, 50, or 500 micrograms of NPY in a replicated 3 x 3 Latin Square. Both doses of NPY suppressed (P < 0.06) mean concentration of LH relative to the 0-microgram dose. The 50-microgram dose of NPY tended (P < 0.10) to increase the amplitude of GH pulses. In conclusion, TCV injection of NPY suppressed pituitary secretion of LH and simultaneously tended to increase pituitary secretion of GH.  相似文献   

6.
We have previously produced human growth hormone (hGH) transgenic (TG) rats that show low circulating levels of both hGH and endogenous rat GH. Although body length of the TG rats is normal, they develop hyperphagia and severe obesity. The present study was undertaken to elucidate the causes of hyperphagia in the TG rats by focusing on temporal changes in plasma ghrelin levels and hypothalamic neuropeptide Y (NPY) contents. In both wild-type (WT) and TG rats, the highest value of plasma ghrelin levels was observed just before the dark phase, and thereafter plasma ghrelin levels were maintained higher in the TG than WT rats. Although NPY contents also showed the peak level just before the dark phase in both the arcuate (ARC) and paraventricular nuclei (PVN) of the hypothalamus, the values in the ARC, but not the PVN, of the TG rats was always lower than those of the WT rats, suggesting increased transport of NPY from the ARC to PVN in the TG rats. In addition, treatment with antagonists for Y1 and Y5 receptors for NPY reduced food intake much more effectively in the TG than WT rats. Intermittent treatment with recombinant hGH for a week significantly decreased food consumption, adipose tissue weight and plasma triglyceride concentrations in the TG rats. These results suggest that, in the TG rats, insufficiency in circulating GH stimulates the ghrelin-NPY system with a resultant increase in food intake.  相似文献   

7.
We studied luteinizing hormone (LH) pulsatility and episodic progesterone release of the corpus luteum (CL) on Day 11 and Day 21 in inseminated gilts and aimed to establish a relationship between these two hormones. Blood was collected at 15-min intervals for 12 hr on Days 11, 16 and 21 from a vena cava caudalis catheter. At euthanasia, eight gilts were pregnant and six gilts were not pregnant. Progesterone parameters (basal, mean, pulse frequency and pulse amplitude) did not differ between pregnant and non-pregnant gilts on Day 11, LH pulse frequency and amplitude tended to differ (p = .07 and p = .079). In pregnant gilts, basal and mean progesterone, progesterone pulse amplitude and frequency declined significantly from Day 11 to Day 21 (p < .05). A significant decline was also seen in the LH pulse amplitude from Day 11 to Day 21 (p < .05). None of the LH pulses was followed by a progesterone pulse within 1 hr on Day 21. On Day 11 and Day 21 appeared a synchronicity in the LH pulse pattern, as there were two or three LH pulses in 12 hr and these LH pulses appeared in the same time window. We conclude that on Day 11 and Day 21 of pregnancy in gilts, progesterone pulses do not follow an LH pulse within one hour. Further we demonstrated that the successful or not successful formation of a CL of pregnancy is independent of progesterone release on Day 11 after insemination. We confirmed the decline of progesterone from Day 11 to Day 21 in the vena cava caudalis and could demonstrate that this decline is partly due to lower progesterone pulse amplitude and frequency and that the decline occurs simultaneously with a decline in LH pulse amplitude.  相似文献   

8.
The site within the hypothalamic-pituitary axis at which cortisol acts to inhibit luteinizing hormone (LH) secretion was investigated in female pigs. Six ovariectomized, hypophysial stalk-transected (HST) gilts were given 1 microgram pulses of gonadotropin releasing-hormone (GnRH) iv every 45 min from day 0 to 12. On days 6-12, each of 3 gilts received either hydrocortisone acetate (HCA; 3.2 mg/kg body weight) or oil vehicle im at 12-hr intervals. Four ovariectomized, pituitary stalk-intact gilts served as controls and received HCA and pulses of 3.5% sodium citrate. Jugular blood was sampled daily and every 15 min for 5 hr on days 5 and 12. Treatment with HCA decreased serum LH concentrations and LH pulse frequency in stalk-intact animals. In contrast, serum LH concentrations, as well as the frequency and amplitude of LH pulses, were unaffected by HCA in HST gilts and were similar to those observed in oil-treated HST gilts. We suggest that chronically elevated concentrations of circulating cortisol inhibit LH secretion in pigs by acting at the level of the hypothalamus.  相似文献   

9.
Light horse mares, stallions, and geldings were used to 1) extend our observations on the thyrotropin releasing hormone (TRH) inhibition of GH secretion in response to physiologic stimuli and 2) test the hypothesis that stimulation of endogenous TRH would decrease the normal rate of GH secretion. In Exp. 1 and 2, pretreatment of mares with TRH (10 microg/kg BW) decreased (P < 0.001) the GH response to exercise and aspartate infusion. Time analysis in Exp. 3 indicated that the TRH inhibition lasted at least 60 min but was absent by 120 min. Administration of a single injection of TRH to stallions in Exp. 4 increased (P < 0.001) prolactin concentrations as expected but had no effect (P > 0.10) on GH concentrations. Similarly, 11 hourly injections of TRH administered to geldings in Exp. 5 did not alter (P > 0.10) GH concentrations either during the injections or for the next 14 h. In Exp. 5, it was noted that the prolactin and thyroid-stimulating hormone responses to TRH were great (P < 0.001) for the first injection, but subsequent injections had little to no stimulatory effect. Thus, Exp. 6 was designed to determine whether the inhibitory effect of TRH also waned after multiple injections. Geldings pretreated with five hourly injections of TRH had an exercise-induced GH response identical to that of control geldings, indicating that the inhibitory effect was absent after five TRH injections. Retrospective analysis of pooled, selected data from Exp. 4, 5, and 6 indicated that endogenous GH concentrations were in fact lower (P < 0.01) from 45 to 75 min after TRH injection but not thereafter. In Exp. 7, 6-n-propyl-2-thiouracil was fed to stallions to reduce thyroid activity and hence thyroid hormone feedback, potentially increasing endogenous TRH secretion. Treated stallions had decreased (P < 0.01) concentrations of thyroxine and elevated (P < 0.01) concentrations of thyroid-stimulating hormone by d 52 of feeding, but plasma concentrations of GH and prolactin were unaffected (P > 0.10). In contrast, the GH response to aspartate and the prolactin response to sulpiride were greater (P < 0.05) in treated stallions than in controls. In summary, TRH inhibited exercise- and aspartate-induced GH secretion. The duration of the inhibition was at least 1 h but less than 2 h, and it waned with multiple injections. There is likely a TRH inhibition of endogenous GH episodes as well. Reduced thyroid feedback on the hypothalamic-pituitary axis did not alter basal GH and prolactin secretion.  相似文献   

10.
The objective of this study was to examine the physiological characteristics of gonadotropes in the bovine (b) pars tuberalis as assessed by their ability to release Luteinizing Hormone (LH) in response to LH-Releasing Hormone (LHRH) and the intracellular distribution of LH isoforms. At slaughter, the stalk median eminence and associated pars tuberalis as well as the anterior pituitary gland were collected from each of 7 castrate males. Each stalk median eminence and pituitary gland was mid-sagitally sectioned and weighed. One half of each tissue was immediately frozen and subsequently homogenized to determine the intracellular distribution of bLH isoforms. Tissue extracts were desalted by flow dialysis against water and chromatofocused on pH 10.5-7.0 gradients. The remaining half of the pituitary was sliced with a Staddie-Riggs slicer. The pituitary slices and the remaining half of the stalk median eminence were perifused (0.1 ml/min) for a total of 360 min with effluent samples (1.0 ml) collected every 10 min. At 130 min tissues were stimulated with 5 x 10(-8) M LHRH. Concentrations of LH in the effluent samples and the fractions collected from chromatofocusing were determined by radioimmunoassay. The release of LH in response to LHRH was 43.9% and 47.0% above basal secretion for the pars tuberalis and pituitary, respectively, suggesting similar degrees of responsiveness. Pars tuberalis and pituitary extracts resolved into nine LH isoforms during chromatofocusing and were coded with letters beginning with the most basic form. No differences (P greater than .05) were observed in distribution of LH isoforms between the pars tuberalis and the pituitary gland.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The effect of intramuscular injection of naloxone, an antagonist of opiatergic actions, on serum concentrations of luteinizing hormone (LH) and ovarian activity in prepuberal ewes was investigated. Naloxone stimulated release of LH over a period of approximately 3 h. Subsequently, serum concentrations of LH did not differ from controls. Serum concentrations of estradiol-17β were elevated 8 h after treatment with naloxone. Ewe lambs did not ovulate. Endogenous opioid peptides may be involved in the regulation of secretion of LH in immature female sheep.  相似文献   

13.
Pituitary cells, from seven 160- to 170-day-old pigs, were studied in primary culture to determine the affects NPY on LH and GH secretion at the level of the pituitary. On day 4 of culture, medium was discarded, plates were rinsed twice with serum-free medium and cells were cultured in 1 ml fresh medium without serum and challenged individually with 10(-10), 10(-8) or 10(-6) M [Ala(15)]-h growth hormone-releasing factor-(1-29)NH(2) (GRF); 10(-9), 10(-8) or 10(-7) M GnRH or 10(-9), 10(-8), 10(-7) or 10(-6) M NPY individually or in combinations with 10(-9) or 10(-8) M GnRH or 10(-8) or 10(-6)M GRF. Cells were exposed to treatment for 4 h at which time medium was harvested and quantified for LH and GH. Basal LH secretion (control; n = 7 pituitaries) was 12 +/- 6 ng/well. Relative to control at 4 h, 10(-9), 10(-8) and 10(-7) M GnRH increased (P < 0.01) LH secretion by 169, 176 and 197%, respectively. Neuropeptide-Y did not alter (P > 0.4) basal LH secretion nor 10(-8) M GnRH-induced increase in LH secretion but 10(-9) M GnRH-stimulated LH secretion was reduced by NPY and was not different from control or GnRH alone. Basal GH secretion (control; n = 7 pituitaries) was 56 +/- 12 ng/well. Relative to control at 4 h, 10(-10), 10(-8) and 10(-6) M GRF increased GH secretion by 111%, 125% (P < 0.01) and 150% (P < 0.01), respectively. Only 10(-6) M (134%) and 10(-7) M (125%) NPY increased (P < 0.04) basal GH secretion. Addition of 10(-9), 10(-8) and 10(-7) M NPY in combination with 10(-8) M GRF suppressed (P < 0.04) GRF-stimulated GH secretion. However, 10(-9) M NPY enhanced (P < 0.06) the GH response to 10(-6) M GRF. These results demonstrate that NPY may directly modulate GH secretion at the level of the pituitary gland.  相似文献   

14.
15.
During the breeding season three experiments were conducted to evaluate the LH and testosterone (T) response of rams with male sexual orientation (e.g., male-oriented homosexual rams) to female sheep, to male sheep, and to treatment with LHRH. Male-oriented rams were identified through a series of sexual performance and sexual preference tests. Treatments included exposure to estrous females and to males for 15 min (Exp. 1) and exposure to estrous females and to males for 8 h (Exp. 2). Behavioral responses to stimulus animals were recorded. In Exp. 2 homosexual rams mounted males more than females (P less than .02) and exhibited more flehmen (P less than .002) and investigatory sniffs (P less than .01) when exposed to males vs females. Acts of aggression (butting the stimulus animals) did not differ by gender (P greater than .1). Flehmen and butting were positively correlated to LH secretion (P less than .02) of rams exposed to females but not to males. In Exp. 1, LH concentration determined every 15 min for 6 h was not affected (P greater than .05) by the gender of the stimulus animal. In Exp. 2, LH pulse frequency and concentration were similar (P greater than .05) by treatment. Lack of an LH response to sexual activity in homosexual rams was not a result of pituitary or gonadal insensitivity; within 1 h of a single injection of LHRH both LH and T increased (Exp. 3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
为了解不同月份生产的奶山羊泌乳期生殖激素与生长激素(GH)变化规律,随机抽取1、3、5和8月份分娩的奶山羊各10只,于分娩后0 d、7 d、1~8个月(每月的第15天)时采集母羊静脉血,分离血清,采用ELISA试剂盒检测母羊外周血中催乳素(PRL)、卵泡刺激素(FSH)、促黄体生成素(LH)、雌激素(E2)、孕酮(P4)和GH水平变化。结果显示:不同月份产羔母羊泌乳期间外周血中同一激素的动态变化趋势一致;在整个泌乳期间,1、3、5、8月份产羔母羊PRL、FSH、LH、P4、E2、GH含量的动态变化范围分别为446.17~221.72 ng·L-1、9.49~3.82 U·L-1、351.17~218.16 pg·mL-1、4086.83~3568.15 pmol·L-1,33.74~22.30 ng·L-1、30.36~11.57μg·L-1;不同月份产羔母羊外周血中GH水平在相同泌乳期均无显著差异(P>0.05),FSH水平在0 d有显著差异(P<0.05),P4水平在8个月时有显著差异(P<0.05),PRL水平在泌乳的0 d和2、3、8个月时有显著差异(P<0.05),LH水平在泌乳的0 d、2个月时有显著差异(P<0.05),E2水平在泌乳0 d、3个月和8个月时有显著差异(P<0.05)。结果表明:奶山羊产羔月份的不同对泌乳期间的激素水平有一定的影响,但动态变化趋势一致。  相似文献   

17.
The secretion of luteinizing hormone in ewes of Finnish Landrace during estrus. Acta vet. scand. 1979, 20, 216–223. — Luteinizing hormone immunoreactivity was measured in the venous plasma of four cycling Finnish Landrace sheep during the breeding season in connection with one synchronized estrus and the subsequent one. The ewes were slaughtered after the second estrus to establish the number of ovulations. To determine the LH concentration, a heterologous method of assay was used; this was based on the cross reaction of sheep plasma LH in a human LH radioimmunoassay system.As a result of the investigation, it was found that the peaks of LH were lower during the time of synchronized estrus and that these peaks occurred earlier than in the subsequent estrus. However, the differences were not statistically significant. On account of the limited material, the effect of the occurrence of the LH peak on the number of ovulations could not be established.  相似文献   

18.
A possible role for endogenous opioid peptides (EOP) in the control of luteinizing hormone (LH) and prolactin (PRL) secretion was studied by injecting the opioid antagonist, naloxone (NAL), into postpartum ewes and cows. Twelve ewes that lambed during the fall breeding season and nursed their lambs were injected iv with NAL (1.0 mg/kg) on d 10, 14, 18, 22 and 26 postpartum. Blood samples were collected at 15-min intervals from 2 h before to 2 h after NAL, and serum concentrations of LH and PRL were quantified. Following treatment on d 10, suckling lambs were removed from 6 of the 12 ewes, creating non-suckled (NS) and suckled (S) treatment groups for subsequent study on d 14 through 26. On d 10, NAL treatment increased LH (P less than .01) but concentrations of PRL were not affected. When averaged across d 14 to 26, post-NAL concentrations of LH were greater (P less than .001) than pre-NAL concentrations (6.5 +/- .7 vs 1.9 +/- .4 ng/ml). In contrast, concentrations of PRL in the post-NAL period were lower (P less than .001) than pre-NAL concentrations (129 +/- 15 vs 89 +/- 10 ng/ml). Compared with S ewes over d 14 to 26, those in the NS group had similar pre-NAL concentrations of LH, tendencies for higher (P less than .10) post-NAL concentrations of LH, lower (P less than .001) mean serum concentrations of PRL (pre- and post-NAL) and similar pre-NAL vs post-NAL differences in serum PRL. Six suckled beef cows on d 24 to 35 were injected iv with either saline or NAL (.5 mg/kg) in a replicated crossover design. Injections of NAL increased serum concentrations of LH (P less than .05), when averaged over all 12 injections in the six cows, but serum PRL was not changed. However, three of six cows did not respond to NAL with increases in serum LH. These non-responding cows were similar to the responding cows in their pre-injection concentrations of LH and PRL, but they tended (P = .10) to have higher serum concentrations of cortisol than responding cows.  相似文献   

19.
Intravenous infusion of growth hormone (GH)-releasing factor (GRF) sustains elevated serum GH for at least 5 days in young Holstein steers, but the effects of extended infusion of GRF on serum GH and nitrogen (N) metabolism have not been determined. Thirteen Dutch-Friesian bull calves (148 +/- 1.5 kg) were assigned randomly to receive daily either 0 or 3.6 mg GRF (hGRF1-44NH2; U-68420) in saline as a continuous infusion for 20 days. Calves were fed milk replacer twice daily while housed indoors in wooden-slatted floor box crates (metabolism cages). Nitrogen determinations were made on daily feed, feces, and urine samples which were pooled for days 9 to 14 of treatment. Concentrations of GH were quantified in blood samples collected at 20 min intervals for 8 hr on day 1, 10 and 20. The infusion of GRF increased baseline GH (P less than .07), the number of GH pulses (P less than .0001), the amplitude of the GH pulses (P less than .001), and area under the GH response curve (P less than .0002). Within GRF-infused calves baseline GH (P less than .0001) and area under the GH response curve (P less than .006) were greater on day 20 than on day 1 or 10 (day X treatment interaction, P less than .04). Area under the GH response curve was similar on each sampling day in saline-infused calves, but baseline GH was higher (P less than .03) on day 20 than either day 1 or 10. Infusion of GRF increased episodic GH secretion in spite of limited pulsatile activity in saline-infused calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Primary hypothyroidism in dogs is associated with increased release of growth hormone (GH). In search for an explanation we investigated the effect of intravenous administration of thyrotropin-releasing hormone (TRH, 10 microg/kg body weight) on GH release in 10 dogs with primary hypothyroidism and 6 healthy control dogs. The hypothyroid dogs had a medical history and physical changes compatible with hypothyroidism and were included in the study on the basis of the following criteria: plasma thyroxine concentration < 2 nmol/l and plasma thyrotropin (TSH) concentration > 1 microg/l. In addition, (99m)TcO(4)(-) uptake during thyroid scintigraphy was low or absent. TRH administration caused plasma TSH concentrations to rise significantly in the control dogs, but not in the hypothyroid dogs. In the dogs with primary hypothyroidism, the mean basal plasma GH concentration was relatively high (2.3+/-0.5 microg/l) and increased significantly (P=0.001) 10 and 20 min after injection of TRH (to 11.9+/-3.5 and 9.8+/-2.7 microg/l, respectively). In the control dogs, the mean basal plasma GH concentration was 1.3+/-0.1 microg/l and did not increase significantly after TRH administration. We conclude that, in contrast to healthy control dogs, primary hypothyroid dogs respond to TRH administration with a significant increase in the plasma GH concentration, possibly as a result of transdifferentiation of somatotropic pituitary cells to thyrosomatotropes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号