首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric oxide materials have offered a tantalizing potential for applications since the discovery of ferroelectric perovskites more than 50 years ago. Their switchable electric polarization is ideal for use in devices for memory storage and integrated microelectronics, but progress has long been hampered by difficulties in materials processing. Recent breakthroughs in the synthesis of complex oxides have brought the field to an entirely new level, in which complex artificial oxide structures can be realized with an atomic-level precision comparable to that well known for semiconductor heterostructures. Not only can the necessary high-quality ferroelectric films now be grown for new device capabilities, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxides, to create multifunctional materials and devices. Moreover, the shrinking of the relevant lengths to the nanoscale produces new physical phenomena. Real-space characterization and manipulation of the structure and properties at atomic scales involves new kinds of local probes and a key role for first-principles theory.  相似文献   

2.
Single-crystal epitaxial thin films of the isotropic metallic oxides Sr1-xCaxRuO(3) (0 相似文献   

3.
Recent discoveries of new magnetic materials may greatly improve the performance of devices containing such materials and may lead to entirely new applications. For example, boron-based temary compounds for permanent magnets make new compact motor designs practical; amorphous transformer materials show greatly reduced losses at high frequencies; and thin magnetic alloy films offer increased data storage densities. The major technical issues associated with the new magnetic materials are identified.  相似文献   

4.
Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes. The discotic liquid crystal hexa-peri-hexabenzocoronene was used in combination with a perylene dye to produce thin films with vertically segregated perylene and hexabenzocoronene, with large interfacial surface area. When incorporated into diode structures, these films show photovoltaic response with external quantum efficiencies of more than 34 percent near 490 nanometers. These efficiencies result from efficient photoinduced charge transfer between the hexabenzocoronene and perylene, as well as from effective transport of charges through vertically segregated perylene and hexabenzocoronene pi systems. This development demonstrates that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology.  相似文献   

5.
Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with theconcentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.  相似文献   

6.
Pulsed laser deposition (PLD) is a conceptually and experimentally simple yet highly versatile tool for thin-film and multilayer research. Its advantages for the film growth of oxides and other chemically complex materials include stoichiometric transfer, growth from an energetic beam, reactive deposition, and inherent simplicity for the growth of multilayered structures. With the use of PLD, artificially layered materials and metastable phases have been created and their properties varied by control of the layer thicknesses. In situ monitoring techniques have provided information about the role of energetic species in the formation of ultrahard phases and in the doping of semiconductors. Cluster-assembled nanocrystalline and composite films offer opportunities to control and produce new combinations of properties with PLD.  相似文献   

7.
The magnetic properties of surfaces are now being explored with electron spectroscopies that use electron spin polarization techniques. The increased activity in surface magnetic measurements with polarized electron beams is spurred by new scientific and technological challenges and is made feasible by recent advances in the technology of sources and detectors of polarized electrons. The ability to grow thin films and to engineer artificial structures permits new phenomena to be investigated at magnetic surfaces and interfaces. For such investigations, spin-polarized electron techniques-such as polarized electron scattering, polarized photoemission, polarized Auger spectroscopy, and scanning electron microscopy with polarization analysis-have been and will probably continue to be used to great advantage.  相似文献   

8.
Recent improvements in instrumentation and technique now permit the observation of high-resolution nuclear magnetic resonance spectra of many nuclei in inorganic solids. The application of nuclear magnetic resonance to the study of the structures of materials of interest in chemistry, earth science, and materials science are discussed together with a prognosis for future work.  相似文献   

9.
Pham TC  Kim HS  Yoon KB 《Science (New York, N.Y.)》2011,334(6062):1533-1538
Applications of zeolite films benefit from alignment of the integrated channels, but methods for film growth have nearly always introduced orientational randomization in the direction normal to the substrate. We now report facile methods to grow silicalite-1 films and pure silica beta zeolite films on substrates with straight or sinusoidal channels positioned uniformly upright at a thickness of up to 8 micrometers. Precise gel compositions and processing temperatures are critical to promote secondary growth on pre-formed oriented crystal monolayers while suppressing self-crystallization in the bulk medium. Preliminary results highlight the potential of these uniformly oriented films in the nonlinear optical response and separation of xylene isomers.  相似文献   

10.
A two-dimensional antiferromagnetic structure within a pseudomorphic monolayer film of chemically identical manganese atoms on tungsten(110) was observed with atomic resolution by spin-polarized scanning tunneling microscopy at 16 kelvin. A magnetic superstructure changes the translational symmetry of the surface lattice with respect to the chemical unit cell. It is shown, with the aid of first-principles calculations, that as a result of this, spin-polarized tunneling electrons give rise to an image corresponding to the magnetic superstructure and not to the chemical unit cell. These investigations demonstrate a powerful technique for the understanding of complicated magnetic configurations of nanomagnets and thin films engineered from ferromagnetic and antiferromagnetic materials used for magnetoelectronics.  相似文献   

11.
Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used by organisms to produce complex ceramic composites such as teeth, bones, and shells. High-quality, dense polycrystalline films of oxides, hydroxides, and sulfides have now been prepared from "biomimetic" synthesis techniques. Ceramic films can be synthesized on plastics and other materials at temperatures below 100 degrees C. As a low-temperature process in which water rather than organic solvents is used, this synthesis is environmentally benign. Nanocrystalline ceramics can be produced, sometimes with preferred crystallite orientation. The direct deposition of high-resolution patterned films has also been demonstrated. The process is well suited to the production of organic-inorganic composites.  相似文献   

12.
An array of single nonmagnetic metallic split rings can be used to implement a magnetic resonance, which arises from an inductor-capacitor circuit (LC) resonance, at 100-terahertz frequency. The excitation of the LC resonance in the normal-incidence geometry used in our experiments occurs through the coupling of the electric field of the incident light to the capacitance. The measured optical spectra of the nanofabricated gold structures come very close to the theoretical expectations. Additional numerical simulations show that our structures exhibit a frequency range with negative permeability for a beam configuration in which the magnetic field couples to the LC resonance. Together with an electric response that has negative permittivity, this can lead to materials with a negative index of refraction.  相似文献   

13.
Recent advances in the design and synthesis of organic synthetic metals have yielded materials that have the highest superconducting transition temperatures (T(c) approximately 13 kelvin) reported for these systems. These materials have crystal structures consisting of alternating layers of organic donor molecules and inorganic anions. Organic superconductors have various electronic and magnetic properties and crystal structures that are similar to those of the inorganic copper oxide superconductors (which have high T(c) values); these similarities include highly anisotropic conductivities, critical fields, and short coherence lengths. The largest number of organic superconductors, including those with the highest T(c) values, are charge-transfer salts derived from the electron donor molecule BEDT-TTF or ET [bis(ethylenedithio)-tetrathiafulvalene]. The synthesis and crystal structures of these salts are discussed; their electrical, magnetic, and band electronic structure properties and their many similarities to the copper oxide superconductors are treated as well.  相似文献   

14.
We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa2Cu3O(7-delta) films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.  相似文献   

15.
不同大白菜品种种植比较试验   总被引:1,自引:0,他引:1  
为选择南方地区春作大白菜露地生产的优良品种,对5个春作大白菜品种进行对比试验,比对其生物学性状、产量和抗病性等指标。试验表明,5个参试大白菜品种中,综合性状表现较好的品种有“白蓝”和中白60,表现为生育期短,产量较高,综合抗病性较好;早熟5号和春夏王在本次试验中表现不佳,产量较低,综合抗病性不强。结球紧实度稍差;京春白的产量最高,但是其生育期最长,“白蓝”的综合抗病性最好,抗病毒病、霜霉病和软腐病。  相似文献   

16.
A method that combines thin film deposition and physical masking techniques has been used for the parallel synthesis of spatially addressable libraries of solid-state materials. Arrays containing different combinations, stoichiometries, and deposition sequences of BaCO(3), Bi(2)O(3), CaO, CuO, PbO, SrCO(3), and Y(2)O(3) were generated with a series of binary masks. The arrays were sintered and BiSrCaCuO and YBaCuO superconducting films were identified. Samples as small as 200 micrometers by 200 micrometers in size were generated, corresponding to library densities of 10,000 sites per square inch. The ability to generate and screen combinatorial libraries of solid-state compounds, when coupled with theory and empirical observations, may significantly increase the rate at which novel electronic, magnetic, and optical materials are discovered and theoretical predictions tested.  相似文献   

17.
Ferroelectric memories   总被引:1,自引:0,他引:1  
In the past year it has become possible to fabricate ferroelectric thin-film memories onto standard silicon integrated circuits that combine very high speed (30-nanosecond read/erase/rewrite operation), 5-volt standard silicon logic levels, very high density (2 by 2 micrometer cell size), complete nonvolatility (no standby power required), and extreme radiation hardness. These ferroelectric random-access memories are expected to replace magnetic core memory, magnetic bubble memory systems, and electrically erasable read-only memory for many applications. The switching kinetics of these films, 100 to 300 nanometers thick, are now well understood, with switching times that fit an activation field dependence that scales applied field and temperature. Earlier problems of fatigue and retention failure are also now understood and have been improved to acceptable levels.  相似文献   

18.
Terahertz magnetic response from artificial materials   总被引:1,自引:0,他引:1  
We show that magnetic response at terahertz frequencies can be achieved in a planar structure composed of nonmagnetic conductive resonant elements. The effect is realized over a large bandwidth and can be tuned throughout the terahertz frequency regime by scaling the dimensions of the structure. We suggest that artificial magnetic structures, or hybrid structures that combine natural and artificial magnetic materials, can play a key role in terahertz devices.  相似文献   

19.
Metalorganic chemical vapor deposition (MOCVD) is a process in which two or more metalorganic chemicals (for instance, trimethylgallium) or one or more metalorganic sources and one or more hydride sources (for instance, arsine, AsH(3)) are used to form the corresponding intermetallic crystalline solid solution. MOCVD materials technology is a vapor-phase growth process that is becoming widely used to study the basic physics of novel materials and to grow complex semiconductor device structures for new optoelectronic and photonic systems. The MOCVD process is described and some of the device applications and results that have been realized with it are reviewed, with particular emphasis on the III-V compound semiconductors.  相似文献   

20.
植物细胞壁的研究进展   总被引:1,自引:0,他引:1  
细胞壁的组分是纺织、造纸、木材、胶片、增稠剂及其他工业产品重要的原料.植物细胞壁的生物合成过程是植物生长发育中最主要的合成代谢之一,也是植物光合作用产物的主要贮积方式.最近的研究揭示了植物细胞壁多聚糖是如何合成并组装成一个强大的纤维网络系统,以及植物细胞壁生长发育的调控机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号