首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Femtosecond synchrotron pulses were generated directly from an electron storage ring. An ultrashort laser pulse was used to modulate the energy of electrons within a 100-femtosecond slice of the stored 30-picosecond electron bunch. The energy-modulated electrons were spatially separated from the long bunch and used to generate approximately 300-femtosecond synchrotron pulses at a bend-magnet beamline, with a spectral range from infrared to x-ray wavelengths. The same technique can be used to generate approximately 100-femtosecond x-ray pulses of substantially higher flux and brightness with an undulator. Such synchrotron-based femtosecond x-ray sources offer the possibility of applying x-ray techniques on an ultrafast time scale to investigate structural dynamics in condensed matter.  相似文献   

2.
Subfemtosecond light pulses can be obtained by superposing several high harmonics of an intense laser pulse. Provided that the harmonics are emitted simultaneously, increasing their number should result in shorter pulses. However, we found that the high harmonics were not synchronized on an attosecond time scale, thus setting a lower limit to the achievable x-ray pulse duration. We showed that the synchronization could be improved considerably by controlling the underlying ultrafast electron dynamics, to provide pulses of 130 attoseconds in duration. We discuss the possibility of achieving even shorter pulses, which would allow us to track fast electron processes in matter.  相似文献   

3.
The imaging of living specimens in water by x-ray microscopy can be greatly enhanced with the use of an intense flash x-ray source and sophisticated technologies for reading x-ray images. A subnanosecond [corrected] x-ray pulse from a laser-produced plasma was used to record the x-ray image of living sea urchin sperm in an x-ray resist. The resist relief was visualized at high resolution by atomic-force microscopy. Internal structure of the sperm head was evident, and the carbon density in a flagellum was estimated from the relief height.  相似文献   

4.
Supercomputer simulations predict the creation of an unexpectedly stable form of atomic matter when ordinary atoms are irradiated by very intense, high-frequency laser pulses. In the rising edge of a very intense pulse of ionizing radiation, the atom's wave function distorts adiabatically into a distribution with two well-separated peaks. As the intensity increases, the peak spacing increases so that the atomic electron spends more time far from the nucleus and the ionization rate decreases. This leads to the surprising and counter-intuitive result that the atom becomes more stable as the ionizing radiation gets stronger.  相似文献   

5.
Single soft-x-ray pulses of approximately 90-electron volt (eV) photon energy are produced by high-order harmonic generation with 7-femtosecond (fs), 770-nanometer (1.6 eV) laser pulses and are characterized by photoionizing krypton in the presence of the driver laser pulse. By detecting photoelectrons ejected perpendicularly to the laser polarization, broadening of the photoelectron spectrum due to absorption and emission of laser photons is suppressed, permitting the observation of a laser-induced downshift of the energy spectrum with sub-laser-cycle resolution in a cross correlation measurement. We measure isolated x-ray pulses of 1.8 (+0.7/-1.2) fs in duration, which are shorter than the oscillation cycle of the driving laser light (2.6 fs). Our techniques for generation and measurement offer sub-femtosecond resolution over a wide range of x-ray wavelengths, paving the way to experimental attosecond science. Tracing atomic processes evolving faster than the exciting light field is within reach.  相似文献   

6.
Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a free-electron laser. Holographic structures were observed that record underlying electron dynamics on a sublaser-cycle time scale, enabling photoelectron spectroscopy with a time resolution of almost two orders of magnitude higher than the duration of the ionizing pulse.  相似文献   

7.
We demonstrate enhanced generation of coherent light in the "water window" region of the soft x-ray spectrum at 4.4 nanometers, using quasi-phase-matched frequency conversion of ultrafast laser pulses. By periodically modulating the diameter of a gas-filled hollow waveguide, the phase mismatch normally present between the laser light and the generated soft x-ray light can be partially compensated. This makes it possible to use neon gas as the nonlinear medium to coherently convert light up to the water window, illustrating that techniques of nonlinear optics can be applied effectively in the soft x-ray region of the spectrum. These results advance the prospects for compact coherent soft x-ray sources for applications in biomicroscopy and in chemical spectroscopy.  相似文献   

8.
Modern laser technology has revolutionized the sensitivity and precision of spectroscopy by providing coherent light in a spectrum spanning the infrared, visible, and ultraviolet wavelength regimes. However, the generation of shorter-wavelength coherent pulses in the x-ray region has proven much more challenging. The recent emergence of high harmonic generation techniques opens the door to this possibility. Here we review the new science that is enabled by an ability to manipulate and control electrons on attosecond time scales, ranging from new tabletop sources of coherent x-rays to an ability to follow complex electron dynamics in molecules and materials. We also explore the implications of these advances for the future of molecular structural characterization schemes that currently rely so heavily on scattering from incoherent x-ray sources.  相似文献   

9.
We report the direct observation by x-ray diffraction of a photoinduced paraelectric-to-ferroelectric structural phase transition using monochromatic 100-picosecond synchrotron pulses. It occurs in tetrathiafulvalene-p-chloranil, a charge-transfer molecular material in which electronic and structural changes are strongly coupled. An optical 300-femtosecond laser pulse switches the material from a neutral to an ionic state on a 500-picosecond time scale and, by virtue of intrinsic cooperativity, generates self-organized long-range structural order. The x-ray data indicate a macroscopic ferroelectric reorganization after the laser irradiation. Refinement of the structures before and after laser irradiation indicates structural changes at the molecular level.  相似文献   

10.
The application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad-bandwidth materials has made possible the development of small-scale terawatt and now even petawatt (1000-terawatt) laser systems. The laser technology used to produce these intense pulses and examples of new phenomena resulting from the application of these systems to atomic and plasma physics are described.  相似文献   

11.
High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.  相似文献   

12.
The direct observation of molecular dynamics initiated by x-rays has been hindered to date by the lack of bright femtosecond sources of short-wavelength light. We used soft x-ray beams generated by high-harmonic upconversion of a femtosecond laser to photoionize a nitrogen molecule, creating highly excited molecular cations. A strong infrared pulse was then used to probe the ultrafast electronic and nuclear dynamics as the molecule exploded. We found that substantial fragmentation occurs through an electron-shakeup process, in which a second electron is simultaneously excited during the soft x-ray photoionization process. During fragmentation, the molecular potential seen by the electron changes rapidly from nearly spherically symmetric to a two-center molecular potential. Our approach can capture in real time and with angstrom resolution the influence of ionizing radiation on a range of molecular systems, probing dynamics that are inaccessible with the use of other techniques.  相似文献   

13.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upconversion, paving the way for extension of frequency comb metrology in atoms and ions to the extreme ultraviolet and soft x-ray spectral regions. A proof-of-principle experiment was performed on a deep-ultraviolet (2 x 212.55 nanometers) two-photon transition in krypton; relative to measurement with single nanosecond laser pulses, the accuracy of the absolute transition frequency and isotope shifts was improved by more than an order of magnitude.  相似文献   

14.
Three high-temperature, high-density experments were conducted recently with the 10-terawatt, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. The experiments demonstrated successful solutions to problems that arose during previous laser-plasma interaction experiments with long-wavelength (greater than 1 micrometer) lasers: (i) large-scale plasmas, with dimensions approaching those needed for high-gain inertial fusion targets, were produced in which potentially deleterious laser-plasma instabilities were collisionally damped; (ii) deuterium-tritium fuel was imploded to a density of 20 grams per cubic centimeter and a pressure of 10(10) atmospheres under the improved laser conditions, and compression conditions (preheating and pressure) were consistent with code calculations that predict efficient (high-gain) burn of a large thermonuclear fuel mass when driven with a large, short-wavelength laser; and (iii) soft x-rays were amplified by a factor of 700 by stimulated emission at 206 and 209 angstroms (62 electron volts) from selenium ions in a laser-generated plasma. These small, short-pulse x-ray sources are 10(10) to 10(11) times brighter than the most powerful x-ray generators and synchrotron sources available today. The plasma conditions for these experiments were made possible by advances in Nd:glass laser technology, in techniques to generate efficiently its short-wavelength harmonics at 0.53, 0.35, and 0.26 micrometers, and in diagnostic and computational modeling.  相似文献   

15.
A laser method based upon carbon ion implantation and pulsed laser melting of copper has been used to produce continuous diamond thin film. Carbon ions were implanted with ion energies in the range of 60 to 120 keV, and doses of 1.0 x 10(18) to 2.0 x 10(18) ions cm(-2). The ion-implanted specimens were treated with nanosecond excimer laser pulses with the following parameters: energy density, 3.0 to 5.0 J cm(-2); wavelength, 0.308 microm; pulse width, 45 nanoseconds. The specimens were characterized with scanning electron microscopy (SEM), x-ray diffraction, Rutherford backscattering/ion channeling, Auger, and Raman spectroscopy. The macroscopic Raman spectra contained a strong peak at 1332 cm(-1) with full width at half maximum of 5 cm(-1), which is very close to the quality of the spectra obtained from single-crystal diamond. The selected area electron diffraction patterns and imaging confirmed the films to be defect-free single crystal over large areas of up to several square micrometers with no grain boundaries. Low voltage SEM imaging of surface features indicated the film to be continuous with presence of growth steps.  相似文献   

16.
Pulsed excitation fields are routinely used in most laser and nuclear magnetic resonance (NMR) experiments. In the NMR case, constant amplitude (rectangular) pulses have traditionally been used; in laser spectroscopy the exact pulse shape is often unknown or changes from shot to shot. This article is an overview of the effects of radio-frequency and laser pulse shapes and the instrumental requirements for pulse shaping. NMR applications to selective excitation, solvent suppression, elimination of phase roll, and reduced power dissipation are discussed, as are optical applications to soliton generation, velocity selective excitation, and quantitative population transfer.  相似文献   

17.
Tailored femtosecond laser pulses from a computer-controlled pulse shaper were used to optimize the branching ratios of different organometallic photodissociation reaction channels. The optimization procedure is based on the feedback from reaction product quantities in a learning evolutionary algorithm that iteratively improves the phase of the applied femtosecond laser pulse. In the case of CpFe(CO)2Cl, it is shown that two different bond-cleaving reactions can be selected, resulting in chemically different products. At least in this case, the method works automatically and finds optimal solutions without previous knowledge of the molecular system and the experimental environment.  相似文献   

18.
Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.  相似文献   

19.
A soft x-ray laser (wavelength lambda = 15.5 nanometers) was used to create a moiré deflectogram of a high-density, laser-produced plasma. The use of deflectometry at this short wavelength permits measurement of the density spatial profile in a long-scalelength (3 millimeters), high-density plasma. A peak density of 3.2 x 10(21) per cubic centimeter was recorded.  相似文献   

20.
The Galactic plane is a strong emitter of hard x-rays (2 to 10 kiloelectron volts), and the emission forms a narrow continuous ridge. The currently known hard x-ray sources are far too few to explain the ridge x-ray emission, and the fundamental question of whether the ridge emission is ultimately resolved into numerous dimmer discrete sources or truly diffuse emission has not yet been settled. In order to obtain a decisive answer, using the Chandra X-ray Observatory, we carried out the deepest hard x-ray survey of a Galactic plane region that is devoid of known x-ray point sources. We detected at least 36 new hard x-ray point sources in addition to strong diffuse emission within a 17' by 17' field of view. The surface density of the point sources is comparable to that at high Galactic latitudes after the effects of Galactic absorption are considered. Therefore, most of these point sources are probably extragalactic, presumably active galaxies seen through the Galactic disk. The Galactic ridge hard x-ray emission is diffuse, which indicates omnipresence within the Galactic plane of a hot plasma, the energy density of which is more than one order of magnitude higher than any other substance in the interstellar space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号