首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

2.
Summary Carthamus tinctorius (2n = 2x = 24) (family Asteraceae), commonly known as safflower, is widely cultivated in agricultural production systems of Asia, Europe, Australia and the Americas as a source of high-quality vegetable and industrial oil. India ranks first in the production of safflower oil. Fourteen cultivars, widely cultivated in various agro-climatic regions of India, have been fingerprinted by RAPD, ISSR, and AFLP markers utilizing 36, 21 primers, and 4 primer combinations, respectively. On an individual assay basis, AFLP has proven to be the best marker system as compared with the other two markers applied as assessed by high discriminating power (0.98), assay efficiency index (33.2), marker index (18.2), resolving power (40.62), and genotype index (0.856). Thirty-six RAPD and 21 SSR primers could differentiate a maximum of eight and four cultivars, respectively, whereas, two AFLP primer combinations could fingerprint all the 14 cultivars. To understand genetic relationships among these cultivars, Jaccard's similarity coefficient and UPGMA clustering algorithm were applied to the three marker data sets. Mean genetic similarities ranged from 0.689 (AFLP) to 0.952 (ISSR). Correlation coefficient comparisons between similarity matrices and co-phenetic matrices obtained with the three markers revealed that AFLP displayed no congruence vis-a-vis RAPD and ISSR data. However, strong correlation was observed between RAPD and ISSR marker systems. This paper reports the start of molecular biology programme targeting nuclear genome of safflower, a major world oilseed crop about whose genetics very little is known.  相似文献   

3.
The genetic variability and relationships among 11 cowpea genotypes representing two cultivars and nine elite genotypes were analyzed using 22 random amplified polymorphic DNA (RAPD) and nine inter-simple sequence repeat (ISSR) markers. ISSR markers were more efficient than RAPD assay with regards to polymorphism detection. But the average numbers of polymorphic loci per primer and resolution power were found to be higher for RAPD than for ISSR. Also, the total number of genotype specific marker loci, Nei’s genetic diversity, Shannon’s information index, total heterozygosity, and average heterozygosity were prominent in RAPD as compared to ISSR markers. The regression test between the two Nei’s genetic diversity indices showed low regression (0.3733) between ISSR and RAPD + ISSR-based similarities but maximum (0.9823) for RAPD and RAPD + ISSR-based similarities. The RAPD- and ISSR-generated cultivar- or genotype-specific unique DNA fingerprints able to identify the most diverse genotypes. A dendrogram constructed based on RAPD and ISSR combined data indicated a very clear pattern of clustering according to the groups (cultivars and elite genotypes). The results of principal coordinate analysis were comparable to the cluster analysis. Cluster analysis showed that most diverse genotypes (GP-125 — small size with good seed quality; GP-129, GP-90L — big size with poor seed quality) were separated from moderately diverse cultivars and genotypes. The genetic closeness among GP-129 and GP-90L, JCPL-42, and JCPL-107 could be explained by the high degree of commonness in these genotypes.  相似文献   

4.
We have examined the effectiveness of similar numbers of markers from four molecular marker systems (AFLP, isozymes, ISSR and RAPD) for revealing genetic diversity and discriminating between infraspecific groups of Oryza sativa germplasm. Each marker system classifies the germplasm into three major groups (most effectively with isozymes and AFLPs), but with differences (primarily with ISSR) between the precise classifications generated. However, at the highest levels of genetic similarity there was only partial agreement as to relationships between individual accessions when different markers were used. When variance was partitioned among and within the three subspecific groups, although the differences were not significant, greater variation was found among than within groups using AFLP and isozymes, with the reverse for RAPD and ISSR. Measurement of polymorphism using average heterozygosity and effective number of alleles gave similar results for each marker system. These results are discussed in relation to various genetic resources conservation activities, and the advisability of extrapolating to other sets of germplasm particularly of other crop species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The objectives of this study were to optimize RAPD and AFLP techniques in B. catharticus, and to determine the genetic variability of populations and commercial prairie grass cultivars with the aforementioned molecular markers. Two populations with contrasting morphological characteristics were evaluated from individual and bulked DNA samples using RAPD markers. Both analyses showed a similar information about inter population variability. Each accession was sampled by a single leaf bulk of 10 plants. Accession similarities were established with 276 RAPD and 714 AFLP bands using Jaccard similarity coefficient. The dendrogram of the accessions using RAPD markers showed that they shared high similarity values (>94%). A similar result was obtained with AFLP markers (similarity values >98%), revealing a narrow genetic basis in the analyzed accessions. Consequently, molecular characterization of germplasm should be considered in addition to morphological criteria, to choose the parental genotypes for breeding programs of this forage crop. The AFLP technique was more efficient to detect DNA polymorphism in our experiments and unique fingerprints were detected for all the accessions. RAPD is a simple and non expensive technique, suitable to estimate genetic similarity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The genetic relationship among 42 genotypes of finger millet collected from different geographical regions of southern India was investigated using random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR), and simple sequence repeats (SSR) markers. Ten RAPD primers produced 111 polymorphic bands. Five ISSR primers produced a total of 61 bands. Of these, 23 bands were polymorphic. The RAPD and ISSR fingerprints revealed 71.3 and 37.4% polymorphic banding patterns, respectively. Thirty-six SSR primers yielded 83 scorable alleles in which 62 were found to be polymorphic. Out of 36 SSR primers used, 14 primers (46.6%) produced polymorphic bands. The SSR primer UGEP7 produced a maximum number of six alleles. Mean polymorphic information content (PIC) of RAPD, ISSR and SSR were 0.44, 0.28, and 0.14, respectively. Molecular variances among the population were 2, 11, and 1% for RAPD, ISSR, and SSR markers, respectively. SSR produced 99% molecular variance within individuals. RAPD and ISSR markers produced a low level of molecular variance within individuals. The STRUCTURE (model-based program) analysis revealed that the 42 finger millet genotypes could be divided into a maximum of four subpopulations. Based on the Bayesian statistics, each RAPD and SSR marker produced three subpopulations (K=3), while ISSR marker showed four subpopulations (K=4). This study revealed that RAPD and SSR markers could narrow down the analysis of population structure and it may form the basis for finger millet breeding and improvement programs in the future.  相似文献   

7.
8.
Molecular markers provide novel tools to differentiate between the various grades of Basmati rice, maintain fair-trade practices and to determine its relationship with other rice groups in Oryza sativa. We have evaluated the genetic diversity and patterns of relationships among the 18 rice genotypes representative of the traditional Basmati, cross-bred Basmati and non-Basmati (indica and japonica) rice varieties using AFLP, ISSR and SSR markers. All the three marker systems generated higher levels of polymorphism and could distinguish between all the 18 rice cultivars. The minimum number of assay-units per system needed to distinguish between all the cultivars was one for AFLP, two for ISSR and five for SSR. A total of 171 (110 polymorphic), 240 (188 polymorphic) and 160 (159 polymorphic) bands were detected using five primer combinations of AFLP, 25 UBC ISSR primers and 30 well distributed, mapped SSR markers, respectively. The salient features of AFLP, ISSR and SSR marker data analyzed using clustering algorithms, principal component analysis, Mantel test and AMOVA analysis are as given below: (i) the two traditional Basmati rice varieties were genetically distinct from indica and japonica rice varieties and invariably formed a separate cluster, (ii) the six Basmati varieties developed from various indica × Basmati rice crosses and backcrosses were grouped variably depending upon the marker system employed; CSR30 and Super being more closer to traditional Basmati followed by HKR228, Kasturi, Pusa Basmati 1 and Sabarmati, (iii) AFLP, ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.42–0.50), and (iv) the partitioning of the variance among and within rice groups (traditional Basmati, cross-bred Basmati, indica and japonica) using AMOVA showed greater variation among than within groups using SSR data-set, while reverse was true for both ISSR and AFLP data-sets. The study emphasizes the need for using a combination of different marker systems for a comprehensive genetic analysis of Basmati rice germplasm. The high-level polymorphism generated by SSR, ISSR and AFLP assays described in this study shall provide novel markers to differentiate between traditional Basmati rice supplies from cheaper cross-bred Basmati and long-grain non-Basmati varieties at commercial level.The first two authors have equal contribution  相似文献   

9.
贺学勤  刘庆昌  翟红  王玉萍 《作物学报》2005,31(10):1300-1304
用RAPD、ISSR和AFLP标记对系谱关系明确的7个甘薯品种进行了亲缘关系分析。24个RAPD引物、14个ISSR引物和9对AFLP引物分别扩增出173、174和168条多态性带。3种分子标记在检测甘薯品种间遗传差异上相关程度高,其中RAPD与ISSR之间的相关系数最大为0.9328。用ISSR标记估计的品种间遗传距离为0.1286~1.0932,平均0.4883,大于其余2个标记的估计值。3种分子标记皆可揭示甘薯品种的亲缘关系,其中ISSR标记产生的聚类图与系谱图最吻合,认为ISSR标记更适于分析甘薯品种的亲缘关系。  相似文献   

10.
林木研究中常采用的分子标记技术主要包括RFLP、RAPD、AFLP、SSR及ISSR等。本文综述了这些分子标记技术的原理、优缺点。归纳总结了分子标记在木兰科植物中的应用研究进展:(1)利用RAPD、RFLP、cpDNA基因系列测定(psbA-trnH、atpB-rbcL、matK、ndhF)等分子标记在分子水平上对一些群体、个体进行了亲缘关系和分类研究;(2)利用RAPD、SSR和ISSR标记对一些群体、个体进行了遗传结构和遗传多样性研究;(3)采用DAF和RAPD获得了厚朴的DNA指纹图谱。分子标记在木兰科植物的其它方面的应用还很少。今后,除了继续对上述方面进行深入系统的研究外,还应充分运用分子标记技术,开展木兰科植物的分子遗传图谱、分子标记辅助选择育种、保育生物学等方面的研究。  相似文献   

11.
An assessment of genetic diversity studies was undertaken to understand the level and pattern of diversity in 65 mango (Mangifera indica L.) genotypes of India including 20 commercial cultivars, 18 hybrids, 25 local genotypes and two exotic cultivars based on qualitative and quantitative fruit characters as well as RAPD and ISSR profiles. A considerable variation was observed in respect of three important qualitative characters namely table quality, fruit attractiveness and storage life of ripe fruits and potentially superior genotypes for the above traits were identified. A wide variation was noticeable regarding metabolite composition of pulp of ripe mango fruit with respect to total soluble solids, total sugar, reducing sugar, acidity, sugar:acid ratio, ascorbic acid and phenolic content. Fifteen RAPD primers yielded 27 monomorphic and 129 polymorphic bands with percent polymorphism averaging 82.7%. Of a total 70 ISSR bands generated from eight ISSR primers, 60 bands (85.71%) were found to be polymorphic. Cumulative band data from these two methods precisely arranged accessions into eight clusters which correspond well with their pedigree relationship. UPGMA dendrograms drawn using RAPD, ISSR and cumulative data showed highly similar grouping of genotypes on the basis of their parental origin. No clear-cut geographical separation was revealed among East, West, North and South Indian mango cultivars by neither of these molecular markers nor their combinations. This supports the common gene pool origin of mango as well as operation of similar selection pressure as the cultivar preferences in these areas are largely similar.  相似文献   

12.
F. Toklu    T. Karaköy    E. Hakl&#;    T. Bicer    A. Brandolini    B. Kilian    H. Özkan 《Plant Breeding》2009,128(2):178-186
The molecular characterization of cultivated plant genepools is of foremost importance for germplasm utilization in plant breeding. However, no comprehensive genetic fingerprinting of Turkish lentil landraces existed so far. To overcome this gap, 38 lentil landraces from southeast Turkey, together with six commercial varieties, were molecularly characterized using inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) molecular markers. The ISSR analysis, performed with 14 primers, yielded 105 polymorphic bands and the AFLP analysis, carried out with six primer combinations, amplified 119 polymorphic fragments. Even though the AFLP produced more bands per primer combinations, the ISSR detected more polymorphisms. Unweighted pair-group method with arithmetic means dendrograms based on Jaccard similarities obtained from three data sets: (i) ISSR, (ii) AFLP and (iii) combined ISSR and AFLP data, were similar and separated the landraces into two main groups. Turkish lentil landraces exhibited considerable genetic diversity. One landrace from Karacadag/Diyarbakir region was significantly different from the rest of the germplasm analysed. Jaccard distances highlighted sharp differences among landraces over short geographic distances. The knowledge of regional differentiation has practical utility in the management of germplasm and in breeding programmes.  相似文献   

13.
Finger millet is an important staple food crop of semi-arid tropics also known as “super cereal” and has a higher calcium content than any other crops. Thousands of germplasm are being maintained and its genetic characterization is essential for further utilization in crop improvement. This research was performed to estimate the diversity and population genetic structure in the mini-core collection of finger millet by using SPAR markers, namely RAPD, ISSR, and DAMD markers. Altogether, 32 primers were used in this study, which produced 408 bands among which 344 were polymorphic. Analysis by combining all three marker systems revealed 84.31% of polymorphism among 90 genotypes of finger millet. Average polymorphism information content (PIC) produced by the ISSR, RAPD, and DAMD markers were 0.79, 0.81, 0.62, and average Rp values were 12.84, 8.17, and 8.53, respectively. The Jaccard's similarity value ranged from 0.233-0.861. IE 6059 and IE 5870 genotypes showed the highest Jaccard's similarity value of 0.861 in UPGMA analysis. Neighbor joining-based phylogenetic analysis produced two major clusters and the genotypes were grouped based on their geographical region of origin. Principal component analysis and principal coordinates analysis also confirmed the results. In population STRUCTURE analysis, the genotypes were divided into two subpopulations (P1and P2). These results confirmed that the genotypes we have assessed were genetically diverse and were clustered based on their geographic region of origin. The information obtained from this study will be useful in population management strategies and selection of genotypes for an effective breeding program in the future.  相似文献   

14.
Cytoplasmic genetic male-sterility is used to produce hybrid onion (Allium cepa L.) seeds worldwide. In this paper, we present the results of research aimed toward identifying PCR-based markers linked to the Ms locus through amplified fragment length polymorphism (AFLP). After screening 512 AFLP primer combinations, only one AFLP fragment was identified as being flanking linked to the dominant Ms allele. Subsequently, the AFLP marker was converted into a sequence-characterized amplified region (SCAR) marker, designated as DNF-566, co-segregated with the dominant Ms allele in first backcross (BC1) segregated populations. Furthermore, we designed another molecular marker (RNS-357) co-segregated with the ms allele to identify different genotypes (i.e., MsMs, Msms, or msms). Both markers could be used for evaluating onion lines with different genetic backgrounds (including male-sterile lines, maintainer lines, male-fertile lines, and commercial based F1 hybrid cultivars). The results of this study indicate that maintainer plants could be directly selected by using these 2 SCAR markers in the onion breeding process, and this may contribute significantly toward breeding onion F1 hybrid cultivars.  相似文献   

15.
Two molecular marker techniques: RAPD and simplified PstIAFLP have been compared in order to decide on, which technique is better suited to genetic characterization of oat (Avena sativa L.) cultivars. It was investigated, if the same pattern of variability is revealed by two approaches and whether the observed molecular variability reflects pedigree-based relationships. Polymorphic RAPD and PstIAFLP markers were sufficient to distinguish all analysed cultivars, demonstrating the usefulness of both methods for cultivar identification. Genetic similarity estimates derived from RAPD, simplified PstIAFLP and combined RAPD and PstIAFLP data were compared with coefficients of parentage (COP). Molecular markers-based mean genetic similarities were considerably greater than mean COP value. Correlation coefficients between COP and genetic similarities calculated from RAPD, PstIAFLP and combined molecular data were very low and not significant. A better correlation (0.50) was found between similarity estimates derived from RAPD and PstIAFLP markers. Four separate dendrograms were constructed based on pedigree and molecular analyses using a neighbor-joining algorithm (NJ). The dendrograms were compared and found to be topologically different. The results of this study showed, that both molecular techniques can be conveniently used for genetic characterization of oat cultivars, however PstIAFLP would be the method of choice due to the higher efficiency and reproducibility. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Josef Patzak 《Euphytica》2003,131(3):343-350
In vitro meristem tissue cultures are used for production of virus-free rootstocks of hop (Humulus lupulus L.). Because use of plant tissue cultures is associated with occurrence of somaclonal variability, we assessed somaclonal variability in hop meristem in vitro cultures before and after thermotherapy by different molecular methods (RFLP, RAPD, STS, ISSR and AFLP) and compared it with existing clonal variability of Osvald's clones 31, 72 and 114. No molecular differences were observed between mother plants and in vitro mericlones by RFLP and STS analyses. Amplified molecular differences were found in RAPD and ISSR products of one from five in vitromericlones cvs. Eroica (E5) and Southern Brewer (SB2), respectively. Similarities with mother plants were 0.965 and 0.913 (JSC), respectively. Specific amplified polymorphic products were found for every mericlone and mother plant in AFLP reactions and variability of DNA sequence ranged from 0.824 to 0.993 (JSC). This variability was very similar to determined intra-clonal variability within Osvald's clones 31, 72 and 114 by AFLP analysis. Inter-clonal variability of DNA sequence was exactly higher than intra-clonal variability of DNA sequence in these clones. The molecular differences between Osvald's clone 72 normal and meristem derived were not verifiable. Thermotherapy increased frequency of molecular changes, since amplified differences were found in 14 from 20 in vitro mericlones of cv. Eroica, in 6 from 11 in vitro mericlones of cv. Yeoman and in 15 from 23 in vitro mericlones of cv. Southern Brewer by RAPD and ISSR analyses.  相似文献   

17.
Genetic diversity of four new yellow single crosses, five new yellow three-way crosses, and five yellow inbred lines of maize (Zea mays L.) was studied using different molecular (SSR, ISSR, and RAPD) and biochemical markers (seed storage protein content). All markers were able to clearly separate the inbred lines in one cluster from the different types of hybrids. The correlation among the different types of molecular markers was moderately high according to the Mantel’s test (e.g. 0.67 between SSR and ISSR, 0.42 between SSR and RAPD, and 0.65 between ISSR and RAPD), indicating that the three techniques are efficient for evaluating genetic diversity in the maize genotypes. The correlation of biochemical markers (seed storage protein SDS-PAGE) with SSR, ISSR, and RAPD markers was 0.61, 0.74, and 0.48, respectively. It can be concluded that both molecular and biochemical markers are efficient to study the genetic diversity in maize. Among the different types of molecular markers, SSR is a more accurate marker-type because of its co-dominance and stability of results. It can also be said that biochemical and molecular markers are positively correlated and the correlation ranged between moderate to high. This could suggest using both marker types, separately or together, for genetic diversity studies in maize.  相似文献   

18.
The two most widely grown bromegrass species in North America are smooth bromegrass (Bromus inermis Leyss.), a hay type grass, and meadow bromegrass (Bromus riparius Rehmann), a pasture type grass. Recently a hybrid bromegrass population between the two species has been produced as a dual-purpose hay-pasture grass. Molecular markers have the potential to improve selection procedures to enhance bromegrass breeding. The objective of this study was to use RAPD and AFLP markers to determine genetic relationships and variations among bromegrass populations. Forty-three RAPD markers from 21 primers and 83 AFLP markers from seven primer combinations were used. Both marker types were able to group the individuals into their respective populations. The relationships among the individuals within each of the populations were not similar between the two marker types. Analysis of molecular variance (AMOVA) detected greater within-population variation than among-population variation for both marker types. The highest variation was observed in the hybrid population followed by meadow and then smooth bromegrass. The inter-population distance from both markers indicated that the highest genetic distance was between meadow and smooth bromegrass and lowest between smooth and hybrid bromegrass, which reflect the breeding history of the hybrid population. This study showed that both markers are capable of differentiating bromegrass genotypes into their respective populations, detecting genetic variation and relationships of the populations. Results of this study suggest that these two markers can be used in the future to enhance the current breeding practices in bromegrass, however, AFLP markers would be the marker of choice due to the high number of polymorphic markers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In this study, the genetic relationship between 14 genotypes of black nightshade, most which were part of the Solanum nigrum complex, was investigated. Fifteen morphological characters were measured and used to compile a dendrogram. Amplified fragment length polymorphism (AFLP) markers were also used to assess the level of polymorphism between the 14 Solanum genotypes. Three EcoR I/Mse I primer combinations with three selective nucleotides per primer were used for screening the respective genotypes. Multiple polymorphisms could be detected to the extent that all the genotypes studied could be distinguished, using any single primer combination, thus showing the usefulness of AFLP's for this purpose. Up to 43 polymorphic bands were detected with a single primer combination among the 14 different genotypes. The three primer combinations generated a total of 359 bands, of which 222 (62%) were clearly polymorphic. This data was used to compile a dendrogram. Both the morphological and AFLP marker analysis clearly separated the different genotypes into similar groups. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
简要介绍了5种传统的、最常用的DNA分子标记(RFLP、RAPD、AFLP、SSR和SNP)的技术原理及它们的优缺点,也总结了TRAP这种新产生的分子标记的技术原理、优点及应用前景.综述了这几类分子标记在花生种质进化、遗传多样性分析、分子图谱构建及抗虫、抗病等方面的研究.利用SSR和RAPD标记能够发现野生种和栽培种多态性进而实现分子标记对花生的遗传多样性分析,可以将许多花生品种分为不同的品种群,能够对花生进行种质进化研究.RFLP和AFLP技术利于花生图谱构建,利用DNA中特定的限制性酶切位点上碱基对的改变及酶切位点之间的分子重排,可以发现花生品种间的DNA许多多态性位点,进而绘制分子标记图谱.AFLP技术在花生青枯菌和花生抗黄曲霉的研究方面有很大进展.RAID技术在花生根瘤菌、花生线虫病等方面已有显著进展.最后对分子标记在花生育种中的应用前景进行了简单展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号