首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brief stimulation of cholinergic preganglionic nerve fibers resulted in an increase in guanosine 3',5'-monophosphate (cyclic GMP) in the bullfrog sympathetic ganglion. When the release of synaptic transmitter was prevented by a high-magnesium, low-calcium Ringer solution, stimulation of preganglionic nerve fibers did not increase cyclic GMP in the ganglion. The increase in cyclic GMP caused by preganglionic stimulation was also blocked by the muscarinic antagonist, atropine. The data indicate that the increase in cyclic GMP is associated with synaptic transmission and support the possibility that cyclic GMP may mediate the postsynaptic action of acetylcholine at muscarinic cholinergic synapses.  相似文献   

2.
Long-term potentiation (LTP) of synaptic transmission is a widely studied cellular example of synaptic plasticity. However, the identity, localization, and interplay among the biochemical signals underlying LTP remain unclear. Intracellular microelectrodes have been used to record synaptic potentials and deliver protein kinase inhibitors to postsynaptic CA1 pyramidal cells. Induction of LTP is blocked by intracellular delivery of H-7, a general protein kinase inhibitor, or PKC(19-31), a selective protein kinase C (PKC) inhibitor, or CaMKII(273-302), a selective inhibitor of the multifunctional Ca2+-calmodulin-dependent protein kinase (CaMKII). After its establishment, LTP appears unresponsive to postsynaptic H-7, although it remains sensitive to externally applied H-7. Thus both postsynaptic PKC and CaMKII are required for the induction of LTP and a presynaptic protein kinase appears to be necessary for the expression of LTP.  相似文献   

3.
The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.  相似文献   

4.
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.  相似文献   

5.
Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.  相似文献   

6.
Activation of N-methyl-d-aspartate subtype glutamate receptors (NMDARs) is required for long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission at hippocampal CA1 synapses, the proposed cellular substrates of learning and memory. However, little is known about how activation of NMDARs leads to these two opposing forms of synaptic plasticity. Using hippocampal slice preparations, we showed that selectively blocking NMDARs that contain the NR2B subunit abolishes the induction of LTD but not LTP. In contrast, preferential inhibition of NR2A-containing NMDARs prevents the induction of LTP without affecting LTD production. These results demonstrate that distinct NMDAR subunits are critical factors that determine the polarity of synaptic plasticity.  相似文献   

7.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

8.
Astrocytes potentiate transmitter release at single hippocampal synapses   总被引:1,自引:0,他引:1  
Perea G  Araque A 《Science (New York, N.Y.)》2007,317(5841):1083-1086
Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca(2+) elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without affecting the amplitude of synaptic events. This form of short-term plasticity was due to the release of glutamate from astrocytes, a process that depended on Ca(2+) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein and that activated metabotropic glutamate receptors (mGluRs). The transient potentiation of transmitter release became persistent when the astrocytic signal was temporally coincident with postsynaptic depolarization. This persistent plasticity was mGluR-mediated but N-methyl-d-aspartate receptor-independent. These results indicate that astrocytes are actively involved in the transfer and storage of synaptic information.  相似文献   

9.
The functions of sleep remain elusive, but a strong link exists between sleep need and neuronal plasticity. We tested the hypothesis that plastic processes during wake lead to a net increase in synaptic strength and sleep is necessary for synaptic renormalization. We found that, in three Drosophila neuronal circuits, synapse size or number increases after a few hours of wake and decreases only if flies are allowed to sleep. A richer wake experience resulted in both larger synaptic growth and greater sleep need. Finally, we demonstrate that the gene Fmr1 (fragile X mental retardation 1) plays an important role in sleep-dependent synaptic renormalization.  相似文献   

10.
Manabe T 《Science (New York, N.Y.)》2002,295(5560):1651-1653
A type of synaptic plasticity in the brain called long-term potentiation (LTP) is thought to form the molecular basis of learning and memory. In a Perspective, Manabe discusses new findings (Kovalchuk et al.) showing brain-derived neurotropic factor modulates LTP by binding to TrkB receptors on the postsynaptic neuron.  相似文献   

11.
The developmental time course of posttetanic potentiation was studied at an identified chemical synapse. In stage 11 juveniles (3 weeks after metamorphosis), the synaptic connections made by cholinergic neuron L10 onto postsynaptic neurons L2 to L6 were present but showed no posttetanic potentiation. In stage 13 adults (12 weeks after metamorphosis), the same tetanus resulted in an increase of 300 percent in the synaptic potential. A similar pattern was observed at two other identified synapses in the abdominal ganglion. Thus, the initial steps in synapse formation do not include the expression of this plastic capability. Rather, at least 10 weeks is required between the onset of synaptic function and the final expression of mature synaptic properties.  相似文献   

12.
Somatostatin augments the M-current in hippocampal neurons   总被引:13,自引:0,他引:13  
Immunocytochemical and electrophysiological evidence suggests that somatostatin may be a transmitter in the hippocampus. To characterize the ionic mechanisms underlying somatostatin effects, voltage-clamp and current-clamp studies on single CA1 pyramidal neurons in the hippocampal slice preparation were performed. Both somatostatin-28 and somatostatin-14 elicited a steady outward current and selectively augmented the noninactivating, voltage-dependent outward potassium current known as the M-current. Since the muscarinic cholinergic agonists carbachol and muscarine antagonized this current, these results suggest a reciprocal regulation of the M-current by somatostatin and acetylcholine.  相似文献   

13.
In invertebrate nervous systems, some long-lasting increases in synaptic efficacy result from changes in the presynaptic cell. In the vertebrate nervous system, the best understood long-lasting change in synaptic strength is long-term potentiation (LTP) in the CA1 region of the hippocampus. Here the process is initiated postsynaptically, but the site of the persistent change is unresolved. Single CA3 hippocampal pyramidal cells receive excitatory inputs from associational-commissural fibers and from the mossy fibers of dentate granule cells and both pathways exhibit LTP. Although the induction of associational-commissural LTP requires in the postsynaptic cell N-methyl-D-aspartate (NMDA) receptor activation, membrane depolarization, and a rise in calcium, mossy fiber LTP does not. Paired-pulse facilitation, which is an index of increased transmitter release, is unaltered during associational-commissural LTP but is reduced during mossy fiber LTP. Thus, both the induction and the persistent change may be presynaptic in mossy fiber LTP but not in associational-commissural LTP.  相似文献   

14.
Ge WP  Yang XJ  Zhang Z  Wang HK  Shen W  Deng QD  Duan S 《Science (New York, N.Y.)》2006,312(5779):1533-1537
Interactions between neurons and glial cells in the brain may serve important functions in the development, maintenance, and plasticity of neural circuits. Fast neuron-glia synaptic transmission has been found between hippocampal neurons and NG2 cells, a distinct population of macroglia-like cells widely distributed in the brain. We report that these neuron-glia synapses undergo activity-dependent modifications analogous to long-term potentiation (LTP) at excitatory synapses, a hallmark of neuronal plasticity. However, unlike the induction of LTP at many neuron-neuron synapses, both induction and expression of LTP at neuron-NG2 synapses involve Ca2+-permeable AMPA receptors on NG2 cells.  相似文献   

15.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

16.
Behavioral sensitization leads to both short- and long-term enhancement of synaptic transmission between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia. Serotonin (5-HT), a transmitter important for short-term sensitization, can evoke long-term enhancement of synaptic strength detected 1 day later. Because 5-HT mediates short-term facilitation through adenosine 3',5'-monophosphate (cAMP)-dependent protein phosphorylation, the role of cAMP in the long-term modulation of this identified synapse was examined. Like 5-HT, cAMP can also evoke long-term facilitation lasting 24 hours. Unlike the short-term change, the long-lasting change is blocked by anisomycin, a reversible inhibitor of protein synthesis, and therefore must involve the synthesis of gene products not required for the short-term change.  相似文献   

17.
目的女性妊娠期相关精神疾病的神经机制尚不清楚,本研究拟探究妊娠期应激诱发的相关精神疾病发病与海马突触可塑性的关系。方法对大鼠施行束缚应激后,采用在体麻醉电生理学方法检测大鼠海马CA1区的兴奋性突触后电位,比对经历应激和未应激妊娠期大鼠海马突触可塑性的变化。结果与未妊娠空白对照组相比,低频刺激诱导后未应激的妊娠期大鼠可形成长时程增强(long-term potentiation,LTP)。此外,施行束缚应激的妊娠期大鼠,则表现为长时程抑制(long-term depression, LTD)不能形成。结论妊娠期内应激使海马突触可塑发生异常,为妊娠期相关精神疾病发病机制的进一步研究提供了突触可塑性异常的重要线索。  相似文献   

18.
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).  相似文献   

19.
Synaptic potentials and changes in resting membrane potentials of superior cervical ganglia of the rabbit were measured in the presence of adenosine 3',5'-monophosphate and agents that affect its metabolism. Adenosine 3',5'-monophosphate and its mono- and dibutyryl derivatives caused a hyperpolarization of the postganglionic neurons. Theophylline potentiated the slow inhibitory postsynaptic potential that follows synaptic transmission, as well as the hyperpolarization of postganglionic neurons caused by exogenous dopamine. Conversely, prostaglandin E(1) inhibited both the slow inhibitory postsynaptic potential and the dopamine-induced hyperpolarization. We hypothesize that the slow inhibitory postsynaptic potential as well as the dopamine-induced hyperpolarization result from increased amounts of adenosine 3'5'-monophosphate in the postganglionic neurons. The dibutyryl derivative of guanosine 3'5'-monophosphate caused a depolarization of the postganglionic neurons, which is consistent with the possibility that guanosine 3'5'-monophosphate mediates synaptic transmission at muscarinic cholinergic synapses.  相似文献   

20.
The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号