共查询到17条相似文献,搜索用时 109 毫秒
1.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL 总被引:3,自引:3,他引:3
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。 相似文献
2.
水稻籽粒的粒长、粒宽和粒厚共同塑成了水稻粒形,并决定水稻籽粒的千粒重及外观品质,而千粒重是决定水稻产量三要素之一。本研究以籼型温敏核不育系广占63-4S为母本,以大粒籼稻TGMS29为父本杂交衍生的F2和F3群体,对影响水稻籽粒粒形和千粒重的数量性状位点(quantitative trait loci, QTL)进行定位。2014年和2015年检测到影响籽粒粒长的QTL 5个,粒宽QTL 8个,粒厚的QTL 4个,千粒重QTL 4个。其中,两年重复检测到2个粒长QTL,分别位于第1染色体RM1和RM490之间,可解释的表型变异为21.3%、22%,和第2染色体RM240和RM208之间,可解释的表型变异为12.8%、15.7%。两年均被检测到的粒宽QTL位于第3染色体RM251和RM571之间,可解释表型变异分别为53.60%、55.00%。两年均被检测到的千粒重QTL位于第1染色体RM220和RM1之间,可解释表型变异分别为15.1%、15.4%。这些QTLs的鉴定为稻米粒形和千粒重的遗传研究提供了帮助,也为稻米品质和产量的改良提供了宝贵的基因资源。 相似文献
3.
为阐明大穗型籼稻品系R1126稻谷籽粒性状的遗传机制,以其与粳稻日本晴构建的重组自交系F10为材料,通过连续2年田间种植并测定各株系的籽粒粒长、粒宽和粒厚等表型性状,结合利用SSR和SFP等分子标记构建的遗传图谱,对控制该群体的稻谷粒形性状进行了QTL分析。2年试验共检测到10个控制粒长、粒宽和粒厚性状的QTL,其中q GL3-1、q GL3-2和q GL9这3个粒长QTL,以及q GW2和q GW5这2个粒宽QTL在2年试验中能被重复检测;而粒厚性状在2年试验中检测到5个QTL,但均只在1年试验中出现。根据连锁的分子标记信息,q GL3-2、q GW2和q GW5可能分别与已报道的主要粒形基因GS3、GW2和GW5等位;而q GL3-1和q GL9可能为新的粒长QTL,且在2年试验中具有很好的重演性和稳定性,两者的加性效应均能使粒长增加0.2 mm以上,对于改善稻谷外观品质性状具有较好的潜在应用价值。 相似文献
4.
以粳稻南粳35和耘稻N22杂交得到的F:群体为研究对象,通过构建遗传连锁图谱,对控制水稻千粒重的QTL进行定位。结果表明,千粒重在F:群体中呈正态分布,表现为数量性状特征;利用Win QTLcart2.5软件共检测到3个控制千粒重的QTL,分别位于第3和第6染色体上,其中第3染色体检测到2个QTL, qTGW3a,qTGW3b和qTGW6分别解释千粒重表型变异的15.03%,17.65%和7.87%,qTGW3a增加千粒重的基因来自南粳35,qTGw3b和qTGW6的增效基因来自私稻品种N22;3个位点基因的作用方式均为加性,在育种中应用潜力较大。 相似文献
5.
利用DH群体定位水稻谷粒外观性状的QTL 总被引:7,自引:0,他引:7
采用混合线性模型的复合区间作图方法,对水稻“圭630”和“02428”组合的DH群体的谷粒外观性状——粒长、粒宽和粒形进行了数量性状基因定位,同时对定位的主效应和上位性进行了环境效应分析。2002年对粒长、粒宽和粒形分别检测到5、4和2个QTLs;2003年对以上3个性状分别检测到3、4和4个QTLs。其中4个QTLs在2年均检测到,且其贡献率较大。位于第4染色体C22.RG449d区间的QTL效应大,同时影响粒长和粒宽,2年内均被检测到。联合2年数据分析分别检测到6个粒长QTLs、6个粒宽QTLs和3个粒形QTLs,共解释各自性状变异的67.7l%、50.08%和29.17%,且影响粒形的3个QTLs同时影响粒长或粒宽。对粒形和粒宽分别检测到4个QTLs与环境之间存在显著互作。本实验中检测到主效应和上位性对谷粒外观性状均具有重要作用,但上位性贡献率相对主效应较小,环境互作效应更小。 相似文献
6.
水稻粒型和粒重的QTL定位分析 总被引:29,自引:2,他引:29
利用以两个籼稻品种H359和Acc8558为亲本杂交建立的重组自交系群体及相应的分子标记连锁图,对水稻粒长、粒宽和粒重进行了QTL定位分析。检测到15个与粒长有关的QTL、17个与粒宽有关的QTL及16个与粒重有关的QTL,它们可分别解释75.91%、76.20%和81.40%的表型变异。其中在5号染色体上检测到1个控制粒宽的主效QTL,可解释26.65%的表型变异。粒长和粒宽之间虽然相关显著,但相关系数很小(r=0.180)。而QTL分析结果也显示,两者的QTL位置很少相同。这说明粒长和粒宽有不同的遗传基础。粒长和粒宽与粒重的相关系数分别为0.781和0.461,直接通径系数分别为0.7220和0.3299。QTL定位结果也显示,粒长与粒重的QTL位置相近或重叠的较多。因此,粒长对粒重的贡献较大。 相似文献
7.
【目的】定位棉花抗黄萎病数量性状位点(Quantitative trait loci, QTL)。【方法】以海7124和TM-1配制抗感组合F1,再以鲁棉研28为轮回亲本构建的137个BC4F1家系为作图群体,筛选出多态性重复序列(Simple sequence repeat, SSR)标记,并与已发表的整合高密度遗传连锁图谱相比对,构建遗传图谱。采用复合区间作图法(Composite interval mapping,CIM)进行大田和病圃两个环境下抗黄萎病QTL定位。【结果】216个多态性SSR位点分布在26条染色体上,可覆盖棉花基因组3 380 cM(centi Morgan),标记间平均距离15.77 cM。定位到6个QTLs,分布在6条染色体上,可解释表型变异8.56%~20.26%,其中5个QTLs与前人研究结果相一致,在第1染色体上新定位到一个QTL。本研究可为分子标记辅助选择抗病育种提供帮助。【结论】定位到6个黄萎病相关QTLs,其中1个是在第1染色体上新发现的QTL。 相似文献
8.
利用多亲本高代互交系(multi-parent advanced generation inter-cross,MAGIC)群体(DC1、DC2和8way)及其复合群体DC12(DC1+DC2)和RMPRIL(DC1+DC2+8way)进行关联分析定位水稻抽穗期和株高QTL。2015年和2016年分别在江西和深圳收集3个MAGIC群体抽穗期数据,2016年在两地收集株高数据,结合Rice 55K SNP芯片进行基因分型,利用关联分析方法检测到3个影响抽穗期的主效QTL(q HD3、q HD6和q HD8),分别位于第3、第6和第8染色体,且分别与已知抽穗期基因DTH3、Hd3a和Ghd8在同一区域。检测到5个影响株高的QTL(q PH1.1、q PH1.2、q PH1.3、q PH4和q PH6),其中q PH1.1和q PH1.2位于已知基因Psd1和sd1附近,其余3个QTL为影响株高的新位点,但仅在1个群体和单个环境下被检测到,QTL表达受遗传背景和环境影响大。不同MAGIC群体定位抽穗期和株高的效果不同,在8亲本MAGIC群体8way及复合群体DC12和RMPRIL分别检测到5、5和6个抽穗期和株高QTL,明显多于4亲本群体DC1的2个和DC2的4个,而且作图的精度更高,表现在定位到的QTL显著水平高和与已知基因距离更近,尤其是复合群体的联合分析(如DC12和RMPRIL)的作图优势更为明显。 相似文献
9.
利用相同来源F2:3和BC2S1群体定位玉米生育期QTL 总被引:1,自引:0,他引:1
以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建259个F2:3和220个BC2S1家系群体,利用SSR标记构建分子标记遗传图谱,利用复合区间作图方法对4个生育期性状进行QTL定位和效应分析。利用F2:3群体共检测到4个抽雄期QTL、6个吐丝期QTL和3个散粉期QTL。单个QTL可解释的表型变异为6.7%~18.4%,可解释的表型总变异为28.9%~50.3%,11个QTL的增效基因来自生育期较长的亲本丹232,其余2个QTL的增效基因来自生育期较短的亲本N04;BC2S1群体检测到8个与4个生育期性状相关的QTL,单个QTL可解释的表型变异为4.5%~11.6%,可解释的表型总变异为13.2%~18.5%,增效基因来自两个亲本的QTL为3个和5个。两类群体检测出QTL的数目、位置、效应和贡献率均存在较大差异,主要原因在于BC2S1群体抽样选择所引起的群体结构差异,F2:3群体显示出较高的QTL检测能力,但回交育种过程中应慎重依据F2:3群体QTL定位结果进行标记辅助选择(MAS)。 相似文献
10.
大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位 总被引:1,自引:0,他引:1
以云南特有的紫色大麦紫光芒裸二棱和澳大利亚引进的黄色大麦Schooner构建的193个重组自交系为材料,对2013—2015年3年3个试验点的大麦籽粒总花色苷含量和千粒重进行相关性分析和QTL定位。大麦总花色苷含量和千粒重之间呈显著或极显著负相关。共检测到12个总花色苷含量QTL,分别位于1H、2H、4H、6H和7H染色体,贡献率为5.06%~23.86%; 8个千粒重QTL,分别位于2H、4H和7H染色体,贡献率为4.67%~42.32%。贡献率大于10%的QTL有10个,大于20%的有5个,最大的可达42.32%。其中至少2年2点重复检测到2个总花色苷含量QTL,分别位于2H Bmag0125–GBM1309和7H EBmatc0016–Bmag0206区间,可分别解释表型变异的13.66%~17.76%和13.07%~16.43%;3年3点重复检测到2个千粒重QTL,分别位于2HScssr03381–scssr07759和7H GBM1297-GBM1303区间,可分别解释表型变异的4.67%~14.55%和34.51%~42.32%,其加性作用方向均一致。控制总花色苷含量与千粒... 相似文献
11.
不同水分条件下水稻籽粒形态及其与粒重的关系 总被引:3,自引:1,他引:3
运用机器视觉检测技术, 以普通杂交稻汕优63和超级杂交稻国稻6号为材料, 在幼穗分化开始至分化后30 d分别设置不同的控水处理, 通过水分仪结合称重法控制土壤含水量, 研究了稻穗及穗上不同部位籽粒的形态性状, 并分析各性状与粒重的关系。结果表明:水稻的籽粒面积、长度及千粒重对水分反应较明显, 水分亏缺对籽粒面积和粒重的影响引起比粒重(单位籽粒面积的重量)变化, 长宽比对水分也有一定反应, 宽度对水分的响应因品种而异。籽粒形态性状、产量及其构成因素均随水分亏缺的加重而有不同程度下降, 穗生长发育全阶段的控水处理影响最大, 其次是中期的重度和中度控水处理以及前期、后期的重度控水处理, 各时段控水对不同部位籽粒形态的影响与穗分化发育的顺序历期基本吻合。除粒宽与其他形态性状之间呈极显著或显著负相关以外, 其余各籽粒形态性状之间均呈极显著正相关。籽粒面积、长度及长宽比与千粒重之间存在极显著或显著的相关关系, 可以作为水稻抗旱性鉴定有效的籽粒形态指标。 相似文献
12.
以拟南芥AtNHX1 cDNA 片段作为探针,筛查水稻盐胁迫植株叶片cDNA 文库,获得与AtNHX1同源的水稻新型液泡Na+/H+逆向转运蛋白基因(OsANT1)。序列分析表明,OsANT1 全长cDNA为2 178 bp,包括一个长度为1 608 bp的完整开放阅读框,编码535个氨基酸残基。在DNA水平上,OsANT1基因含有15个外显子和14个内含子,长度为4 835 bp。OsANT1含有12个跨膜域,系统进化树分析结果表明,与来自拟南芥、水稻、小麦、玉米、大麦、马蔺和芦苇等的Na+/H+逆向转运蛋白高度同源。盐胁迫条件下,OsANT1的表达具有盐分诱导特征,且随着胁迫的增大而增加。表明该基因可能在水稻抵御盐分胁迫的过程中具有一定作用。 相似文献
13.
粒重是决定水稻产量的三要素之一。利用世界上粒重最大的品种之一SLG-1(供体亲本)与小粒品种日本晴(Nipponbare,轮回亲本)杂交,在各回交世代选择粒重较大单株与日本晴回交,构建水稻粒重和粒形的姊妹近等基因系(SNILs)。对获得的73 株BC4F1单株进行粒重频率分布统计,选择粒重频率分布在4个峰值处的代表性单株,自交获得4个BC4F2 SNILs群体。利用BSA法(分离群体分组混合分析法),从均匀分布在水稻染色体上的1 513对SSR标记中筛选出与粒重和粒形相关的多态性标记19对,以LOD≥2.5作为选择阈值,对粒重、粒长、粒宽和粒厚进行QTL扫描,共检测到6个区域的12个QTL,贡献率从7.22%到53.38%。这些QTL所在区域包含已克隆的粒长GS3和粒宽GW2,也包含没有精细定位的第2染色体的RM6318-RM1367、第3染色体的RM5477–RM6417和第6染色体的RM3370–RM1161等3个区域控制粒重和粒形的5个QTL。其中第3染色体上RM5477–RM6417区间存在粒形贡献率较大的新的QTL。构建含有这些粒重QTL的姊妹近等基因系,为进一步精细定位或克隆新的粒重或粒形QTL奠定了基础。 相似文献
14.
以粳稻品种Asominori与籼稻品种IR24的杂交组合所衍生的染色体片段置换系(CSSLs)为材料,田间试验分别在FACE(CO2浓度约570 µmol mol-1)和对照(CO2浓度约370 µmol mol-1)下,对水稻株高性状的数量性状位点(QTL)进行了分析。结果表明,Asominori和IR24的株高、穗长、上位第一节间长和上位第二节间长在FACE和对照下的差异达显著水平;供试株系的4个株高性状对CO2浓度升高都呈正负两种响应,其变化最大的株系为AI7和AI44(株高分别增加14.2 cm和降低4.54 cm),AI9和AI12(穗长分别增加3.56 cm和降低2.39 cm),AI39和AI27(上位第一节间长分别增加15.74 cm和降低1.49 cm),AI32和AI53(上位第二节间长分别增加8.09 cm和降低3.00 cm);FACE和对照下分别检测出14和15个QTL,分布在除第2、7、9和第10号染色体外的各染色体上,其中5个(qPH6-4、qPH8-4、qPL8-4、qPL12-4和qLFN6-4)在FACE和对照条件下同时检测到,分布在第6、8和第12染色体上,而其余的只在FACE或对照下检测到。这29个QTLs中,3个(qPH6-4QE、qPH8-4QE和qLSN5-4QE)具显著的基因型与环境互作。在不同的CO2环境下,测试性状发生不同程度的表型变异。结果推论,对CO2浓度增加敏感的QTL位点,可能受到CO2浓度增加的诱导,可见控制水稻株高性状的QTL与CO2增加的环境发生了互作效应。 相似文献
15.
以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系 总被引:10,自引:0,他引:10
利用特定根盒装土, 培养4个水稻品种(MADHUKAR、IR8192-200、IR26、IR8192-31)植株, 用钉板法结合透明塑料膜固定获得近似原位根系样品, 扫描得到根系的二维平面图像, 以分形理论为基础, 利用盒维数法结合根系图像分形分析程序计算根系构型的分形维数和分形丰度, 比较各品种根系的形态特征, 并对分形参数、根系长度和 植株锌含量间的相关关系做了初步探讨。结果表明, 根系分形维数和分形丰度以MADHUKAR最大, IR8192-200最小, 说明MADHUKAR根系分支多, 在土壤中拓展体积大。分形维数、分形丰度与根系总长度之间均呈明显正相关, 而且根系总长度与分形丰度相关系数高于与分形维数的相关系数。分形维数和分形丰度与植株地上部干重、单位Zn浓度所产出的地上部生物量、地上部Zn吸收总量之间均呈显著正相关, 与地上部Zn浓度呈负相关。水稻根系形态和构型的变化影响植株生长, 影响植株Zn吸收积累及体内Zn的利用效率。盒维数法分形分析模型可用于研究水稻根系形态和构型, 为其提供新方法。 相似文献
16.
本研究利用开放式空气中CO2浓度增加(Free Air CO2 Enrichment, FACE)试验平台,研究CO2浓度升高200 µmol·mol-1下,水稻灌浆早期籽粒大小、生长速率、可溶性碳水化合物和淀粉含量及蔗糖转化酶活性等在开花后20 d内的变化动态。结果表明,与对照相比,FACE处理加快了灌浆早期籽粒的发育进程,尤其加快了籽粒宽度达到最大的日程,籽粒大小和籽粒灌浆速率提前3 d达到最大值;成熟时籽粒的长宽积FACE下的比对照下的提高了4.5%,但粒重无差异;FACE下开花后2~5 d内籽粒中的还原糖和蔗糖的含量及细胞壁转化酶和细胞质转化酶的活性显著高于对照下的,但淀粉含量和可溶性酸性转化酶活性则无显著差异。从结果推论,FACE加速水稻灌浆前期籽粒生长发育与其花后早期颖果内蔗糖合成和转运水平之间可能存在内在联系。 相似文献
17.
灰飞虱是我国水稻生产的主要害虫之一,不仅直接取食危害水稻,还是水稻主要病毒病的传播介体,严重制约水稻生产。籼稻品种MR1523对灰飞虱表现较强的排趋性。为发掘抗灰飞虱新基因,本研究利用MR1523与感虫粳稻品种苏御糯构建了一个包含200个家系的F2:3分离群体,进行灰飞虱抗性鉴定。并利用120对均匀分布在水稻12条染色体的多态性SSR标记,构建了全基因组连锁图谱,进行抗灰飞虱QTL定位。结果分别在水稻第2、第5和第6染色体上检测到Qsbph2、Qsbph5a、Qsbph5b和Qsbph6 4个抗灰飞虱QTLs,分别位于分子标记RM526–RM3763、RM17804–RM13、RM574–RM169和RM190–RM510之间,LOD值分别为2.14、3.13、3.23和2.35,贡献率分别为12.0%、14.7%、17.4%和14.1%,各QTL的抗性等位基因效应均来自抗虫亲本MR1523。该结果为后续抗灰飞虱基因的精细定位及通过分子标记辅助选择培育抗灰飞虱水稻新品种奠定了基础。 相似文献