首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One hundred sixty horses were anesthetized with xylazine, guaifenesin, thiamylal, and halothane for elective soft tissue and orthopedic procedures. Horses were randomly assigned to one of four groups. Group 1 (n = 40): Horses positioned in lateral (LRG1,; n = 20) or dorsal (DRG1,; n = 20) recumbency breathed spontaneously throughout anesthesia. Group 2 (n = 40): Intermittent positive pressure ventilation (IPPV) was instituted throughout anesthesia in horses positioned in lateral (LRG2; n = 20) or dorsal (DRG2; n = 20) recumbency. Group 3 (n = 40): Horses positioned in lateral (LRG3; n = 20) or dorsal (DRG3; n = 20) recumbency breathed spontaneously for the first half of anesthesia and intermittent positive pressure ventilation was instituted for the second half of anesthesia. Group 4 (n = 40): Intermittent positive pressure ventilation was instituted for the first half of anesthesia in horses positioned in lateral (LRG4; n = 20) or dorsal (DRG4; n = 20) recumbency. Spontaneous ventilation (SV) occured for the second half of anesthesia. The mean time of anesthesia was not significantly different within or between groups. The mean time of SV and IPPV was not significantly different in groups 3 and 4. Variables analyzed included pH, PaCO2, PaO2, and P(A-a)O2 (calculated). Spontaneous ventilation resulted in significantly higher PaCO2 and P(A-a)O2 values and significantly lower PaO2 values in LRG1, and DRG1, horses compared with LRG2 and DRG2 horses. Intermittent positive pressure ventilation resulted in normocarbia and significantly lower P(A-a)O2 values in LRG2 and DRG2 horses. In LRG2 the Pao2 values significantly increased from 20 minutes after induction to the end of anesthesia. The PaO2 and P(A-a)O2 values were not significantly different from the beginning of anesthesia after IPPV in DRG2 or DRG3. The PaO2 values significantly decreased and the P(A-a)O2 values significantly increased after return to SV in horses in LRG4, and DRG4. The PaO2 values were lowest and the P(A-a)O2 values were highest in all horses positioned in dorsal recumbency compared with lateral recumbency and in SV horses compared with IPPV horses. The pH changes paralleled the changes in PaCO2. Blood gas values during right versus left lateral recumbency in all groups were also evaluated. The PaO2 values were significantly lower and the P(A-a)O2 values were significantly higher during SV in horses positioned in left lateral (LRLG1) compared with right lateral (LRRG1) recumbency. No other significant changes were found comparing left and right lateral recumbency. Arterial hypoxemia (PaO2 < 60 mm Hg) developed in 35% of DRG1 horses and 20% of DRG2 horses at the end of anesthesia. Arterial hypercarbia (PaCO2= 50–60 mm Hg) developed in DRoi horses. Arterial hypoxemia that developed in 20% of DRG3 horses was not improved with IPPV. Arterial hypoxemia developed in 55% of DRG4 horses after return to SV. Some DRG4 horses with hypoxemia also developed hypercarbia, whereas some had PaCO2 values within normal limits. Arterial hypoxemia developed in one LRG1, and two LRG4, horses. Hypercarbia developed in onlv one LRG4 horse.  相似文献   

2.
The objective of the study was to describe the effects of carbon dioxide pneumoperitoneum and Trendelenburg position on arterial blood gas values in horses anesthetized for laparoscopy. The study design was a prospective case series using 14 healthy adult horses anesthetized for elective laparoscopic surgery. All horses in the study were maintained under anesthesia with halothane in oxygen with intermittent positive-pressure ventilation. A pneumoperitoneum of 15 mmHg or less was achieved with carbon dioxide, and horses were tilted to a 35-degree Trendelenburg position to allow the completion of laparoscopic cryptorchidectomy (n = 13) or ovariectomy (n = 1). Heart rate, mean arterial pressure, and arterial blood gases were recorded at six time intervals throughout the procedure. Results of the study indicated a pH that decreased and partial pressure of carbon dioxide (PaCO2) and mean arterial pressure that increased over time and differed significantly from baseline during Trendelenburg position. Partial pressure of oxygen (PaO2) was significantly lower than baseline after assumption of Trendelenburg position and did not improve on return to normal recumbency and abdominal pressure. As body weight increased, pH and PaO2 decreased and PaCO2 increased. We concluded that horses placed in Trendelenburg position have changes that are transient, with the exception of PaO2. Heavier horses have a greater change in pH, PaCO2, and PaO2 than lighter horses during abdominal insufflation and Trendelenburg position. The changes incurred during CO2 abdominal insufflation and Trendelenburg position are transient, with the exception of a decreased PaO2. Heavy horses undergoing abdominal insufflation and Trendelenburg position should be closely monitored for critical cardiopulmonary values.  相似文献   

3.
Objective – To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO2, PaCO2), and the efficiency of pulmonary oxygen uptake as estimated by alveolar‐arterial oxygen difference (A‐a difference). Design – Prospective, randomized, crossover study. Setting – University teaching hospital, intensive care unit. Animals – Twenty‐one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Interventions – Patients were placed randomly into lateral or sternal recumbency. PaO2 and PaCO2 were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Measurements and Main Results – Results presented as median (interquartile range). PaO2 was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0–96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9–90.9 mm Hg). The median change was 5.4 mm Hg (1.1–17.9 mm Hg). All 7 dogs with a PaO2<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8–29.7 mm Hg. PaCO2 levels when patients were in sternal recumbency, 30.5 mm Hg (27.3–32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3–36.0 mm Hg) (P=0.07). The median change was ?1.9 mm Hg (?3.6–0.77 mm Hg). A‐a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3–27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4–36.3 mm Hg). The median change was ?3.1 mm Hg (?14.6–0.9 mm Hg). Conclusions – PaO2 was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A‐a difference) rather than increased alveolar ventilation (decreased PaCO2). Patients with hypoxemia (defined as PaO2<80 mm Hg) in lateral recumbency may benefit from being placed in sternal recumbency. Sternal recumbency is recommended to improve oxygenation in hypoxemic patients.  相似文献   

4.
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia.  相似文献   

5.
ObjectiveTo test whether partial pressure of CO2 in expired gas (PēCO2) predicts the partial pressure of CO2 in arterial blood (PaCO2) in apneic chickens during air sac insufflation anesthesia at three different ventilation states. Secondary objective: To determine the PēCO2 at which apnea occurs during air sac insufflation anesthesia.Study designRandomized cross-over study.AnimalsTwenty-three healthy male white leghorn chickens.MethodsChickens were anesthetized via mask with isoflurane in oxygen and an air sac cannula was placed in the right abdominal air sac. Delivery of isoflurane in O2 was transferred from the mask to the air sac cannula. The birds were maintained at a surgical plane of anesthesia and apnea was induced by adjusting gas flow; the PēCO2 at apnea was recorded. The birds were then paralyzed and gas flow was adjusted to achieve three different PēCO2s in random order: 43 mmHg (5.6 kPa) [hypoventilation]; 33 mmHg (4.3 kPa) [normoventilation]; and 23 mmHg (3.0 kPa) [hyperventilation]. After maintaining the target expired isoflurane concentration (EIso; 1.85 or 1.90%) and PēCO2 for 15 minutes, arterial blood gas analysis was performed to determine the PaCO2. The chickens were euthanized at the end of the experiment.ResultsBased on Bland-Altman comparisons, PēCO2 was not strongly associated with PaCO2 during the three ventilation states. The PēCO2 at which apnea occurred varied {median (minimum, maximum): 35 (30, 48) mmHg [4.6 (3.9, 6.2) kPa]}.ConclusionsMeasured PēCO2 cannot be used in a simple linear fashion to predict PaCO2 in birds during air sac insufflation anesthesia. The PēCO2 at which apnea occurs during air sac insufflation anesthesia is not predictable.Clinical relevanceArterial blood gases should be used to monitor CO2 during air sac insufflation anesthesia to verify appropriate patient ventilation.  相似文献   

6.
The anesthetic and cardiorespiratory effects of a low dose (LD, 0.4 mg kg?1 xylazine and 4 mg kg?1 ketamine) and a high dose (HD, 0.8 mg kg?1 xylazine and 8 mg kg?1 ketamine) of IM xylazine–ketamine combination were compared in a randomized cross‐over study using six castrated male llamas. Three llamas in each dosage group (LDT, HDT) were assigned to receive IM tolazoline (2 mg kg?1) after 30 minutes of recumbency. All IM injections were given in the semitendinosus or semimembranosus muscles. Pulse, respiratory rate, and indirect arterial blood pressure were recorded every 10 minutes, and hemoglobin oxygen saturation was recorded every 5 minutes during lateral recumbency. Samples for arterial blood gas analysis were collected 5 minutes following recumbency and every 30 minutes thereafter. Base‐to‐apex ECG was monitored continuously. Analgesia was evaluated every 5 minutes by both a 30 minutes skin pinch and a needle prick of the toe. Most llamas breathed room air throughout anesthesia. Two llamas that developed severe hypoxemia (SpO2 < 75%) received 5 minutes of nasal oxygen insufflation, but were maintained on room air for the rest of the anesthetic period. anova for repeated measures and Tukey's test were used to analyze cardiorespiratory data. Fischer's exact test was used to compare the ability of each to provide >30 minutes of lateral recumbency and analgesia. A p‐value < 0.05 was considered significant. Both dosages provided reasonably rapid induction following injection (LD: 10.8 ± 6.3 minutes; HD: 5.0 ± 1.1 minutes; p = 0.07). Duration of lateral recumbency and analgesia were 34.7 ± 6.7 and 27.3 ± 4.6 minutes, respectively, in the LDT llamas. None of the three remaining LD llamas remained in lateral recumbency for longer than 12 minutes. Duration of lateral recumbency and analgesia were 87.3 ± 18.5 and 67.7 ± 16.0 minutes, respectively, for the HD llamas that did not receive tolazoline. The HDT llamas were recumbent for a significantly shorter time (43.3 ± 0.6 minutes; p = 0.05). The ability to provide >30 minutes of recumbency and analgesia was better in the HD group (6/6) than in the LD group (2/6) (p = 0.03). No differences between dosages were seen in pulse rate, respiratory rate, or arterial pressures. No ECG abnormalities were seen. Transient hypoxemia was seen in the first 10 minutes of lateral recumbency in the HD group by both hemoglobin oxygen saturation (84 ± 9.5%) and by blood gas PaO2 (44.5 ± 5.8 mm Hg). It was concluded that the HD provided more consistent results than the LD, but induced transient hypoxemia. Tolazoline shortened the recovery time in llamas receiving the HD.  相似文献   

7.
AIMS: To determine if abdominal insufflation with medical air will improve oxygenation and ventilation parameters when compared to insufflation with CO2 in xylazine-sedated sheep undergoing laparoscopic artificial insemination (AI).

METHODS: Forty-seven sheep underwent oestrus synchronisation and were fasted for 24 hours prior to laparoscopic AI. Each animal was randomised to receive either CO2 or medical air for abdominal insufflation. An auricular arterial catheter was placed and utilised for serial blood sampling. Respiratory rates (RR) and arterial blood samples were collected at baseline, after xylazine (0.1?mg/kg I/V) sedation, 2 minutes after Trendelenburg positioning, 5 minutes after abdominal insufflation, and 10 minutes after being returned to a standing position. Blood samples were collected in heparinised syringes, stored on ice, and analysed for arterial pH, partial pressure of arterial O2 (PaO2), and CO2 (PaCO2). The number of ewes conceiving to AI was also determined.

RESULTS: Repeated measures ANOVA demonstrated temporal effects on RR, PaO2, PaCO2 and arterial pH during the laparoscopic AI procedure (p<0.001), but no difference between insufflation groups (p>0.01). No sheep experienced hypercapnia (PaCO2>50?mmHg) or acidaemia (pH<7.35). Hypoxaemia (PaO2<70?mmHg) was diagnosed during the procedure in 14/22 (64%) ewes in the CO2 group compared with 8/23 (35%) ewes in the medical air group (p=0.053). Overall, 15/20 (75%) ewes in the CO2 group conceived to AI compared with 16/22 (72.7%) in the medical air group (p=0.867).

CONCLUSIONS AND CLINICAL RELEVANCE: There were no statistical or clinical differences in RR, PaO2, PaCO2, pH, or conception to AI when comparing the effects of CO2 and medical air as abdominal insufflation gases. None of the sheep experienced hypercapnia or acidaemic, yet 42% (19/45) of sheep developed clinical hypoxaemia, with a higher percentage of ewes in the CO2 group developing hypoxaemia than in the medical air group. Based on the overall analysis, medical air could be utilised as a comparable alternative for abdominal insufflation during laparoscopic AI procedures.  相似文献   

8.
ObjectiveTo investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.Study designProspective, randomized experimental study.AnimalsTwelve Quarter Horse foals, age of 5.4 ±0.9 months and weighing 222 ± 48 kg.MethodsFoals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute?1 was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (fR), inspired fraction of oxygen (FiO2), and end-tidal carbon dioxide (Pe’CO2) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2)] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO2/FiO2 were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was α = 0.05. All values are presented as least square means ± SE.ResultsValues at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 ± 14.4 mmHg before hoisting to 92 ± 11.6 mmHg after hoisting (p=0.0013). The PaO2/FiO2 ratio decreased from 275 ± 30 to 175 ± 24 (p=0.0055). End-tidal carbon dioxide decreased significantly from 48.7 ± 1.6 to 44.5 ± 1.2 mmHg (p=0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting.Conclusion and clinical relevanceHoisting decreased PaO2 in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO2 measurement is necessary to detect early changes.  相似文献   

9.
ObjectiveTo evaluate the efficacy and cardiopulmonary effects of ketamine–midazolam for chemical restraint, isoflurane anesthesia and tramadol or methadone as preventive analgesia in spotted pacas subjected to laparoscopy.Study designProspective placebo-controlled blinded trial.AnimalsA total of eight captive female Cuniculus paca weighing 9.3 ± 0.9 kg.MethodsAnimals were anesthetized on three occasions with 15 day intervals. Manually restrained animals were administered midazolam (0.5 mg kg–1) and ketamine (25 mg kg–1) intramuscularly. Anesthesia was induced and maintained with isoflurane 30 minutes later. Tramadol (5 mg kg–1), methadone (0.5 mg kg–1) or saline (0.05 mL kg–1) were administered intramuscularly 15 minutes prior to laparoscopy. Heart rate (HR), respiratory rate, mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), end-tidal CO2 partial pressure (Pe′CO2), end-tidal concentration of isoflurane (Fe′Iso), pH, PaO2, PaCO2, bicarbonate (HCO3?), anion gap (AG) and base excess (BE) were monitored after chemical restraint, anesthesia induction and at different laparoscopy stages. Postoperative pain was assessed by visual analog scale (VAS) for 24 hours. Variables were compared using anova or Friedman test (p < 0.05).ResultsChemical restraint was effective in 92% of animals. Isoflurane anesthesia was effective; however, HR, MAP, pH and AG decreased, whereas Pe′CO2, PaO2, PaCO2, HCO3? and BE increased. MAP was stable with tramadol and methadone treatments; HR, Fe′Iso and postoperative VAS decreased. VAS was lower for a longer time with methadone treatment; SpO2 and AG decreased, whereas Pe′CO2, PaCO2 and HCO3? increased.Conclusions and clinical relevanceKetamine–midazolam provided satisfactory restraint. Isoflurane anesthesia for laparoscopy was effective but resulted in hypotension and respiratory acidosis. Tramadol and methadone reduced isoflurane requirements, provided postoperative analgesia and caused hypercapnia, with methadone causing severe respiratory depression. Thus, the anesthetic protocol is adequate for laparoscopy in Cuniculus paca; however, methadone should be avoided.  相似文献   

10.

Objective

To record the cardiopulmonary effects of pleural CO2 positive pressure insufflation in anesthetized horses.

Study design

Prospective study.

Animals

Seven horses (mean ± standard deviation, 530.9 ± 68.1 kg) undergoing terminal surgery.

Methods

Horses were sedated with xylazine. Anesthesia was induced with ketamine–propofol and maintained with isoflurane, positive pressure ventilation, detomidine infusion, and butorphanol with the horses in dorsal recumbency. Baseline measurements were cardiac output, heart rate, pulmonary and systemic arterial and right atrial blood pressures, body temperature, expired and inspired gas concentrations, and arterial and mixed venous blood gases, electrolytes, glucose, and lactate concentrations. An 18 gauge 6.6 cm needle was inserted into the right pleural cavity midway between the sternum and dorsal midline in the sixth or seventh intercostal space for pleural pressure (PP) measurement. A 14 gauge 18 cm needle placed 5 cm below the previous needle allowed CO2 insufflation into the pleural cavity. All measurements were repeated after: needle insertion, at 2, 5, and 8 mmHg PPs, and after pleural gas removal (GR). Data were compared with baseline using one-way analysis of variance with repeated measures. p < 0.05 was considered significant.

Results

Actual PPs were within 1.1 mmHg of the targeted PP. Pulmonary systolic and mean arterial pressures, alveolar dead space to tidal volume ratio, and isoflurane requirements increased at 8 mmHg PP and GR. Cardiac index decreased at 5 mmHg PP. Stroke index decreased at 2 mmHg PP to GR. PaO2 decreased at 5 mmHg PP to GR. PaCO2 increased at 8 mmHg PP and GR. Oxygen delivery decreased at 5 and 8 mmHg PP. Intrapulmonary shunt fraction and lactate concentration increased with GR.

Conclusions and clinical relevance:

Severe adverse cardiopulmonary effects arise from CO2 positive pressure insufflation into the right hemithorax in dorsally recumbent isoflurane-anesthetized horses. PP should be ≤2 mmHg.  相似文献   

11.
We investigated the influence of pneumoperitoneum#(PP) and postural change under inhalation anesthesia with isoflurane, which is routinely used in dogs, on the cardiovascular and respiratory systems. As test animals, 6 adult beagles were used. To induce anesthesia, atropine, butorphanol and propofol were intravenously injected. Anesthesia was maintained with 1.3 MAC (1.7%) isoflurane. The following were the experiment conditions: I:E ratio, 1:1.9; tidal air exchange, 20 ml/kg; and ventilation frequency, 14 times/min. Respiration was regulated so that the PaCO2 was approximately 35 to 40 mmHg before the start of the experiment. PP with CO2 (intraperitoneal pressure 15 mmHg) and a postural change (15°C) was performed during the experiment. As parameters of circulatory kinetics, heart rate (HR), mean aortic pressure (MAP), mean pulmonary arterial pressure (MPAP), central venous pressure (CVP), femoral venous pressure (FVP) and cardiac output (CO) were measured. As parameters of respiratory kinetics, airway pressure (PAW) and blood gas (BG) were measured. There were significant increases in HR, MAP, MPAP, CVP, FVP, CO, PAW and PaCO2 after PP in the horizontal position. There were significant increases in CVP, FVP, PAW and PaCO2 after PP in the Trendelenburg position. There were significant increases in the MPAP, CVP, FVP, PAW and PaCO2 after PP in the inverse Trendelenburg position. There was a significant difference in FVP after PP between the Trendelenburg position and inverse Trendelenburg position. The results of this experiment suggest that appropriate anesthesia control, such as changing the ventilation conditions after PP, is required for laparoscopic surgery under inhalation anesthesia with isoflurane.  相似文献   

12.
Objective The study aimed to investigate the effect of varying pulse lengths of inhaled nitric oxide (iNO), and 2.5 hours of continuous pulse‐delivered iNO on pulmonary gas exchange in anaesthetized horses. Study Design Experimental study. Animals Six Standardbred horses. Methods Horses received acepromazine, detomidine, guaifenesin, thiopentone and isoflurane in oxygen, were positioned in dorsal recumbency and were breathing spontaneously. iNO was on average pulsed during the first 20, 30, 43 or 73% of the inspiration in 15 minute steps. The pulse length that corresponded to the highest (peak) partial pressure of arterial oxygen (PaO2) in the individual horses was determined and delivered for a further 1.5 hours. Data measured or calculated included arterial and mixed venous partial pressures of O2 and CO2, heart rate, respiratory rate, expired minute ventilation, pulmonary and systemic arterial mean pressures, cardiac output and venous admixture. Data (mean ± SD) was analysed using anova with p < 0.05 considered significant. Results Although the pulse length of iNO that corresponded to peak PaO2 varied between horses, administration of all pulse lengths of iNO increased PaO2 compared to baseline. The shortest pulse lengths that resulted in the peak PaO2 were 30 and 43% of the inspiration. Administration of iNO increased PaO2 (12.6 ± 4.1 kPa [95 ± 31 mmHg] at baseline to a range of 23.0 ± 8.4 to 25.3 ± 9.0 kPa [173 to 190 mmHg]) and PaCO2 (8.5 ± 1.2 kPa [64 ± 9 mmHg] to 9.8 ± 1.5 kPa [73 ± 11 mmHg]) and decreased venous admixture from 32 ± 6% to 25 ± 6%. The increase in PaO2 and decrease in venous admixture was sustained for the entire 2.5 hours of iNO delivery. Conclusions The improvement in arterial oxygenation during pulsed delivery of iNO was significant and sustained throughout 2.5 hours of anaesthesia. Clinical relevance Pulsed iNO potentially could be used clinically to counteract hypoxemia in anaesthetized horses.  相似文献   

13.
Case 1 A two‐year old, 462 kg Standard bred horse was anesthetized for arthroscopy and castration. During anesthesia, hyperemia of the mucosal membranes and urticaria were noticed. During 5 hours of anesthesia subcutaneous edema of the eyelids and neck region developed. In the recovery box, the orotracheal (OT) tube was left in situ and secured in place with tape. Following initial attempts to stand, the horse became highly agitated and signs consistent with pulmonary edema developed subsequently. Arterial hypoxemia (PaO2: 3.7 kPa [28 mmHg]) and hypocapnia (PaCO2: 3.1 kPa [23 mmHg]) were confirmed. Oxygen and furosemide were administered. The horse was assisted to standing with a sling. Therapy continued with bilateral intra‐nasal oxygen insufflation. Ancillary medical therapy included flunixin meglumine, penicillin, gentamycin and dimethylsulfoxide. Following 7 hours of treatment the arterial oxygen tensions began to increase towards normal values. Case 2 An 11‐year old, 528 kg Paint horse was anesthetized for surgery of a submandibular mass. The 4‐hour anesthetic period was unremarkable. The OT tube was left in situ for the recovery. During recovery, the horse was slightly agitated and stood after three attempts. Clinical signs consistent with pulmonary edema and arterial hypoxemia (PaO2: 5 kPa [37.5 mmHg]) subsequently developed following extubation. Respiratory signs resolved with medical therapy, including unilateral nasal oxygen insufflation, furosemide, flunixin meglumine and dimethylsulfoxide. The diagnosis of pulmonary edema in these horses was made by clinical signs and arterial blood‐gas analysis. While pulmonary radiographs were not taken to confirm the diagnosis, the clinical signs following anesthesia support the diagnosis in both cases. The etiology of pulmonary edema was most likely multifactorial.  相似文献   

14.
The purpose of this study was to find out if an LMA (#1 LMA‐Classic) would provide a better airway than a face mask in spontaneously breathing anesthetized rabbits, and to test if it could be used for mechanically controlled ventilation. Sixteen rabbits (4.1 ± 0.8 kg, mean ± SD) were assigned randomly to three treatment groups; face mask with spontaneous ventilation (FM‐SV; n = 5), LMA with spontaneous ventilation (LMA‐SV; n = 5), and LMA with controlled ventilation (LMA‐CV; n = 6). Rabbits were anesthetized in dorsal recumbency using a circle circuit at constant ET isoflurane (2.3%, Datex airway gas monitor) and constant rectal temperature (38.85 °C) for 2 hours. PaCO2, PaO2, minute volume, tidal volume (Wright's respirometer), and Pe CO2 were measured at 15 minute intervals. Two individuals in the FM‐SV group had PaCO2 >100 mm Hg (>13.3 kPa). One rabbit in the FM‐SV had PaO2 <80 mm Hg (<10.7 kPa). All FM‐SV rabbits showed signs of airway obstruction and two were withdrawn from the study at 45 and 90 minutes, respectively, because of cyanosis. Tidal volume could not be measured in the FM‐SV group. No signs of airway obstructions were observed in either of the LMA groups. Four rabbits in the LMA‐CV group developed gastric tympany, and one of these refluxed after 110 minutes. The significance of differences between the two spontaneously breathing groups and between the two LMA groups were measured using Wilcoxon's rank sum test (with significance assumed at p < 0.05). There were no statistical differences between FM‐SV and LMA‐SV in any variable tested. PaCO2 and Pe ′CO2 were less in the LMA‐CV group than in the LMA‐SV group, while PaO2, tidal volume, and minute volume were all more. We conclude that biologically, the LMA provides a better airway than the face mask during spontaneous breathing and that it can be used for IPPV, but that gastric tympany is likely to occur during IPPV.  相似文献   

15.
Objective To test the hypothesis that hypercapnic hyperpnea produced using endotracheal insufflation with 5–10% CO2 in oxygen could be used to shorten anesthetic recovery time in horses, and that recovery from sevoflurane would be faster than from isoflurane. Study design Randomized crossover study design. Animals Eight healthy adult horses. Methods After 2 hours’ administration of constant 1.2 times MAC isoflurane or sevoflurane, horses were disconnected from the anesthetic circuit and administered 0, 5, or 10% CO2 in balance O2 via endotracheal tube insufflation. End‐tidal gas samples were collected to measure anesthetic washout kinetics, and arterial and venous blood samples were collected to measure respiratory gas partial pressures. Horses recovered in padded stalls without assistance, and each recovery was videotaped and evaluated by reviewers who were blinded to the anesthetic agent and insufflation treatment used. Results Compared to isoflurane, sevoflurane caused greater hypoventilation and was associated with longer times until standing recovery. CO2 insufflation significantly decreased anesthetic recovery time compared to insufflation with O2 alone without significantly increasing PaCO2. Pharmacokinetic parameters during recovery from isoflurane with CO2 insufflation were statistically indistinguishable from sevoflurane recovery without CO2. Neither anesthetic agent nor insufflation treatment affected recovery quality from anesthesia. Conclusions and clinical relevance Hypercapnic hyperpnea decreases time to standing without influencing anesthetic recovery quality. Although the lower blood gas solubility of sevoflurane should favor a shorter recovery time compared to isoflurane, this advantage is negated by the greater respiratory depression from sevoflurane in horses.  相似文献   

16.
Objective – To evaluate the tolerance of a continuous positive airway pressure (CPAP) mask in tranquilized dogs and compare PaO2 in arterial blood in dogs receiving oxygen with a regular face mask or CPAP mask set to maintain a pressure of 2.5 or 5 cm H2O. Design – Prospective, randomized clinical study. Setting – University teaching hospital. Animals – Sixteen client‐owned dogs without evidence of cardiopulmonary disease were studied. Interventions – Eight animals were randomly assigned to each of 2 treatment groups: group A received 2.5 cm H2O CPAP and group B received 5 cm H2O CPAP after first receiving oxygen (5 L/min) by a regular face mask. Animals were tranquilized with acepromazine 0.05 mg/kg, IV and morphine 0.2 mg/kg, IM. An arterial catheter was then placed to facilitate blood sampling for pHa, PaO2, and PaCO2 determinations before and after treatments. Direct mean arterial pressure, heart rate, respiratory rate, and temperature were also recorded after each treatment. Measurements and Main Results – CPAP administration was well tolerated by all animals. The mean arterial pressure, heart rate, respiratory rate, temperature, PaCO2, and pHa, did not differ at any time point between groups. Differences were seen in oxygenation; in group A, PaO2 significantly increased from a mean of 288.3±47.5 mm Hg with a standard mask to a mean of 390.3±65.5 mm Hg with the CPAP mask and in group B, PaO2 increased similarly from 325.0±70.5 to 425.2±63.4 mm Hg (P<0.05); no differences were detected between the 2 CPAP treatments. Conclusions – In healthy tranquilized dogs noninvasive CPAP is well tolerated and increases PaO2 above values obtained when using a regular face mask.  相似文献   

17.
OBJECTIVE: To evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular xylazine/ketamine in llamas, and to determine if an intramuscular injection of tolazoline would shorten the anesthesia recovery time. STUDY DESIGN: Prospective randomized study. ANIMALS: Six castrated male llamas. METHODS: Each llama received a low dose (LD) (0.4 mg kg(-1) xylazine and 4 mg kg(-1) ketamine) and high dose (HD) (0.8 mg kg(-1) xylazine and 8 mg kg(-1) ketamine). Time to sedation, duration of lateral recumbency and analgesia, pulse, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood gases, and the electrocardiogram were monitored and recorded during anesthesia. Three llamas in each treatment were randomized to receive intramuscular tolazoline (2 mg kg(-1)) after 30 minutes of lateral recumbency. RESULTS: Onset of sedation, lateral recumbency, and analgesia was rapid with both treatments. The HD was able to provide at least 30 minutes of anesthesia in all six llamas. The LD provided only 30 minutes of anesthesia in two out of six llamas. Respiratory depression and hypoxemia were seen in the HD treatment during the first 10 minutes of lateral recumbency. Two llamas were severely hypoxemic during this period and were given nasal oxygen for five minutes. Heart rate decreased, but there were no significant changes in blood pressure. Tolazoline significantly shortened the duration of recumbency in the HD treatment. CONCLUSIONS: The HD provided more consistent clinical effects in llamas than did the LD. Intramuscular tolazoline shortens the duration of lateral recumbency in llamas anesthetized with this combination. CLINICAL RELEVANCE: Both doses appear to be very effective in providing restraint in llamas. The LD may be used for procedures requiring a short period of anesthesia or restraint. The HD could be used when a longer duration of anesthesia is desired. Supplemental oxygen should be available if using the HD. Tolazoline (IM) shortened the recovery time with this combination in llamas.  相似文献   

18.
ObjectiveTo evaluate arterial oxygenation during the first 4 postoperative hours in dogs administered different fractions of inspired oxygen (FiO2) during general anesthesia with mechanical ventilation.Study designProspective, randomized clinical trial.AnimalsA total of 20 healthy female dogs, weighing >15 kg and body condition scores 3–7/9, admitted for ovariohysterectomy.MethodsDogs were randomized to breathe an FiO2 >0.9 or 0.4 during isoflurane anesthesia with intermittent positive pressure ventilation. The intraoperative PaO2:FiO2 ratio was recorded during closure of the linea alba. Arterial blood was obtained 5, 60 and 240 minutes after extubation for measurement of PaO2 and PaCO2 (FiO2 = 0.21). Demographic characteristics, duration of anesthesia, PaO2:FiO2 ratio and anesthetic agents were compared between groups with Wilcoxon tests. The postoperative PaO2, PaCO2, rectal temperature, a visual sedation score and events of hypoxemia (PaO2 < 80 mmHg) were compared between groups with mixed-effects models or generalized linear mixed models.ResultsGroups were indistinguishable by demographic characteristics, duration of anesthesia, anesthetic agents administered and intraoperative PaO2:FiO2 ratio (all p > 0.08). Postoperative PaO2, PaCO2, rectal temperature or sedation score were not different between groups (all p > 0.07). During the first 4 postoperative hours, hypoxemia occurred in three and seven dogs that breathed FiO2 >0.9 or 0.4 during anesthesia, respectively (p = 0.04).Conclusions and clinical relevanceThe results identified no advantage to decreasing FiO2 to 0.4 during anesthesia with mechanical ventilation with respect to postoperative oxygenation. Moreover, the incidence of hypoxemia in the first 4 hours after anesthesia was higher in these dogs than in dogs breathing FiO2 >0.9.  相似文献   

19.
The cardiovascular effects following epidural injection of xylazine or isotonic saline during isoflurane anesthesia were assessed in six healthy dogs. Dogs were anesthetized with isoflurane in O2 and maintained at 2.0% end-tidal concentration. Ventilation was controlled to maintain PaCO2 at 35 to 45 mm Hg. The dorsal pedal artery was cannulated for measurement of arterial blood pressure (AP)(systolic AP, mean AP, diastolic AP) and for blood sample collection. Arterial pH and blood gas tensions (PaO2 and PaCO2) were determined. Cardiac output was measured by thermodilution. The electrocardiogram (ECG), heart rate (HR), core body temperature, central venous pressure (CVP), mean pulmonary AP, and end-tidal isoflurane concentration (ETISO) and CO2 tension (ETCO2) were monitored. Systemic vascular resistance (SVR), arterial HCO2 concentration, base balance, and cardiac index (CI) were calculated. After baseline measurements were taken, either xylazine (0.2 mg/kg) in 5 mL isotonic saline or 5 mL of isotonic saline was injected into the lumbosacral epidural space. Data were then recorded at 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after epidural injection. Data were analyzed by two-way analysis of variance (ANOVA) for repeated measures. When significant differences were encountered, mean values were compared using Bonferroni's test. The level of significance was set at P <.05. Mean values for diastolic AP decreased at 90 and 120 minutes compared with the mean value at 15 minutes after epidural injection of xylazine. No differences were detected at any time or between treatments for HR, systolic AP, mean AP, CVP, CI, SVR, mean pulmonary AP, temperature, ETCO2, ETISO, arterial pH, PaCO2, PaO2, plasma bicarbonate concentration, or base balance. Results of this study indicate that epidural injection of xylazine (0.2 mg/kg) is associated with minimal cardiovascular side effects during isoflurane anesthesia in mechanically ventilated dogs.  相似文献   

20.
OBJECTIVE: To determine whether sensitivity of detecting an anomalous portosystemic blood vessel during operative mesenteric portography varied with patient positioning. DESIGN: Retrospective study. ANIMALS: 34 dogs with a portosystemic shunt diagnosed via scintigraphy or surgery. PROCEDURE: Portograms were evaluated for a portosystemic blood vessel. Sensitivity was calculated from results obtained with dogs in left lateral, right lateral, and dorsal recumbency and from results obtained with dogs in 2 or 3 positions. Differences in sensitivity among positions and between 2 examiners were evaluated. RESULTS: Sensitivity was 85, 91, and 100% in dorsal, right lateral, and left lateral recumbency, respectively. Sensitivity was lower in dorsal recumbency than in left lateral recumbency, although differences were not significant. There was no significant difference between sensitivity of results obtained in dorsal and right lateral recumbency or right lateral and left lateral recumbency. Sensitivity for combined right lateral and dorsal positions was 97%, which was better than that in dorsal recumbency alone, although the difference was not significant. Because sensitivity in left lateral recumbency was 100%, there was no need to evaluate the improvement obtained by combining the result of this position with the results of other positions. CONCLUSION AND CLINICAL RELEVANCE: Results of mesenteric portography varied with patient positioning. The optimal position varied among patients but left lateral recumbency may be better and dorsal recumbency worse. Sensitivity may be improved by performing the test with the patient in orthogonal recumbent positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号