首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of charcoal on biotic processes in soils remains poorly understood. Charcoal is a natural product of wildfires that burned on a historic return interval of ∼100 years in Scots pine (Pinus sylvestris L.) forests of northern Sweden. Fire suppression and changes in forest stand management have resulted in a lack of charcoal production in these ecosystems. It is thought that charcoal may alter N mineralization and nitrification rates, however, previous studies have not been conclusive. Replicated field studies were conducted at three late-succession field sites in northern Sweden and supporting laboratory incubations were conducted using soil humus collected from these sites. We used activated carbon (AC), as a surrogate for natural-occurring fire-produced charcoal. Two rates of AC (0 and 2000 kg ha−1), and glycine (0 and 100 kg N as glycine ha−1) were applied in factorial combination to field microplots in a randomized complete block pattern. Net nitrification, N mineralization, and free phenol concentrations were measured using ionic and non-ionic resin capsules, respectively. These same treatments and also two rates of birch leaf litter (0 and 1000 kg ha−1) were applied in a laboratory incubation and soils from this incubation were extracted with KCl and analyzed for NH4+ and NO3. Nitrification rates increased with AC amendments in laboratory incubations, but this was not supported by field studies. Ammonification rates, as measured by NH4+ accumulation on ionic resins, were increased considerably by glycine applications, but some NH4+ was apparently lost to surface sorption to the AC. Phenolic accumulation on non-ionic resin capsules was significantly reduced by AC amendments. We conclude that charcoal exhibits important characteristics that affect regulating steps in the transformation and cycling of N.  相似文献   

2.
We studied the reactions of humus layer (F/H) microbial respiratory activity, microbial biomass C, and the fungal biomass, measured as the soil ergosterol content, to the application of three levels of wood ash (1000, 2500, and 5000 kg ha-1) and to fire treatment in a Scots pine (Pinus sylvestris L.) stand. Physicochemical measurements (pH, organic matter content, extractable and total C content, NH 4 + and total N content, cation-exchange capacity, base saturation) showed similarity between the fire-treated plots and those treated with the lowest dose of wood ash (1000 kg ha-1). The ash application did not change the level of microbial biomass C or fungal ergosterol when compared to the control, being around 7500 and 350 g g-1 organic matter for the biomass C and ergosterol, respectively. The fire treatment lowered the values of both biomass measurements to about half that of the control values. The fire treatment caused a sevenfold fall in the respiration rate of fieldmoist soil to 1.8 l h-1 g-1 organic matter compared to the values of the control or ash treatments. However, in the same soils adjusted to a water-holding capacity of 60%, the differences between the fire treatment and the control were diminished, and the ash-fertilized plots were characterized by a higher respiration rate compared to the control plots. The glucose-induced respiration reacted in the same way as the water-adjusted soil respiration. The metabolic quotient, qCO2, gradually increased from the control level with increasing applications of ash, reaching a maximum in the fire treatment. Nitrification was not observed in the treatment plots.  相似文献   

3.
Efforts to increase our understanding of the terrestrial carbon balance have resulted in a dense global network of eddy covariance towers, which are able to measure the net ecosystem exchange of CO2, H2O and energy between ecosystems and the atmosphere. However, the typical set-up on an eddy covariance tower does not monitor lateral CO2- and carbon fluxes such as dissolved organic carbon (DOC). By ignoring DOC fluxes eddy covariance-based CO2 balances overestimate the carbon sink of ecosystems as part of the DOC drains into the inland waters and get respired outside the footprint of the eddy covariance tower. In this study we quantify 7 years (2000-2006) of DOC fluxes from a temperate Scots pine forest in Belgium and analyse its inter-annual variability. On average, 10 gC m−2 year−1 is leached from the pine forest as DOC. If the DOC fluxes are considered relative to the gross ecosystem carbon fluxes we see that DOC fluxes are small: 0.8 ± 0.2% relative to gross primary productivity, 1.0 ± 0.3% relative to ecosystem respiration, and (2.4 ± 0.4%) relative to soil respiration. However, when compared to net fluxes such as net ecosystem productivity and net biome productivity the DOC flux is no longer negligible (11 ± 7% and 17%, respectively), especially because the DOC losses constitute a systematic bias and not a random error. The inter-annual variability of the DOC fluxes followed that of annual water drainage. Hence, drainage drives DOC leaching at both short and long time scales. Finally, it is noted that part of the carbon that is leached from the ecosystem as DOC is respired or sequestered elsewhere, so the physical boundaries of accounting should always be reported together with the carbon budget.  相似文献   

4.
皆伐火烧对杉木人工林土壤有机碳和黑碳的影响   总被引:8,自引:0,他引:8  
黑碳(B lack Carbon,BC)是生物质或化石燃料不完全燃烧所形成的一类特殊产物,普遍分布于大气、土壤、冰雪和水以及沉积物中[1~3]。研究表明,BC是土壤惰性碳库的重要组成部分,在土壤碳循环中占有十分重要的地位[4,5]。目前,国内外对大气气溶胶、海洋沉积物和雪冰中的BC研究已有大量报道[6,7],但对土壤BC的研究较少,特别是国内在这一方面的研究报道还不多见[2,8,9]。皆伐火烧是人工林经营的重要措施,对人工林土壤碳库具有重要影响[10~13],但目前的研究结论尚存在争议[10~15]。本研究旨在探讨杉木人工林土壤有机碳(SOC)和BC对皆伐火烧的响应,以期为正确评价皆伐火烧对人  相似文献   

5.
长期施肥下黑土活性有机质和碳库管理指数研究   总被引:16,自引:1,他引:16  
基于东北黑土长期定位试验,研究不同施肥措施对黑土活性有机质及其碳库管理指数的影响。结果表明:在不同施肥措施的影响下土壤有机质得到了不同程度的提高。撂荒处理(CK0)土壤有机质较初始值提高了35.62%;单施化肥处理有机质提高最小,为10%~15%;其次为秸秆还田处理提高了20%;有机肥和化肥配施处理土壤有机质提高效果最显著,为66.38%~92.13%。黑土活性有机质分布规律为高活性有机质、中活性有机质、低活性有机质分别占有机质含量的3.80%~10.28%、1.59%~12.32%、8.71%~27.45%。以撂荒处理为参考土壤,有机肥和化肥配施处理高活性有机质、中活性有机质碳库管理指数高于参考土壤;氮磷钾肥配施处理(NPK)高活性有机质及其高活性有机质碳库管理指数与参考土壤较为接近;单施氮肥处理(N)、施用氮肥和磷肥处理(NP)、施用氮肥和钾肥处理(NK)、施用磷肥和钾肥处理(PK)高活性有机质、中活性有机质及总活性有机质碳库管理指数均低于参考土壤。采用有机肥无机肥配施对提高黑土活性有机质含量,提高土壤碳库管理指数具有比较好的效果。  相似文献   

6.
Fluctuations in soil biota abundance in different organic layers of a Scots pine forest in The Netherlands were studied by bimonthly counts during 2.5 years. The counts were made using litterbags which were placed in the litter (L), fragmentation (F) and humus (H) layers at the start of the experiment. Results from the L layer were also compared with results from litter which was renewed every 2 months (L′) to study colonisation. In this study the results for amoebae, flagellates and ciliates are presented. The highest numbers of soil protozoa were found in the L layer during most sampling occasions. The H layer contained the lowest numbers. The L layer also showed higher numbers than the L′ litterbags which were renewed every 2 months. Fluctuations in abundance could partly be explained by fluctuations in moisture content. Moisture content in the litterbags was rather constant throughout the experiment, although occasionally moisture contents of 10% and 80% were observed. Fluctuations in moisture content in the L layer were often larger than in the F and H layers. Flagellates were the most abundant group, reaching numbers of several hundred thousands to several millions per gram fresh weight on various occasions. Amoebae often reached numbers of between tens of thousands and several hundred thousands. Ciliates only reached numbers of up to several thousands. Received: 26 June 1997  相似文献   

7.
In a Dutch Scots pine forest an experiment was conducted to quantify the role of soil biota in the functioning of the soil ecosystem, and the effects of enhanced nitrogen deposition. For this, the site was sampled at 8-week intervals during 2.5 years. This paper reports on the population dynamics of enchytraeids in the field and in stratified litterbags. Mean yearly abundance of the enchytraeid community in the field was 47 600 m–2, or 0.70 g (dry weight) m–2. The community consisted mainly of three species: Cognettia sphagnetorum, Marionina clavata and Achaeta eiseni, of which C. sphagnetorum was dominant. The enchytraeid populations showed a marked stratification in the same sequence. Freshly fallen pine needles were colonized by C. sphagnetorum, while other species followed much later. It was found that data from the litterbags were reasonably comparable with field data, when expressed per gram of dry substrate, but less so when expressed per square metre. Multiple regression analysis of the data showed that the population dynamics in the litter layer could largely be explained by temperature and moisture fluctuations; in deeper layers other factors, such as the stage of decomposition, were probably more important. Received: 26 June 1997  相似文献   

8.
Soil organic carbon (SOC) in mineral soil accounts for a large portion of total ecosystem carbon (C) in boreal forests. We evaluated the effects of stand age and disturbance origin on SOC, soil aggregate stability, and aggregate-associated SOC in the boreal forests of Ontario, Canada. Mineral soils at 0–15 cm depth were sampled in 27 stands of six post-fire age classes (2- to 203-year-old) and three post-clearcut age classes (2- to 29-year-old), each with three replications. In post-fire stands, the SOC pool increased from 2- and 10-year-old to 29-, 85- and 140-year-old, and then decreased in 203-year-old stands. Aggregate-associated SOC showed a similar trend. Abundance of water stable aggregates (>0.25 mm in diameter) was the highest in 2-year-old stands. Compared with the same-aged post-fire stands, the SOC pool and aggregate-associated SOC were higher, and aggregate stability was lower in 2- and 10-year-old post-clearcut stands. But the differences in SOC pool, aggregate-associated SOC, and aggregate stability between the two stand origins diminished or became less dramatic in 29-year-old stands. Our results indicate that aggregate stability is more dependent on thermal modification of SOC by fire than on aggregate-associated SOC. Our results also show higher SOC pool and aggregate-associated SOC but lower aggregate stability in post-clearcut than post-fire stands shortly after disturbance; however, differences between the two stand origins diminish when stands become older.  相似文献   

9.
不同人工恢复林对退化红壤团聚体组成及其有机碳的影响   总被引:1,自引:0,他引:1  
研究土壤团聚体的组成及其有机碳的分布,有助于从微观角度理解土壤结构与功能的相互作用.采用于筛法和湿筛法,研究南方红壤退化地实施人工恢复30年后,马尾松与阔叶复层林(PB)、木荷+马尾松混交林(SP)和阔叶林(BF)3种典型林分在0~60 cm土层的团聚体组成及其有机碳分布特征,分析土壤团聚体有机碳与总有机碳相关关系.结果表明:各恢复林分土壤机械稳定性团聚体质量分数,以>2 mm粒径所占比例最大(均在60%以上),而在水稳性团聚体中,以<0.05 mm粒径占优势.不同林分土壤团聚体结构破坏率顺序依次为BF(53.38%~84.27%) >SP(52.22% ~70.86%) >PB(22.70% ~47.83%).机械稳定性和水稳性团聚体有机碳质量分数均以PB最高,随着土层深度的增加,各林分土壤团聚体有机碳质量分数呈下降趋势.水稳性大团聚体(>0.25 mm粒径)有机碳质量分数总体高于相应土层的总有机碳质量分数,而微团聚体的(<0.25 mm粒径)则低于后者,说明有机碳对于大团聚体的形成和水稳性具有积极作用.土壤团聚体有机碳与总有机碳的相关关系分析表明,土壤团聚体有机碳的增加,对总有机碳的积累具有正面影响.保留密度大、灌木(草)层盖度高的马尾松与阔叶复层林土壤团聚体的数量和质量更高;因此,在红壤侵蚀退化地森林恢复初期,可通过适当密植、增加林下灌草覆盖等措施,增加有机碳的输入,促进团聚体的形成和稳定,从而加速了退化土地的土壤结构改善和功能恢复.该研究可为南方严重红壤退化地生态恢复中的林分类型选择和优化配置提供科学依据.  相似文献   

10.
黑碳添加对土壤有机碳矿化的影响   总被引:10,自引:0,他引:10  
通过室内培养试验,向土壤中分别添加不同温度制备的黑碳,热解温度分别为350℃(T350)、600℃(T600)和850℃(T850),研究了黑碳添加对土壤有机碳矿化的影响。结果表明,不同温度条件制备的黑碳在15℃和25℃培养条件下,土壤CO2释放速率总的趋势是前期分解速率快,后期缓慢。在整个培养过程中(112天),随着培养时间的延长,土壤CO2释放速率下降趋势逐渐降低,CO2释放速率相对值的大小随着培养温度的的升高而增大。在不同温度培养条件下,添加黑碳后土壤CO2-C累计量均是T350>T600>T850,T350土壤CO2-C累计量最高分别为415.26 mg/kg和733.82 mg/kg。添加不同黑碳后,土壤有机碳矿化增加率存在极显著差异(p<0.01),表明不同温度制备的黑碳对土壤有机碳矿化的影响显著。  相似文献   

11.
为对比长期保护性耕作模式与传统耕作模式对黑土有机碳组分的差异化,揭示长期保护性耕作对侵蚀退化黑土质量的恢复作用。基于典型黑土坡耕地连续15 a保护性耕作长期定位田间试验,设置免耕保护性耕作(NT)和旋耕传统耕作(CT)2个田间耕作试验,并实行玉米-大豆轮作模式,测定并分析了两种耕作措施下土壤有机碳及其不同碳组分随土壤剖面的垂直分布及变化特征。结果表明:连续实施15 a的NT与CT相比分别显著提高0~5和>5~10 cm土层的土壤有机碳质量分数(29.54%和22.38%)(P<0.05),碳储量(31.11%和27.34%)(P<0.05),全氮质量分数(53.74%和37.60%)(P<0.05),表层土壤碳氮质量分数提升显著(P<0.05),深层土壤碳氮质量分数变化不显著;以>5~10 cm土层土壤颗粒有机碳(69.85%)、0~5 cm土层的土壤轻组有机碳(130.81%)和0~5、>5~10 cm土层土壤微生物量碳(85.59%和59.53%)的提升为主,并且对深层土壤有机碳组分也产生一定的积极影响;耕作效应对于土壤团聚体稳定性指标影响显著(P<0.05),并且土壤团聚体稳定性指标对于SOC质量分数提升也起到了关键作用。研究表明,与传统耕作相比,连续实施15 a保护性耕作,增加的有机碳以活性有机碳为主。长期的保护性耕作对恢复退化农田黑土质量及土壤固碳均具有重要意义。  相似文献   

12.
《Geoderma》2007,137(3-4):401-413
Land-use history – the number, type, and duration of previous land uses – is relevant to many questions regarding land-use effects on soil carbon, but is infrequently reported. We examine the importance of land-use history variables, as well as topographic and edaphic variables, on soil C in a range of forest types – native forest, pine plantations, secondary forest and rehabilitated forest – at three contrasting locations in south eastern Australia. Our comparisons include a novel forest conversion of exotic pine plantations to native, broadleaf forest.Using nested ANOVAs, we detected few differences in soil C concentration indices (total C, microbial biomass C, K2SO4–C) and C content among eucalypt-dominated vegetation and pine plantations within each location (0–10 cm depth). However, planned contrasts indicated a 30% decrease in soil C content with conversion of native forest to pine plantation of age 37 years. The reverse land-use change – pine plantation to native, broadleaf forest – was associated with a decrease in soil C concentration and content at one location (40%; age 12–13 years) and no detectable changes at another (to age 7 years). Variable effect between locations of this novel land-use change on soil C could be due to differences in potential productivity, conifer species, and plantation age.We used correlation coefficients and general linear models to identify widely applicable variables for predicting soil C concentration and content at local scales (≤ 20 km2). Within-location relationships with topographic variables were weak and infrequent relative to those with edaphic and land-use history variables. Soil texture was strongly correlated with soil C at each location, although the relative significance of different particle size fractions differed among locations. Electrical conductivity appeared more widely applicable since it was included in C models at two locations. Combining land-use history and edaphic variables produced strong predictive models for soil C concentrations and content at two locations (total r2 0.83 to 0.95). Positive relationships were indicated between soil C and ‘age of current vegetation’ at one location, and negative relationships were indicated with ‘number of land uses’ at another. These data highlight a potential predictive role for land-use history variables in local-scale assessments of soil C in forested landscapes.  相似文献   

13.
Aboveground biomass, litterfall, leaf weight loss during decomposition, nutrient return and water balance have been estimated in a Scots pine plantation (Pinus sylvestris L.) in the Sierra de la Demanda, Spain, a Mediterranean climatic zone. The aboveground biomass was estimated by cutting and weighing seven trees according to diameter classes, recording the categories of trunk, branches and leaves. The carbon and nitrogen content in the different fractions were also analysed. The results indicate a total biomass of 152.1 Mg·ha–1. The litterfall was 5.8 Mg·ha–1·yr–1, although variations from year to year were observed mostly due to water stress in summer. Greater decomposition constants were obtained for total litter than for needle litter alone. It is possible that the mean soil humidity was not a limiting factor in the decomposition process, which would be due to the distribution of rainfall rather than to the total amount of precipitation together with elevated temperature. The values of precipitation reaching the soil fluctuated monthly, depending on the rainfall characteristics. Important fluctuations in concentration were observed for Ca2+, PO4–3-P, and NO3-N.  相似文献   

14.
添加葡萄糖对不同肥力黑土氮素转化的影响   总被引:6,自引:0,他引:6  
氮是作物生长必需的大量营养元素,增施化学氮肥,是农业生产采取的主要增产措施之一。我国的氮肥消费量已占世界总消费量的约30%,但我国农业中氮素的生产效率趋于下降,而带来的农业环境污染则趋于加重。提高氮素利用率,降低其对环境的负面影响,在保障粮食安全的同时兼顾生  相似文献   

15.
保护性耕作模式对黑土有机碳含量和密度的影响   总被引:5,自引:3,他引:5  
以公主岭市长期(10 a)保护性耕作定位试验为研究对象,分析与传统耕作模式相比的几种保护性耕作模式对黑土固碳效应的影响。共设4种耕作模式,即秋翻秋耙匀垄、秋灭茬匀垄、全面旋耕深松和宽窄行交替休闲(又叫松带、苗带交替休闲)(后3种视为保护性耕作)。结果表明,经过10 a的耕作试验,不同的耕作模式对土壤有机碳有显著的影响。表层0~20 cm秋翻秋耙匀垄和秋灭茬匀垄模式的土壤有机碳含量最低,深层30~50 cm全面旋耕深松模式的土壤有机碳质量分数显著低于其他耕作模式13.49%~25.14%;0~50 cm耕层中宽窄行交替休闲的土壤有机碳质量分数高于其他耕作处理0~33.58%。宽窄行交替休闲模式下的宽窄行松带活性有机碳质量分数及缓性有机碳质量分数分别高于其他模式8.06%~48.87%和0~33.83%。全面旋耕深松模式与宽窄行交替休闲模式下的宽窄行苗带土壤有机碳密度分别低于和高于秋翻秋耙10.95%、17.13%;>20~50 cm宽窄行苗带的活性有机碳密度及缓性有机碳密度分别高于其他耕作模式2.20%~18.85%和17.00%~29.19%,不同耕作模式的土壤惰性有机碳密度没有显著性差异。相对秋翻秋耙的传统模式,不同的保护性耕作模式能够增加土壤有机碳密度也能够降低土壤有机碳密度,宽窄行交替休闲主要通过增加土壤活性有机碳及缓性有机碳密度来增加其土壤有机碳密度,是东北地区固定土壤有机碳、提高土壤有机碳质量的有效耕作方式。  相似文献   

16.
黑土颗粒态有机碳与矿物结合态有机碳的变化研究   总被引:10,自引:1,他引:10  
确定管理措施下土壤有机碳(Soil organic car-bon,SOC),尤其是土壤团聚体稳定过程中表现活跃的有机碳组分的动态变化,对于正确评估农业管理措施对土壤结构和质量的影响作用至关重要[1]。土壤颗粒态有机质(Particulate organic matter,POM,>53μm)库是相对新形成的和对微生物有吸引力的物质,代表很大比例的“慢”分解有机碳库,其周转时间介于活性库和惰性库之间[2]。土壤POM包含有部分分解的动植物残体,是微生物活动的重要碳源[2]。增加土壤颗粒态有机碳(POM-C),有利于土壤生物活动,增加微生物生物量碳、氮,改善土壤结构及其他土壤性状[3]。土壤PO  相似文献   

17.
R.D. Laura 《Geoderma》1973,9(1):15-26
An experiment was carried out to study effects of 0.25%, 0.50% and 1.0% Na2CO3 on CO2 evolution, nitrogen mineralisation, losses of carbon and nitrogen and humus composition of added gulmohur (Delonix regia) leaves. The CO2 evolution was higher under all levels of alkalinity than in the controls, being highest at 0.5% Na2CO3. Although the process of ammonification was not inhibited at any concentration, the process of nitrification was completely inhibited at 1.0% Na2CO3. The losses of carbon and nitrogen and the ratio of humic to fulvic acids increased with increased alkalinity.  相似文献   

18.
Aphids are frequently found on conifers, but mass outbreaks are seldom reported. On trees stressed by air pollutants the natural resistance can be broken and insect attack combined with pollution stress may promote plant damages. To evaluate effects of air pollution on conifer aphids Scots pine and Norway spruce seedlings have been exposed to gaseous pollutants (O3, SO2 and NO2) in growth chambers. The studied aphid species were Cinara pilicornis Hartig on Norway spruce, C. pinea (Mordv.) and Schizolachnus pineti Fabr. on Scots pine in SO2 fumigations and S. pineti in O3 and NO2 fumigations. C. pilicornis nymphs had peaked dose response to SO2 concentration. Both the first and third instar larvae of C. pilicornis showed highest mean relative growth rate (MRGR) at 100 ppb SO2 concentration. MRGR of C. pinea peaked at 50 and 150 ppb SO2 The response of S. pineti was more inconsistent During fumigation the peak MRGR of S. pineti was at 100 ppb and after exposure at 50 ppb SO2. MRGR of S. pineti nymphs was not significantly affected during fumigation or after the end of fumigation experiment by 100 ppb O3 or 100 ppb NO2 or the mixtures. The results suggest that SO2 affects more distinctively on aphid performance on conifers than O3 or NO2. Especially stem-feeding aphids on spruce can exploit physiological disturbance of host plant under pollution stress.  相似文献   

19.
The mineralization of organic matter in the soils under the six main Siberian forest-forming species was studied. The nitrogen mineralization and nitrification were the most affected by the different tree species. The rate of the CO2 formation was similar in the soils under the different tree species. The factors affecting the variation of the data characterizing the microbiological processes were revealed. The nitrogen mineralization and nitrification correlated with the contents of the soil carbon, nitrogen, and NH4+ and the soil acidity, while the carbon mineralization correlated only with the NH4+ concentration and the C/N ratio.  相似文献   

20.
The thermal degradation of organic matter was studied in cryogenic soils with methods of thermal analysis: differential scanning calorimetry and thermogravimetry (DSC and TG, respectively). The DSC curves of most of the samples within the temperature range from 221–247°C to 600°C were characterized by the presence of one wide exothermic peak (at 311–373°C) with a shoulder (or without it) on the descending branch at a temperature of about 400°C. This was connected mostly with the destruction of thermolabile compounds (oligo- and polysaccharides) and with the oxidation of low-aromatic complexes of plant residues and humus substances. Two exothermic peaks at 337–373°C and 448–492°C were found for some samples from the organic horizons. The high-temperature peaks were caused by the thermal destruction of lignin. The fraction of the thermolabile organic matter of the soil (237–261…331–377°C) reached 59–73% in the organic and 52–59% in the organomineral and mineral horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号