首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma measurements were obtained with the Galileo spacecraft during an approximately 3.5-hour interval in the vicinity of Venus on 10 February 1990. Several crossings of the bow shock in the local dawn sector were recorded before the spacecraft passed into the solar wind upstream from this planet. Although observations of ions of the solar wind and the postshock magnetosheath plasmas were not possible owing to the presence of a sunshade for thermal protection of the instrument, solar wind densities and bulk speeds were determined from the electron velocity distributions. A magnetic field-aligned distribution of hotter electrons or ;;strahl' was also found in the solar wind. Ions streaming into the solar wind from the bow shock were detected. Electron heating at the bow shock, 相似文献   

2.
The NASA-GSFC magnetic field experiment on Mariner 10 is the first flight of a dual magnetometer system conceived to permit accurate measurements of weak magnetic fields in space in the presence of a significant and variable spacecraft magnetic field. Results from a preliminary analysis of a limted data set are summarized in this report, which is restricted primarily to Venus encounter. A detached bow shock wave that develops as the super Alfvénic solar wind interacts with the Venusian atmosphere has been observed. However, the unique coincidence of trajectory position and interplanetary field orientation at the time of bow shock crossing led to a very disturbed shock profile with considerably enhanced upstream magnetic fluctuations. At present it is not possible to ascertain the nature and characteristics of the obstacle responsible for deflecting the solar wind flow. Far downstream disturbances associated with the solar wind wake have been observed.  相似文献   

3.
Two isolated solar wind disturbances about 5 minutes in duration were detected aboard the Russian spacecraft Phobos-2 upon its crossing the wake of the martian moon Deimos about 15,000 kilometers downstream from the moon on 1 February 1989. These plasma and magnetic events are interpreted as the inbound and outbound crossings of a Mach cone that is formed as a result of an effective interaction of the solar wind with Deimos. Possible mechanisms such as remanent magnetization, cometary type interaction caused by heavy ion or charged dust production, and unipolar induction resulting from the finite conductivity of the body are discussed. Although none of the present models is fully satisfactory, neutral gas emission through water loss by Deimos at a rate of about 10(23) molecules per second, combined with a charged dust coma, is favored.  相似文献   

4.
A fully developed bow shock and magnetosheath were observed near Mercury, providing unambiguous evidence for a strong interaction between Mercury and the solar wind. Inside the sheath there is a distinct region analogous to the magnetosphere or magnetotail of Earth, populated by electrons with lower density and higher temperature than the electrons observed in the solar wind or magnetosheath. At the time of encounter, conditions were such that a perpendicular shock was observed on the inbound leg and a parallel shock was observed on the outbound leg of the trajectory, and energetic plasma electron events were detected upstream from the outbound shock crossing. The interaction is most likely not atmospheric, but the data clearly indicate that the obstacle to solar wind flow is magnetic, either intrinsic or induced. The particle fluxes and energy spectra showed large variations while the spacecraft was inside the magnetosphere, and these variations could be either spatial or temporal.  相似文献   

5.
Voyager 1 crossed the termination shock of the supersonic flow of the solar wind on 16 December 2004 at a distance of 94.01 astronomical units from the Sun, becoming the first spacecraft to begin exploring the heliosheath, the outermost layer of the heliosphere. The shock is a steady source of low-energy protons with an energy spectrum approximately E(-1.41 +/- 0.15) from 0.5 to approximately 3.5 megaelectron volts, consistent with a weak termination shock having a solar wind velocity jump ratio r=2.6(-0.2)(+0.4). However, in contradiction to many predictions, the intensity of anomalous cosmic ray (ACR) helium did not peak at the shock, indicating that the ACR source is not in the shock region local to Voyager 1. The intensities of approximately 10-megaelectron volt electrons, ACRs, and galactic cosmic rays have steadily increased since late 2004 as the effects of solar modulation have decreased.  相似文献   

6.
Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.  相似文献   

7.
Fisk LA 《Science (New York, N.Y.)》2005,309(5743):2016-2017
The Voyager 1 spacecraft has passed an important milestone. As is reported in papers in this issue, Voyager 1 has crossed the termination shock of the solar wind, where the wind abruptly decelerates to begin its merger into the local interstellar medium. The termination shock provided surprises; the region beyond is truly uncharted territory.  相似文献   

8.
Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.  相似文献   

9.
Electron plasma oscillations have been detected upstream of the solar wind termination shock by the plasma wave instrument on the Voyager 1 spacecraft. These waves were first observed on 11 February 2004, at a heliocentric radial distance of 91.0 astronomical units, and continued sporadically with a gradually increasing occurrence rate for nearly a year. The last event occurred on 15 December 2004, at 94.1 astronomical units, just before the spacecraft crossed the termination shock. Since then, no further electron plasma oscillations have been observed, consistent with the spacecraft having crossed the termination shock into the heliosheath.  相似文献   

10.
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator.  相似文献   

11.
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.  相似文献   

12.
A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.  相似文献   

13.
The Ames Research Center Pioneer 11 plasma analyzer experiment provided measurements of the solar wind interaction with Saturn and the character of the plasma environment within Saturn's magnetosphere. It is shown that Saturn has a detached bow shock wave and magnetopause quite similar to those at Earth and Jupiter. The scale size of the interaction region for Saturn is roughly one-third that at Jupiter, but Saturn's magnetosphere is equally responsive to changes in the solar wind dynamic pressure. Saturn's outer magnetosphere is inflated, as evidenced by the observation of large fluxes of corotating plasma. It is postulated that Saturn's magnetosphere may undergo a large expansion when the solar wind pressure is greatly diminished by the presence of Jupiter's extended magnetospheric tail when the two planets are approximately aligned along the same solar radial vector.  相似文献   

14.
A latitudinal circulation model of solar wind flow in the near wake of Venus is presented. It is shown that solar wind fluxes entering through the polar terminator can be viscously forced to lower latitudes. The resulting motion produces a downstream elongation of the nightside polar ionosphere out to the downstream extension of the middle- and low-latitude ionopause. The geometry suggested by this flow circulation model provides a simple explanation of the ionospheric bulge inferred from the Pioneer Venus observations.  相似文献   

15.
Additional plasma measurements in the vicinity of Venus are presented which show that (i) there are three distinct plasma electron populations-solar wind electrons, ionosheath electrons, and nightside ionosphere electrons; (ii) the plasma ion flow pattern in the ionosheath is consistent with deflected flow around a blunt obstacle; (iii) the plasma ion flow velocities near the downstream wake may, at times, be consistent with the deflection of plasma into the tail, closing the solar wind cavity downstream from Venus at a relatively close distance (within 5 Venus radii) to the planet; (iv) there is a separation between the inner boundary of the downstream ionosheath and the upper boundary of the nightside ionosphere; and (v) during the first 4.5 months in orbit the measured solar wind plasma speed continued to vary, showing a number of high-speed, but generally nonrecurrent, streams.  相似文献   

16.
Before direct exploration by spacecraft, Jupiter was the only planet other than Earth that was known to have a magnetic field, as revealed by its nonthermal radio emissions. The term "magnetosphere" did not exist because there was no clear concept of such an entity. The space age provided the opportunity to explore Earth's neighborhood in space and to send instruments to seven of the other eight planets. It was found that interplanetary space is pervaded by a supersonic "solar wind" plasma and that six planets, including Earth, have magnetic fields of sufficient strength to deflect this solar wind and form a comet-shaped cavity called a magnetosphere. Comparative study of these magnetospheres aims to elucidate both the general principles and characteristics that they share in common, and the specific environmental factors that cause the important, and sometimes dramatic, differences in behavior between any two of them. A general understanding of planetary magnetospheres holds the promise of wide applicability in astrophysics, which, for the indefinite future, must rely solely on remote sensing for experimental data.  相似文献   

17.
There are two states of the solar wind: quasi-stationary and transient. After 30 years of measurements by interplanetary spacecraft, the differences in the physical properties of the two types of wind are fairly well determined, but the physical processes involved in their accelerations are not yet understood in detail. The solar wind exists in part because the upper solar atmosphere, called the corona, is very hot, but the heating mechanisms are also not well understood. Recent research suggests a link between the heating and acceleration mechanisms.  相似文献   

18.
Observations of outflow velocities in coronal holes (regions of open coronal magnetic field) have recently been obtained with the Solar and Heliospheric Observatory (SOHO) spacecraft. Velocity maps of Ne7+ from its bright resonance line at 770 angstroms, formed at the base of the corona, show a relationship between outflow velocity and chromospheric magnetic network structure, suggesting that the solar wind is rooted at its base to this structure, emanating from localized regions along boundaries and boundary intersections of magnetic network cells. This apparent relation to the chromospheric magnetic network and the relatively large outflow velocity signatures will improve understanding of the complex structure and dynamics at the base of the corona and the source region of the solar wind.  相似文献   

19.
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.  相似文献   

20.
The magnetometer and electron reflectometer experiment on the Lunar Prospector spacecraft has obtained maps of lunar crustal magnetic fields and observed the interaction between the solar wind and regions of strong crustal magnetic fields at high selenographic latitude (30 degreesS to 80 degreesS) and low ( approximately 100 kilometers) altitude. Electron reflection maps of the regions antipodal to the Imbrium and Serenitatis impact basins, extending to 80 degreesS latitude, show that crustal magnetic fields fill most of the antipodal zones of those basins. This finding provides further evidence for the hypothesis that basin-forming impacts result in magnetization of the lunar crust at their antipodes. The crustal magnetic fields of the Imbrium antipode region are strong enough to deflect the solar wind and form a miniature (100 to several hundred kilometers across) magnetosphere, magnetosheath, and bow shock system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号