首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of food allergies in the world population requires integrated approaches to identify new potential allergens, especially those of plant origin. The aim of this work was the allergen in vitro analysis of Lupinus albus seed proteome, a promising food protein source, and the assessment of IgE cross-reactivities with other more diffused legume species. A combination of one- and two-dimensional gel electrophoresis and immunoblotting analyses with specific IgGs for band identification and lupin-sensitized patients' circulating IgEs for allergenicity studies has been used. Two lupin proteins, namely, conglutin gamma and 11S globulin basic subunits, strongly reacted with all patients' sera. Also, cross-reactivities with the homologous polypeptides of other legume species were observed. Otherwise, no reaction at all was detected with a 2S-type lupin protein. This global electrophoretic approach has allowed the identification of a new potential lupin allergen and confirmed the cross-reactivity among the legume 11S globulin basic subunits.  相似文献   

2.
An MS-based method, combining reversed-phase capillary liquid chromatography (capillary LC) with quadrupole time-of-flight tandem mass spectrometry (nano-ESI Q-TOF MS/MS), was developed with the aim of identifying a set of peptides that can function as markers for peanut allergens. Emphasis was given to the identification of the three major peanut allergens Ara h 1, Ara h 2, and Ara h 3, because these proteins are considered to represent >30% of the total protein content of peanut and are directly relevant for the allergenic potential of this food. The analytical data obtained were used to perform databank searching in combination with de novo sequencing and led to the identification of a multitude of sequence tags for all three peanut allergens. Food processing such as roasting of peanuts is known to affect the stability of proteins and was shown to influence the detection of allergen sequence tags. The analysis of raw and roasted peanuts allowed the identification of five peanut-specific sequence tags that can function as markers of the specific allergenic proteins. For Ara h 1, two peptide markers were proposed, namely, VLEENAGGEQEER (m/z 786.88, charge 2+) and DLAFPGSGEQVEK (m/z 688.85, charge 2+), whereas for Ara h 2 only one peptide, RQQWELQGDR (m/z 439.23, charge 3+), was found to satisfy the required conditions. For Ara h 3, the two specific peptides, SPDIYNPQAGSLK (m/z 695.35, charge 2+) and SQSENFEYVAFK (m/z 724.84, charge 2+), were selected. Other peptides have been proposed as indicative for food processing.  相似文献   

3.
Influence of thermal processing on the allergenicity of peanut proteins   总被引:3,自引:0,他引:3  
Peanuts are one of the most common and severe food allergens. Nevertheless, the occurrence of peanut allergy varies between countries and depends on both the exposure and the way peanuts are consumed. Processing is known to influence the allergenicity of peanut proteins. The aim of this study was to assess the effect of thermal processing on the IgE-binding capacity of whole peanut protein extracts and of the major peanut allergens Ara h 1 and Ara h 2. Whole proteins, Ara h 1, and Ara h 2 were extracted and purified from raw, roasted and boiled peanuts using selective precipitation and multiple chromatographic steps, and were then characterized by electrophoresis and mass spectrometry. The immunoreactivity of whole peanut extracts and purified proteins was analyzed by the enzyme allergosorbent test (EAST) and EAST inhibition using the sera of 37 peanut-allergic patients. The composition of the whole protein extracts was modified after heat processing, especially after boiling. The electrophoretic pattern showed protein bands of low molecular weight that were less marked in boiled than in raw and roasted peanuts. The same low-molecular-weight proteins were found in the cooking water of peanuts. Whole peanut protein extracts obtained after the different processes were all recognized by the IgE of the 37 patients. The IgE-binding capacity of the whole peanut protein extracts prepared from boiled peanuts was 2-fold lower than that of the extracts prepared from raw and roasted peanuts. No significant difference was observed between protein extracts from raw and roasted peanuts. It is noteworthy that the proteins present in the cooking water were also recognized by the IgE of peanut-allergic patients. IgE immunoreactivity of purified Ara h 1 and Ara h 2 prepared from roasted peanuts was higher than that of their counterparts prepared from raw and boiled peanuts. The IgE-binding capacity of purified Ara h 1 and Ara h 2 was altered by heat treatment and in particular was increased by roasting. However, no significant difference in IgE immunoreactivity was observed between whole protein extracts from raw and roasted peanuts. The decrease in allergenicity of boiled peanuts results mainly from a transfer of low-molecular-weight allergens into the water during cooking.  相似文献   

4.
The 85% methanol-soluble proteins are known to specifically contribute to the production of flavor of roasted peanut. To determine the nature of the 85% methanol-soluble proteins, they were isolated from the peanut seed, and the 85% methanol-soluble (MS) and 85% methanol-insoluble (MIS) fractions were characterized using polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The results showed that the 85% MS fraction contained lower amounts (9-10%) of protein than the MIS fraction (15-33%). Protein content of the MIS fraction increased more significantly during seed maturation than it did in the MS fraction. Unlike the protein, free amino acids and soluble sugars levels of the MS fraction decreased significantly during seed maturation. The 85% MS fraction contained predominantly low molecular weight (<20 kDa) proteins/polypeptides, whereas the MIS fraction contained a mixture of polypeptides with molecular weight between 14 kDa and 90 kDa. SDS-PAGE showed no major changes in the polypeptide composition of the MS fraction during seed maturation. Capillary electrophoretic analysis revealed major qualitative and quantitative changes in the protein and polypeptide composition of the MS and MIS fractions during seed maturation. Fatty acid analysis of these fractions indicated that the MS fraction is lipoprotein in nature and rich in oleic and linoleic acids.  相似文献   

5.
Trypsin inhibitors are pathogenesis-related (PR) proteins, which play an important role in the plant defense mechanism against insects and pathogens. Peanut trypsin inhibitors are low molecular mass seed storage proteins. Like peanut allergens, they are stable to acid and heat, resistant to digestion, and can have a negative impact on human health. In peanut, five Bowman-Birk trypsin inhibitors (BBTI) have been isolated and amino acid sequences published. However, to date, no peanut BBTI sequence is available at both the cDNA and the genomic levels. The objectives of this investigation were (i) to synthesize degenerate oligonucleotides based on conserved regions of published amino acid sequences of BBTI, BII, and BIII; (ii) to isolate, sequence, and analyze at least one positive peanut trypsin inhibitor cDNA clone using the synthesized (32)P-labeled oligonucleotides as probes; and (iii) to determine its trypsin inhibitory activity. Thirty-two degenerate oligonucleotides DNA primers of 24 nucleotides each were synthesized based on the published amino acid sequences of peanut BBTI, and two were selected as probes to screen a peanut Lambda gt 11 cDNA library. Three putative positive clones were isolated, purified, and subcloned, and one was sequenced. Sequence analysis revealed a partial cDNA clone of 643 bp with a start codon. This clone shares 93 and 96% nucleotide sequence homology with peanut allergens Ara h 3 and Ara h 4 cDNA clones, respectively. A trypsin inhibitor assay revealed that peanut allergen Ara h 3 has a trypsin inhibitory activity of 11 238 TIA/mg protein. We concluded that peanut allergen Ara h 3 may also function as a trypsin inhibitor.  相似文献   

6.
Although many sequences and linear IgE epitopes of allergenic proteins have been identified and archived in databases, structural and physicochemical discriminators that define their specific properties are lacking. Current bioinformatics tools for predicting the potential allergenicity of a novel protein use methods that were not designed to compare peptides. Novel tools to determine the quantitative sequence and three-dimensional (3D) relationships between IgE epitopes of major allergens from peanut and other foods have been implemented in the Structural Database of Allergenic Proteins (SDAP; http://fermi.utmb.edu/SDAP/). These peptide comparison tools are based on five-dimensional physicochemical property (PCP) vectors. Sequences from SDAP proteins similar in their physicochemical properties to known epitopes of Ara h 1 and Ara h 2 were identified by calculating property distance (PD) values. A 3D model of Ara h 1 was generated to visualize the 3D structure and surface exposure of the epitope regions and peptides with a low PD value to them. Many sequences similar to the known epitopes were identified in related nut allergens, and others were within the sequences of Ara h 1 and Ara h 2. Some of the sequences with low PD values correspond to other known epitopes. Regions with low PD values to one another in Ara h 1 had similar predicted structure, on opposite sides of the internal dimer axis. The PD scale detected epitope pairs that are similar in structure and/or reactivity with patient IgE. The high immunogenicity and IgE reactivity of peanut allergen proteins might be due to the proteins' arrays of similar antigenic regions on opposite sides of a single protein structure.  相似文献   

7.
Enzymatic digestion of total protein along with liquid chromatography/tandem mass spectrometry (LC/MS/MS) was used to confirm the presence of a major peanut allergen in food. Several peptides obtained from the enzymatic digestion of the most abundant peanut allergen, Ara h 1, were identified as specific peptide biomarkers for peanut protein. Using ice cream as a model food matrix, a method was developed for the detection of the allergen peptide biomarkers. A key component of the method was the use of molecular mass cutoff filters to enrich the Ara h 1 in the protein extracts. By applying the method to ice cream samples containing various levels of peanut protein, levels as low as 10 mg/kg of Ara h 1 could routinely be detected. This method provides an unambiguous means of confirming the presence of the peanut allergen, Ara h 1, in foods and can easily be modified to detect other food allergens.  相似文献   

8.
Numerous food allergens of plant origin belong to the 2S albumin family, including peanut Ara h 2. In addition to Ara h 2, several other conglutins related to 2S albumins are present in peanut seeds. We evaluated the allergenicity of different peanut conglutins as compared with Ara h 2. Several conglutins were isolated from the kernel, i.e. Ara h 2, a new isoform of Ara h 6 and its derived product, which is likely to be naturally formed during seed processing. Enzyme allergosorbent tests performed on sera of peanut allergic patients showed that more than 94% of 47 analyzed patients had positive IgE responses to Ara h 6 isoform and to its degradation product. Skin prick tests with the new isoform of Ara h 6 led to a positive response in seven out of the eight tested patients. Both enzyme allergosorbent tests and skin prick tests showed that the reactivity of Ara h 6 was similar to, or even higher than, that of Ara h 2, suggesting that the present isoform of Ara h 6 is as allergenic as Ara h 2. In addition the IgE response to the plant processed (i.e., hydrolyzed) Ara h 6 new isoform is equivalent to the IgE response to the native isoform. The IgE immunoreactivity is mostly abrogated by chemical reduction and denaturation of Ara h 6 isoforms, which underlined the importance of tertiary structure in Ara h 6 immunoreactivity. These results, and particularly the high correlation between anti-Ara h 2 and anti-Ara h 6 IgE responses, emphasise the major role of 2S albumins in peanut allergenicity.  相似文献   

9.
Seed proteins were extracted from the African yam bean (AYB; Sphenostylis stenocarpa), an underutilized West African food legume. One- and two-dimensional polyacrylamide gel electrophoresis was then used to analyze the albumin fraction, galactose-specific lectins purified on immobilized galactose-Sepharose 4B, and abundant non-lectin seed proteins left over following affinity chromatography. N-terminal sequencing of prominently resolved polypetide bands led to identification of proteins having sequence homology with characterized legume seed proteins, namely, mung bean seed albumin, pea alpha-fucosidase, soybean Kunitz-type trypsin inhibitor, an endochitinase, pea pathogenesis-related protein, and/or cowpea seed storage proteins. Minor lectin-like proteins lacking hemagglutinating activity against rabbit and human erythrocytes were also identified. Because proteins such as protease inhibitors, chitinases, pathogenesis-related proteins, and lectins are known to have antimetabolic effects, the findings from this study may have relevance in the acceptability, adoption, and utilization of AYB as human food.  相似文献   

10.
Peanut allergy is a public health issue. The culprits are the peanut allergens. Reducing the allergenic properties of these allergens or proteins will be beneficial to allergic individuals. In this study, the objective was to determine if peroxidase (POD), which catalyzes protein cross-linking, reduces the allergenic properties of peanut allergens. In the experiments, protein extracts from raw and roasted defatted peanut meals at pH 8 were incubated with and without POD in the presence of hydrogen peroxide at 37 degrees C for 60 min. The POD-treated and untreated samples were then analyzed by SDS-PAGE, western blots, and competitive inhibition ELISA. IgE binding or allergenicity was determined in blots and ELISA. Results showed that POD treatment had no effect on raw peanuts with respect to protein cross-linking. However, a significant decrease was seen in the levels of the major allergens, Ara h 1 and Ara h 2, in roasted peanuts after POD treatment. Also, polymers were formed. Despite this, a reduction in IgE binding was observed. It was concluded that POD induced the cross-linking of mainly Ara h 1 and Ara h 2 from roasted peanuts and that, due to POD treatment, IgE binding was reduced. The finding indicates that POD can help reduce the allergenic properties of roasted peanut allergens.  相似文献   

11.
The binding of peanut protein allergens to activated charcoal (AC), used medically for gastric decontamination following the ingestion of toxic substances, was investigated for potential clinical application. Crude peanut extract (CPE) or purified peanut protein allergens Ara h 1 and 2 were co-incubated with AC under a variety of conditions followed by centrifugation to remove the AC and adsorbed protein. The resulting supernatant solution was analyzed for unadsorbed protein by gel electrophoresis and quantitative protein assay. The extent of protein adsorption by a known amount of AC was determined. Protein binding to AC was rapid and irreversible. The extent of adsorption was unaffected by pH, but was optimal near physiological salt concentrations. Denatured proteins, or those of larger molecular weight, required more AC than smaller or native proteins. The extent of protein binding increased with temperature, supporting the concept that protein molecules diffuse into vacant pores of appropriate size on the charcoal surface.  相似文献   

12.
Phytic acid would form soluble and insoluble complexes with proteins. Our objective was to determine if phytic acid forms insoluble complexes with major peanut allergens, and if such reaction results in a peanut extract with a lower level of soluble allergens and allergenic property. Extracts from raw and roasted peanuts were treated with and without phytic acid at various pH values and then analyzed by SDS-PAGE and a competitive inhibition ELISA (ciELISA). The ciELISA measured IgE binding using a pooled serum from peanut-allergic individuals. Results showed that phytic acid formed complexes with the major peanut allergens (Ara h 1 and Ara h 2), which were insoluble in acidic and neutral conditions. Succinylation of the allergens inhibited complex formation, indicating that lysine residues were involved. A 6-fold reduction in IgE binding or allergenic potency of the extract was observed after treatment with phytic acid. It was concluded that phytic acid formed insoluble complexes with the major peanut allergens, and resulted in a peanut extract with reduced allergenic potency. Application of phytic acid to a peanut butter slurry presented a similar result, indicating that phytic acid may find use in the development of hypoallergenic peanut-based products.  相似文献   

13.
Detection of peptides from the peanut allergen Ara h 1 by liquid chromatography-mass spectrometry (LC-MS) was used to identify and estimate total peanut protein levels in dark chocolate. A comparison of enzymatic digestion subsequent to and following extraction of Ara h 1 from the food matrix revealed better limits of detection (LOD) for the pre-extraction digestion (20 ppm) than for the postextraction digestion (50 ppm). Evaluation of LC-MS instruments and scan modes showed the LOD could be further reduced to 10 ppm via a triple-quadrupole and multiple-reaction monitoring. Improvements in extraction techniques combined with an increase in the amount of chocolate extracted (1 g) improved the LOD to 2 ppm of peanut protein. This method provides an unambiguous means of confirming the presence of the peanut protein in foods using peptide markers from a major allergen, Ara h 1, and can easily be modified to detect other food allergens.  相似文献   

14.
Hidden allergens in food products are, especially for peanut-allergic consumers, a serious problem because even low amounts (approximately 200 microg) of peanut can elicit allergic reactions. Undeclared peanut traces can be found in processed food products, because contaminations with peanut during production processes are frequent. To minimize the risk of such cross-contaminations, it is necessary to develop sensitive analytical methods for the detection of hidden allergens in foods. For this approach we developed two peanut-specific assays based on the detection of peanut protein by specific antibodies (sandwich ELISA) and by the detection of peanut-specific DNA (part of the coding region of Ara h 2) by a real-time PCR. Both tests did not show any cross-reactivity with 22 common food ingredients (cereals, nuts, legumes), and the limit of detection is <10 ppm peanut in processed foods. Thirty-three random samples of food products were tested for the presence of peanut to compare both assay types with each other and to evaluate the percentage of foods on the German market that are contaminated with peanut traces. We found that four products (13.3%) without peanut in the list of ingredients contained peanut protein in a range from 1 to 74 ppm peanut protein and that the results of both tests correlated well. The real-time PCR was able to detect one more positive sample than the sandwich ELISA. In conclusion, both assays are sensitive and specific tools for the detection of hidden allergens in processed foods.  相似文献   

15.
The agronomic performance and storage proteins of high seed protein lines of soybeans [Glycine max L. (Merr.)] were investigated to determine if the two major storage proteins, beta-conglycinin and glycinin, contribute to the increased protein content of high seed protein lines. Subunits of these two major storage proteins were estimated by scanning SDS-PAGE gels by scanning densitometry. The relative rankings of the lines with respect to seed size and protein content were not different between years in one environment over 5 years, but oil and total protein and oil contents and the ratio of protein to oil differed. The alpha', alpha, and beta subunits of beta-conglycinin were significantly higher in the high-protein lines except CX797-115, CX804-108, CX804-3, D81-8498, and NC-2-62. The acidic A(3) polypeptide of glycinin was significantly higher in high-protein lines except 76-48773, CX804-108, CX804-3, D81-8498, and NC-2-62, whereas the acidic polypeptides A(1,2,4) of glycinin were significantly higher in all of the high-protein lines. The basic polypeptides of glycinin were significantly higher in all high seed protein lines except D81-8259. In conclusion, high-protein lines appear to contain more beta-conglycinin and glycinin than normal-protein soybean lines, and the amounts of subunits and polypeptides differ among lines.  相似文献   

16.
罗春萍  胡纯秋 《核农学报》2019,33(7):1349-1355
为探讨辐照处理对花生Ara h 2蛋白结构与致敏活性的影响,采用不同剂量60Co-γ辐照处理分离纯化所得到的花生过敏原Ara h 2蛋白,结合紫外扫描光谱、圆二色谱(CD)和聚丙烯酰胺凝胶电泳(SDS-PAGE)评估辐照处理后Ara h 2蛋白的结构变化,并用免疫印迹法和间接酶联免疫吸附法检测辐照处理后Ara h 2的抗原性变化。结果表明,60Co-γ辐照处理可以显著改变花生Ara h 2蛋白的构象,使其降解、发生交联。随着辐照剂量的增大,Ara h 2蛋白与抗体的结合能力呈逐渐下降趋势,且与蛋白紫外吸光度的增强和α-螺旋含量的降低呈现良好的相关性。当辐照剂量为10 kGy时,可基本破坏 Ara h 2 蛋白的结构和免疫活性。60Co-γ辐照处理可以有效降低花生过敏原 Ara h 2 蛋白的致敏性,这为花生脱敏技术的研究提供了新思路。  相似文献   

17.
Mildly extracted peanut allergen Ara h 1 was previously reported to occur as an oligomeric complex. In this paper we describe how the protein in this oligomeric complex interacts noncovalently with phenolic compounds of the proanthocyanidin type. These interactions are being disrupted during anion exchange chromatography, resulting in the dissociation of the oligomeric Ara h 1 complex into protein trimers. By use of the known three-dimensional structure of beta-conglycinin, a soy protein homologous to Ara h 1, proline-rich regions were observed in silico on both faces of its trimeric structure, which are conserved in Ara h 1. These proline-rich regions could explain the binding of proanthocyanidins to Ara h 1 and the formation of multiple Ara h 1 trimer complexes. This was supported by the observation that the addition of peanut proanthocyanidins to trimeric Ara h 1 and to beta-conglycinin resulted in the formation of soluble oligomeric protein complexes. The structurally related legumin proteins do not contain such proline-rich regions on both sides of the protein, and proanthocyanidins were shown to have a lower affinity for legumin proteins from peanuts and soybeans (peanut allergen Ara h 3 and soy glycinin, respectively). Ara h 1 present as the oligomeric complex is assumed to be the representative form of the allergen in which it is consumed by humans.  相似文献   

18.
The effect of heat treatment of germinated soybean, lupin, and black bean on chemical composition and protein utilization in rats was evaluated. Heat treatment caused complete inactivation of trypsin inhibitors whereas it did not affect phytic acid levels. Proximate components, minerals, and amino acids did not change, but low molecular weight sugars were affected by heat treatment differently for each germinated legume. The sugar digestibility ratio (total digestible sugars/total nondigestible sugars) in germinated black beans doubled after heat treatment. True protein digestibility (TD) increased with heat treatment only in germinated soybean. Net protein utilization was markedly improved (20%) with heat treatment in germinated soybean and lupin. Utilizable protein of heat-treated germinated legumes was 289, 236, and 132 g/kg of legume dry weight for soybean, lupin, and black bean, respectively. Supplementation with methionine did not alter TD but improved all other indices of protein utilization in the germinated legumes, particularly in black bean. All three germinated legumes become equivalent in protein quality when heating and supplementation with methionine are combined with germination. The use of germinated heat-treated soybean, lupin, and black bean on their own and/or as food ingredients is nutritionally advantageous due to the low content of nondigestible oligosaccharides and the high protein utilization.  相似文献   

19.
Cultivated soybeans (Glycine max) are derived from wild soybeans (Glycine soja) and can be crossed with them to produce fertile offspring. The latter exhibit greater genetic variation than the former, suggesting a possibility that wild soybeans contain storage proteins with properties different from and better than those of cultivated soybeans. To identify a wild soybean suitable for breeding a new soybean cultivar, we analyzed seed proteins from 390 lines of wild soybeans by electrophoresis. We found some lines containing electrophoretic variants of glycinin and beta-conglycinin subunits: one line containing a small alpha' subunit of beta-conglycinin and two and five lines containing small A3 and large A4 polypeptides of glycinin, respectively. Beta-Conglycinin and glycinin containing such variant subunits exhibited solubility and emulsifying ability similar to those of the predominant types of wild and cultivated soybeans. Glycinins containing small A3 and large A4 gave a shoulder derived from the start of denaturation at a temperature 4 degrees C lower than that of glycinin from the predominant types of wild and cultivated soybeans, although their thermal denaturation midpoint temperatures were very similar to each other. Cloning and sequencing of the predominant and variant subunit cDNAs revealed that the small alpha' and the small A3 lacked 24 amino acid residues in the extension region and four amino acid residues in the hypervariable region, respectively, and that the large A4 did not have an insert corresponding to the difference in the electrophoretic mobility but Arg279 and Gln305 were replaced by glutamine and histidine, respectively, in the hypervariable region. These suggest that small differences even in the hypervariable region can affect the thermal stability, as well as the electrophoretic mobilities, of the proteins.  相似文献   

20.
Fish are an important source of dietary protein for humans throughout the world. However, they are recognized as one of the most common food allergens and pose a serious health problem in countries where fish consumption is high. Many marine fish allergens have been extensively studied, but relatively little is known about freshwater fish allergens. This study identified two main allergens from blunt snout bream (Megalobrama amblycephala), a freshwater fish widely consumed in China. Sera from 11 patients with convincing clinical history of blunt snout bream allergy were utilized in IgE immunoblot analysis to identify prominent allergens. Several blunt snout bream proteins revealed specific binding to serum IgE, with the 47 and 41 kDa proteins being the most immunodominant among them. Two-dimensional gel electrophoresis (2D SDS-PAGE) enabled resolution of the 47 and 41 kDa proteins into several protein spots with distinct isoelectric points. 2D SDS-PAGE along with IgE immunoblot analysis further confirmed the strong reactivity of these protein spots with the pooled sera from blunt snout bream-sensitive patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of the peptides generated by trypsin digestion of the different spots corresponding to the 47 and 41 kDa proteins indicated that these spots were isoforms of enolase and muscle creatine kinase, respectively. The potential allergenicity of these proteins was further verified by an bioinformatics approach using the full-length and 80 amino acid sliding window FASTA searches, which revealed a significant amino acid sequence homology between blunt snout bream allergens and several known inhaled and crustacean allergens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号