首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied soil ecology》2010,46(3):131-137
The effects of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition were studied in soil microcosms. Sterilized soils were inoculated with mixed soil bacteria (obtained by filtering) or with bacteria and bacterial-feeding nematodes, after which the dynamic inorganic nitrogen concentration was measured weekly. After 28 days of incubation, denaturing gradient gel electrophoresis (DGGE) based on PCR amplification of the amoA gene was used to analyze the AOB community composition. In addition, a clone library from the amoA gene fragments was established using clones randomly selected and sequenced from the two treatments. The results showed that the presence of bacterial-feeding nematodes led to significantly greater NH4+ and NO3 contents over the entire incubation period, indicating that bacterial-feeding nematodes promoted both N mineralization and nitrification. The results of DGGE showed that the AOB community composition was significantly changed in the presence of bacterial-feeding nematodes. Furthermore, the sequencing results suggested that Nitrosospira sp. was the dominant species in the treatment without nematodes, while Nitrosomonas sp. and Nitrosospira sp. were the dominant species in the treatment with nematodes. Such changes in the AOB community may be one of explanation of the important role that nematodes play in promoting nitrification.  相似文献   

2.
Population size of soil ammonia-oxidizing bacteria (AOB) was quantified by real-time PCR in a long-term (16 years) field experiment under different fertilizer managements. AOB population sizes in mineral nitrogen-fertilized soils and organic manure-fertilized soil were 10.3 and 3.1 times, respectively, that of the control, while phosphorus and potassium fertilization had no significant effect. On the other hand, the AOB specific nitrification potential (soil nitrification potential per AOB cell) was significantly higher (P < 0.05) in organic manure-fertilized soil than in mineral-fertilized soils and the control, indicating that AOB was likely more metabolically active in organic manure-fertilized soils than in mineral nitrogen-fertilized soils after long-term application.  相似文献   

3.
Mineral-N fertilization can lead to a short-term enhancement of N2O emission from cultivated land. The aim of this field study was the quantitative determination of the short-term N2O emission after application of a fertilizer with the new nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) to winter wheat. NO3- and NH4+ fertilizers labelled with 15N in liquid and granulated form were used in specific fertilizer strategies. N fertilizers with higher NO3- contents caused higher N2O emission than NH4+ fertilizers. For fertilizers with NIs, used in simplified fertilizer strategies with fewer applications and an earlier timing of the N fertilization, the N2O release was reduced by about 20%. Of the total N2O emission measured, 10-40% was attributed to fertilizer N and 60-90% originated from soil N. Besides the fertilizer NO3--N, the microbial available-N pool in the soil represented a further important source for N2O losses. Compared to liquid fertilizers, the application in granulated form led to smaller N2O emissions. For fertilizers with NIs, the decrease in the N2O emission is mainly due to their low NO3--N content and the possibility of reducing the number of applications.  相似文献   

4.
Taking two important agricultural soils with different pH, brown soil (Hap-Udic Luvisol) and cinnamon soil (Hap-Ustic Luvisol), from Northeast China, a pot culture experiment with spring maize (Zea mays L.) was conducted to study the dynamic changes in the abundance and diversity of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) populations during maize growth period in response to the additions of nitrification inhibitors dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) by the methods of real-time polymerase chain reaction (PCR) assay, PCR-denaturing gradient gel electrophoresis (DGGE), and construction of clone library targeting the amoA gene. Four treatments were established, i.e., no urea (control), urea, urea plus DCD, and urea plus DMPP. Both DCD and DMPP inhibited growth of AOB significantly, compared to applying urea alone. Soil bacterial amoA gene copies had a significant positive linear correlation with soil nitrate content, but soil archaeal amoA gene copies did not. In both soils, all AOB sequences fell within Nitrosospira or Nitrosospira-like groups, and all AOA sequences belonged to group 1.1b crenaxchaea. With the application of DCD or DMPP, community composition of AOB and AOA in the two soils had less change except that the AOB community composition in Hap-Udic Luvisol changed at the last two growth stages of maize under the application of DCD. AOB rather than AOA likely dominated soil ammonia oxidation in these two agricultural soils.  相似文献   

5.
新型硝化抑制剂3,4-二甲基吡唑磷酸盐(3,4-dimethylpyrazole phosphate,DMPP)对叶菜类蔬菜(如菠菜)硝酸盐的累积有明显的抑制作用[1-5],但其与氮肥一起造粒形成的新型氮肥在蔬菜上的研究还少有报道.我们以常规氮肥(NH4HCO3,urea,ASN)作对比,就新型含硝化抑制剂氮肥(ASN DMPP)在典型菜地正常施肥条件下对降低小白菜硝酸盐累积及营养品质的影响进行了研究,以期为提高蔬菜品质提供依据.  相似文献   

6.
7.

Purpose  

Nitrous oxide (N2O) is a potent greenhouse gas and, in grazed grassland systems where animals graze outdoor pastures, most of the N2O is emitted from animal urine nitrogen (N) deposited during grazing. Recently, ammonia-oxidizing archaea (AOA) were found to be present in large numbers in soils as well in the ocean, suggesting a potentially important role for AOA, in addition to ammonia-oxidizing bacteria (AOB), in the nitrogen cycle. The relationship between N2O emissions and AOB and AOA populations is unknown. The objective of this study was to determine the quantitative relationship between N2O emissions and AOB and AOA populations in nitrogen-rich grassland soils.  相似文献   

8.

Purpose

The application of organic and inorganic fertilizers to soil can result in increased gaseous emissions, such as NH3, N2O, CO2, and CH4, as well as nitrate leaching, contributing to climate warming and ground and surface water pollution, particularly in regions with hot climates, where high temperatures and high soil nitrification rates often occur. The use of nitrification inhibitors (NIs) has been shown to effectively decrease nitrogen (N) losses from the soil-plant system.

Materials and methods

Non-disruptive laboratory incubation experiments were conducted to assess the extent to which temperature (20 and 30 °C) and nutrient source (mineral and organic fertilizers) influence the rate of carbon (C)- and N-related microbial processes in soil in response to the NI 3,4-dimethylpyrazole phosphate (DMPP). Furthermore, short-term changes in the ability of microbes to degrade C substrates were evaluated in disruptive soil microcosms using microbial community-level physiological profiling and the abundance of the bacterial 16S rRNA gene as a measure of total bacterial population size.

Results and discussion

DMPP reduced net nitrification after 2 and 4 weeks of incubation at 30 and 20 °C by an average of 78.3 and 84.5 %, respectively, and with similar dynamics for mineral or organic fertilization. The addition of labile organic matter with cattle effluent led to a rapid increase in C mineralization that was significantly reduced by DMPP at both temperatures, whereas no changes could be detected after the addition of mineral fertilizer. The culturable heterotrophic microorganisms showed metabolic diversification in the oxidation of C sources, with organic fertilizer playing a major role in the substrate utilization patterns during the first week of incubation and the DMPP effects prevailing from day 14 until day 28. Furthermore, the copy number of the bacterial 16S rRNA gene was reduced by the application of DMPP and organic fertilizer after 28 days.

Conclusions

Our results show the marked efficiency of DMPP as an NI at elevated temperatures of incubation and when associated with both mineral and organic fertilization, providing support for its use as a tool to mitigate N losses in Mediterranean ecosystems. However, we also observed impaired C respiration rates and bacterial abundances, as well as shifts in community-level physiological profiles in soil, possibly indicating a short-term effect of DMPP and organic fertilizers on non-target C-related processes and microorganisms.
  相似文献   

9.
10.
有机肥及DMPP对蔬菜生产及硝态氮淋失的影响   总被引:4,自引:2,他引:4       下载免费PDF全文
研究在等氮条件下有机无机肥配施及添加硝化抑制剂DMPP(3,4-二甲基吡唑磷酸盐)对蔬菜产量、品质及土壤硝态氮淋失的影响,旨在为蔬菜安全生产和地下水环境质量保护提供理论依据。采用大型原状土柱系统,连续种植3季蔬菜(蕹菜、苋菜和萝卜),以施有机肥的氮素量占总氮施用量的质量分数为依据,设置8个施肥处理:不施肥(CK)、纯化肥(CF)、30%有机肥+70%无机肥(30%OM)、50%有机肥+50%无机肥(50%OM)、70%有机肥+30%无机肥(70%OM)、纯化肥+DMPP(CF+DMPP)、30%有机肥+70%无机肥+DMPP(30%OM+DMPP)和50%有机肥+50%无机肥+DMPP(50%OM+DMPP)。结果表明:1)随有机肥施用比例增大,蔬菜产量呈下降趋势,但施用比例不高于50%时产量下降不显著;随有机肥施用比例增大土壤硝态氮淋失量及蔬菜硝酸盐均降低,50%OM处理土壤淋失液硝态氮平均浓度及淋失量较CF处理显著降低了29.29%和25.39%,氮肥表观利用率及表观淋失率分别为22.60%和8.82%。2)硝化抑制剂DMPP对蔬菜产量和硝酸盐含量的影响与蔬菜种类和种植季候密切相关,降低土壤硝态氮淋失的效果为CF+DMPP30%OM+DMPP50%OM+DMPP,但DMPP的抑制效果会随有机肥的比例增加而降低。50%OM+DMPP处理氮肥表观淋失率和表观利用率分别为4.70%和26.26%。3)试验期间,3季蔬菜水分输入(降雨和灌溉)分别为总水分输入量的49.82%(蕹菜季)、23.03%(苋菜季)和27.15%(萝卜季);水分淋失量为总淋失量的46.75%(蕹菜季)、19.66%(苋菜季)和33.59%(萝卜季);硝态氮淋失量为总淋失量的73.77%(蕹菜季)、2.31%(苋菜季)和23.92%(萝卜季)。研究表明,50%OM+DMPP处理,是保证蔬菜产量品质,同时有效降低土壤硝态氮淋失量的最优处理;降雨和施肥措施是影响土壤硝态氮淋失的重要因素,合理配施有机肥及添加DMPP并根据蔬菜生长需肥特性进行施肥能有效应对连续降雨造成的硝态氮大量淋失。  相似文献   

11.
The community composition of ammonia-oxidizing bacteria (AOB) was studied during four stages of plant development in soil cultivated with Phaseolus vulgaris in comparison to unplanted soil, using an alfisol previously harboring the legume Medicago sativa. Denaturing gradient gel electrophoresis (DGGE) patterns of 16S rRNA gene and clone libraries of the same gene suggested that bacteria related to Nitrosospira cluster 3 were dominant in both planted and unplanted soil. Bacteria related to Nitrosomonas cluster 8 (Nitrosomonas communis cluster) were found at all times in planted soil, but appeared only randomly in unplanted soil. Analysis of PCR products of the gene encoding the alpha-subunit of ammonia monooxygenase (amoA) by DGGE and clone libraries only detected Nitrosospira cluster 3-like organisms, but failed to detect sequences related to Nitrosomonas. The results suggest that P. vulgaris does not affect the dominant members of AOB communities (Nitrosospira cluster 3), but could have an effect on the prevalence of Nitrosomonas cluster 8 in this type of legume-planted alfisol.  相似文献   

12.
Biology and Fertility of Soils - Recent evidence from several environments suggest that besides autotrophic ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) are also able to...  相似文献   

13.
In 1997-1999, 136 field trials were conducted under various soil-climatic conditions in western and southern Europe in order to assess the effects of N fertilizers with the new nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) on the yield and quality of various agricultural and horticultural crops. Results show that DMPP may increase the mean crop yield (grain yield, winter wheat +0.25 t ha-1, wetland rice +0.29 t ha-1, grain maize +0.24 t ha-1; tuber yield, potatoes +1.9 t ha-1; corrected sugar yield, sugar beets +0.24 t ha-1; biomass, carrots +4.9 t ha-1, lambs' lettuce +1.9 t ha-1, onions +0.5 t ha-1, radish +4.6 t ha-1, lettuce +1.4 t ha-1, cauliflower +5.2 t ha-1, leek +1.7 t ha-1, celeriac +2.2 t ha-1) and/or improve crop quality (e.g. reduced NO3- concentration in leafy vegetables). In some crops, the same yield level as obtained with the control (fertilizer without DMPP) was achieved with one fewer applications of N, or with a reduced N application rate. The positive effect of DMPP on crop yield was especially pronounced at sites with a high precipitation rate or intensive irrigation, and/or light sandy soil. DMPP had a negative effect on the crude protein concentration of winter wheat and on the biomass yield of spring-grown spinach.  相似文献   

14.

Purpose

Dicyandiamide (DCD) has been used commercially in New Zealand to reduce nitrate leaching and N2O emissions in grazed pastures. However, there is a lack of information in the literature on the optimum rate of DCD to achieve the environmental benefits while at the same time reducing the cost of the technology. The objective of this study was to determine the effect of DCD application rate on its effectiveness to inhibit ammonia oxidizer growth and nitrification rate in a grazed pasture soil.

Materials and methods

The soil was a Templeton silt loam (Immature Pallic Soil; Udic Haplustepts) collected from Lincoln University Research Dairy Farm with a mixed pasture consisting of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) and was incubated alone (control) or with cow urine at 700 kg N/ha with 6 rates of DCD [0, 2.5, 5, 7.5, 10 (applied twice), 15 and 20 kg/ha] in incubation vessels. The incubation vessels were placed randomly in an incubator with a constant temperature of 12 °C. During 112 days of incubation, soil subsamples were taken at different time intervals to measure the concentrations of NO3 ?-N and NH4 +-N and the amoA gene copy numbers of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA).

Results and discussion

DCD applied at all the different rates inhibited nitrification in urine-treated soils, but the effectiveness increased with DCD application rate. In addition, AOB growth and the amounts of nitrate-N in the soil were significantly related to the application rate of DCD. However, AOA population abundance showed no relationship to the application rate of DCD. The DCD rate at which the AOB growth rate and nitrate-N concentration were halved (effective dosage that causes 50 % reduction in nitrification rate, or ED50) was about 10 kg DCD/ha.

Conclusions

These results suggest that DCD applied at relatively low rates still slowed down the nitrification rate, and the current recommended rate of 10 kg DCD/ha for DCD use in New Zealand grazed pastures would result in a 50 % reduction in nitrification rate in this soil. The actual rate of DCD application used would depend on the cost of the product and the environmental and agronomic benefits that would result from its use.  相似文献   

15.
16.
Winter wheat (Triticum aestivum L.) is an important source of forage for cattle in the southern Plains. While high in quality, wheat pasture is prone to cause thousands of cattle deaths annually from nitrate poisoning, bloat, and wheat pasture poisoning, a syndrome of unknown cause. A large portion of the stocker cattle deaths on nitrogen fertilized pastures occur from unknown causes that appear to be related to forage composition. The objectives of this study were to determine seasonal trends in nutrient composition and to determine the effect of nitrapyrin, a nitrification inhibitor, on the change in nutrient composition of wheat forage over winter. The wheat was planted the last week of August on a Pullman clay loam soil (fine, mixed, thermic Torrertic Paleustol). Clip samples were collected periodically and analyzed for nutrient composition. Nitrogen, phosphorus, and potassium concentrations of the wheat forage varied during the season. Levels tended to be highest with the onset of growth and to decline as growth was decreased by cold weather. Nitrapyrin did not affect the concentration of any of the nutrients examined in the wheat forage. Concentration of nutrients, other than potassium, tended to be highly correlated with each other in both years of the study.  相似文献   

17.
  【目的】  棉花生长和品质对氮素施用量十分敏感,研究在氮肥中添加不同比例的硝化抑制剂双氰胺 (DCD) 对棉花生长发育及产量和品质的影响,为棉花生产提供可行的氮肥管理措施。  【方法】  以农大棉601为材料进行了田间试验。在施氮量240 kg/hm2条件下,设置在氮肥中添加双氰胺比例分别为0% (CK)、1.5% (C1.5) 和3% (C3) 的3个处理,研究各处理棉花生长发育指标、产量和纤维品质的变化。  【结果】  与CK相比,C1.5处理显著提高了棉花初花期、盛铃期、吐絮期株高,蕾期、盛铃期、吐絮期茎粗,蕾期、盛铃期叶面积指数,有利于形成良好的棉花形态特征。与CK相比,C1.5处理显著提高了蕾期棉花叶片叶绿素含量,蕾期、初花期和盛花期可溶性糖含量,蕾期和初花期可溶性蛋白质含量,表明氮肥配施适量DCD对棉花蕾期生理特征 (叶绿素含量、可溶性糖以及蛋白质含量) 产生了显著促进作用。与CK相比,C1.5处理显著提高了初花期、盛花期主茎功能叶干物质量,初花期和盛铃期果枝叶干物质量,5个生育时期茎干物质量;蕾期、初花期和盛铃期蕾干物质量,表明氮肥配施适量DCD对棉花干物质 (茎、叶、蕾) 量产生了明显促升作用。但C3与CK相比,以上各指标之间多无显著差异。两年产量结果显示,C1.5处理均显著高于CK,分别增产812和324 kg/hm2;而C3处理理论产量与CK无显著差异。C1.5和C3处理的伏桃、伏前桃和秋桃棉铃纤维品质各项指标与CK均无显著差异。  【结论】  连续两年的田间试验表明,在不增加施氮量的前提下,在氮肥中配施1.5%双氰胺 (DCD) 可以调控氮素养分的供应强度和时间,不仅提高了棉花生育前期和中期株高、茎粗和叶面积指数,还增加了蕾期、花期叶片叶绿素含量、可溶性糖与可溶性蛋白质含量,提高了棉花的干物质积累和产量,对棉花纤维的品质没有显著影响。而当氮肥中DCD添加比例为3%时,有可能过度抑制了氮素的硝化反应,影响了棉花生育后期氮素的供应,削弱了DCD的有益作用。因此,在常规施氮量不变的前提下,添加1.5%双氰胺是促进棉花生长发育和提高产量的有效措施。  相似文献   

18.
Fang  Yu  Wang  Fei  Jia  Xianbo  Chen  Jichen 《Journal of Soils and Sediments》2019,19(4):1613-1623
Journal of Soils and Sediments - Ammonia oxidation is the rate-limiting step in nitrification. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are the key drivers of the nitrogen cycle. Chinese...  相似文献   

19.
Nitrification inhibitors specifically retard the oxidation of NH4+ to NO2- during the nitrification process in soil. In this study, the influence of soil properties on the nitrification-inhibiting effect of 3,4-dimethylpyrazole-phosphate (DMPP), a newly developed nitrification inhibitor, has been investigated. Based on short-term incubation experiments, where the degradation of DMPP could be largely disregarded, the oxidation of the applied NH4+ was more inhibited in sandy soils compared with loamy soils. The influence of soil parameters on the relative NO2- formation could be described by a multiple regression model including the sand fraction, soil H+ concentration and soil catalase activity (R2=0.62). Adsorption studies showed that the binding behaviour of DMPP was influenced markedly by soil textural properties, viz. the clay fraction (r2=0.61). The adsorption of DMPP was found to be an important factor for the inhibitory effect on NH4+ oxidation in a short-term incubation (r2=0.57). It is concluded that the evaluated soil properties can be used to predict the short-term inhibitory effect of DMPP in different soils. The significance of these results for long-term experiments under laboratory and field conditions needs further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号