首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
路径跟踪是自动驾驶汽车的核心技术,许多控制算法已被广泛应用于路径跟踪任务。为了提高路径跟踪在不同速度下的自适应能力,提出了一种结合预测轨迹和模糊控制的自适应Stanley路径跟踪控制器。参考人类驾驶员经验,模糊控制器根据车辆的横纵向速度实时调整预瞄距离,预测轨迹根据纵向速度实时调整预测时间进行提前控制。最后设计了自适应邻域的粒子群算法来对控制器参数进行优化。通过Simulink-CarSim的联合仿真验证,证明自适应Stanley控制器可以显著提高对不同速度的适应性和跟踪性能。  相似文献   

2.
基于机器视觉的农业车辆路径跟踪   总被引:2,自引:0,他引:2  
简述了一种基于机器视觉的农业车辆自动导航系统.提出了直线检测算法,显著降低了内存需求和时间消耗;以横向偏差和航向偏差作为输入量,构建了二维模糊决策器,对期望前轮转角进行决策;构建了基于PID的转向控制器,实现前轮转向控制,并采用简化的两轮车运动学模型进行了仿真.仿真和实验结果表明,该导航系统可以有效地实现直线路径跟踪.当车速为0.3m/s时,最大跟踪横向偏差不超过5cm,平均偏差不超过2cm;当车速为0.6m/s时,最大跟踪横向偏差不超过8cm,平均偏差不超过4cm.  相似文献   

3.
为提高温室内智能农机自动导航的路径跟踪精度,提出一种基于粒子群算法的纯追踪模型动态前视距离确定方法及其路径跟踪控制方法。利用超宽带(UWB)模块和电子陀螺获取温室内智能农机的位置偏差和航向偏差;为提高纯追踪模型的自适应能力,对农机位姿偏差进行定量分析并根据位姿偏差程度构建适应度函数,通过粒子群优化(PSO)算法实时确定纯追踪模型中的最优前视距离,为提升算法求解效率对惯性权重系数进行改进;根据农机位姿偏差程度构建速度控制函数对农机进行变速控制。样机试验结果表明:在3种初始状态下的直线路径跟踪时,平均偏差均值为24.4 cm,稳态偏差平均值为4.3 cm,导航时间平均值为13.2 s,稳定距离平均值为318.1 cm。路径跟踪的各项指标均优于同等条件下的恒速固定视距试验。  相似文献   

4.
为实现农业机械全田块高效自主作业,提出一种增益系数自适应的Stanley模型路径跟踪算法。以横向偏差和航向偏差为输入变量构建隶属度函数,设计模糊推理和解模糊化过程实时确定控制模型增益系数,提高Stanley模型对不同曲率路径的自适应能力。为验证所提算法有效性,以移动小车为平台开展联合收获机回字形全田块自主作业路径跟踪试验,结果表明所提算法显著改善Stanley模型路径跟踪精度,直线作业速度2.5m/s、转弯速度1m/s时,直线段和曲线段最大跟踪误差均小于3cm。大初始横向偏差路径跟踪试验表明,模糊Stanley模型较Stanley模型大幅度减小路径跟踪上线距离,满足农业机械全田块高效自动导航作业要求。  相似文献   

5.
为提高自主导航农业车辆导航路径的准确性和行驶作业的安全性,提出自主导航农业车辆的全景视觉多运动目标识别跟踪方案。该方案采用全景视觉进行无盲区的多运动障碍目标的检测,并解决了多运动目标跟踪中遮挡重叠的问题。首先系统将多目相机采集的图像拼接成全景图像,采用分段图像的改进核函数算法对运动目标进行快速自动检测跟踪;其次采用基于路径预测的粒子滤波算法进行多运动目标跟踪并解决遮挡重叠的问题。通过试验表明:采用改进的核函数目标快速跟踪算法,与传统核函数跟踪算法相比,减少系统内存消耗66.8%,加快运算速度35.63%;采用基于路径预测的粒子滤波多目标跟踪算法,在多运动目标遮挡重叠的情况下,平均提高运动目标跟踪成功率39.5个百分点,算法平均耗时0.78s。  相似文献   

6.
农机导航自校正模型控制方法研究   总被引:8,自引:0,他引:8  
针对运动学模型中的近似条件对模型控制方法曲线路径跟踪精度的影响,提出了一种农机导航自校正模型控制方法。该方法采用模型控制方法设计控制律,并采用模糊控制方法自适应地在线调节模型控制律的控制量。农业机械的路径跟踪实验结果表明,该方法既保留了模型控制方法在直线路径跟踪方面的优点,又弥补了模型控制方法在曲线路径跟踪方面的缺陷。当速度为1.0 m/s时,直线路径跟踪最大横向偏差小于0.064 9 m,曲线路径跟踪的最大横向偏差小于0.185 7 m。  相似文献   

7.
基于虚拟雷达模型的履带拖拉机导航路径跟踪控制算法   总被引:1,自引:0,他引:1  
为提高传统果园广泛使用的小型履带式拖拉机导航路径跟踪控制精度和行驶稳定性,提出了一种基于虚拟雷达模型的导航路径跟踪控制算法。该算法借鉴人对车辆的驾驶经验,参考雷达扫描原理和图像识别原理,构建了虚拟雷达模型,生成虚拟雷达图,使用该图描述车辆与路径的位置关系;经深度神经网络分类生成对应的履带拖拉机行驶操作指令;以果园作业典型的U形路径为例进行了仿真验证试验和实车试验。仿真结果表明:本文提出的算法能够精准实现导航路径跟踪控制。果园实车试验表明:当车速为0.36、0.75m/s时,该算法路径跟踪的最大横向偏差分别为0.150、0.191m,平均横向偏差分别为0.031、0.051m,标准差分别为0.025、0.036m;与模糊控制算法相比,最大横向偏差分别减小了15.73%、36.33%,平均横向偏差分别减小了27.91%、19.05%,标准差分别减少了21.88%、28.00%。研究表明,基于虚拟雷达模型的导航路径跟踪控制算法具有更高的路径跟踪精度和行驶稳定性,满足果园实际作业需求。  相似文献   

8.
为了提高无人插秧机地头转向时的曲线路径跟踪精度,针对传统的误差权重矩阵固定的线性二次调节器(Linear quadratic regulator,LQR)路径跟踪控制器对插秧机的纵向速度、横向偏差以及航向角偏差的变化适应性较差的问题,基于车辆二自由度动力学模型,提出了一种通过模糊控制实时调整LQR控制器误差权重矩阵的路径跟踪控制器优化方法。该方法以纵向速度、横向偏差、航向角偏差为输入,以横向偏差和航向角偏差对应的误差权重为输出,建立模糊控制模型实时调整LQR控制器的误差权重矩阵。为了验证所提出算法的曲线路径跟踪控制精度和可行性,以改装后的洋马VP6E型无人插秧机为对象,进行Carsim和Simulink联合仿真试验以及实车试验。仿真试验结果表明,控制插秧机跟踪半径为2m的1/4圆弧路径时,所提出算法控制下的横向偏差绝对值均值为0.014m,最大值为0.032m,小于0.04m的占100%,航向角偏差绝对值均值为1.67°,最大值为4.94°,相较于传统引入前馈控制的LQR控制器,横向偏差绝对值均值降低50%,航向角偏差绝对值均值降低23%。实车试验结果表明,在插秧机跟踪半径为2m的1/4圆弧路径时,所提出算法控制下横向偏差绝对值均值为0.027m,最大值为0.048m,小于0.04m的占62%,航向角偏差绝对值均值为1.86°,最大值为4.94°,相较于传统引入前馈控制的LQR控制器,横向偏差绝对值均值降低40%,航向角偏差绝对值均值降低4.1%。该方法提升了无人插秧机曲线路径跟踪控制精度,为无人插秧机曲线路径跟踪控制提供了参考。  相似文献   

9.
无人驾驶铰接式车辆强化学习路径跟踪控制算法   总被引:2,自引:0,他引:2  
针对无人驾驶铰接式运输车辆无人驾驶智能控制问题,提出了一种强化学习自适应PID路径跟踪控制算法。首先推导了铰接车的运动学模型,根据该模型建立实际行驶路径与参考路径偏差的模型,以PID控制算法为基础,设计了基于强化学习的自适应PID路径跟踪控制器,该控制器以横向位置偏差、航向角偏差、曲率偏差为输入,以转角控制量为输出,通过强化学习算法对PID参数进行在线自适应整定。最后在实车道路试验中验证了控制器的路径跟踪质量并与传统PID控制结果进行了对比。结果表明,相比于传统PID控制器,强化学习自适应PID控制器能够有效减小超调和震荡,实现精确跟踪参考路径,可以较好地实现系统动态性能和稳态误差性能的优化。  相似文献   

10.
扰动下农用运输车辆路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用运输车辆路径跟踪的鲁棒稳定性,基于线性模型预测控制结合农用运输车辆特点设计了路径跟踪控制器。该方法首先将农用运输车辆的运动学模型进行离散化求解,推出误差模型作为控制器预测方程,为使农用运输车能够克服在田间行驶时的各种干扰,通过构建李雅普诺夫函数重点分析了该模型的鲁棒稳定性,得到控制周期约束条件,然后建立目标函数并引入松弛因子,最后把预测模型代入目标函数进行优化求解,重复以上过程,实现优化控制。Matlab仿真表明:当前轮转角扰动不大于15°及横向扰动不大于1.5m时,控制器可以迅速起到调节作用,使车辆快速回到参考轨迹上行驶。对应的场地试验结果表明:试验小车以2m/s的速度跟踪参考路径时,直线路段跟踪效果良好,最大横向偏差为10.57cm,均值为8.49cm;添加扰动路段的跟踪偏差较大,最大横向偏差为23.89cm,最大纵向偏差为62.53cm,但在控制器的控制作用下可以实现对路径的有效跟踪。由此可见,该控制器在速度小于等于2m/s的情况下,可以满足农用运输车辆对路径跟踪的精度与鲁棒稳定性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号