首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Bartonella henselae is the causative agent of cat scratch disease (CSD) in humans. Cats are the main reservoir of this bacterium and may infect humans through scratches and bites. The purpose of this study was to determine the B. henselae seroprevalence in cats in Turkey. A total of 298 cats blood samples were collected from six different provinces of Turkey. Sera were tested for the presence of anti-B. henselae IgG antibodies by indirect fluorescent antibody test (IFA). The seroprevalence of B. henselae was 27.9% (83/298) for the cats examined in this study. The seroprevalence of cats by province was significantly higher in Bursa (41.3%), Adana (33.9%), Aydin (27.5%) and Burdur (32.3%) than in Kayseri (17.9%) and Istanbul (12.5%). Statistically significant differences were not observed between cat sexes and living conditions of cats. The results revealed that B. henselae is an important zoonotic pathogen in Turkey.  相似文献   

2.
Practical relevance: Bartonellae are small, vector-transmitted Gram-negative intracellular bacteria that are well adapted to one or more mammalian reservoir hosts. Cats are the natural reservoir for Bartonella henselae, which is a (re-)emerging bacterial pathogen. It can cause cat scratch disease in humans and, in immunocompromised people, may lead to severe systemic diseases, such as bacillary angiomatosis. Cats bacteraemic with B henselae constitute the main reservoir from which humans become infected. Most cats naturally infected with B henselae show no clinical signs themselves, but other Bartonella species for which cats are accidental hosts appear to have more pathogenicity. Global importance: Several studies have reported a prevalence of previous or current Bartonella species infection in cats of up to 36%. B henselae is common in cats worldwide, and bacteraemia can be documented by blood culture in about a quarter of healthy cats. The distribution of B henselae to various parts of the world has largely occurred through humans migrating with their pet cats. The pathogen is mainly transmitted from cat to cat by fleas, and the majority of infected cats derive from areas with high flea exposure. No significant difference in B henselae prevalence has been determined between male and female cats. In studies on both naturally and experimentally infected cats, chronic bacteraemia has mainly been found in cats under the age of 2 years, while those over 2 years of age are rarely chronically bacteraemic. Evidence base: This article reviews published studies and case reports on bartonellosis to explore the clinical significance of the infection in cats and its impact on humans. The article also discusses possible treatment options for cats and means of minimising the zoonotic potential.  相似文献   

3.
Bartonella species infection is associated with central nervous system (CNS) disease in some humans and cats but the diagnosis is difficult to confirm with blood or serum test results. In this retrospective study of 100 client-owned cats, serum and cerebral spinal fluid (CSF) were assayed for Bartonella species IgG antibodies and CSF was assayed for Bartonella species DNA. Bartonella species IgG antibodies were detected in serum of 36 cats, Bartonella species C-values>1 (suggesting antibody production by the CNS) were detected in CSF of 11 cats, and B henselae DNA was amplified from the CSF of 10 cats. While the clinical significance of these findings cannot be assessed without a control group, the development of neurological signs in some cats inoculated with B henselae and the results of this study warrant prospective evaluation of the association of Bartonella species with feline CNS disease.  相似文献   

4.
Four Bartonella species have been isolated from domestic cats, of which two serotypes/genotypes of Bartonella henselae and possibly B. clarridgeiae are human pathogens, causing cat scratch disease (CSD).Our objectives were to evaluate infection and potential cross-protection during re-infection in domestic cats with various Bartonella species or types.Thirty-six cats were primarily inoculated with B. henselae type I (n=16), B. henselae type II (n=10), B. clarridgeiae (n=6) or B. koehlerae (n=4). They were challenged with B. henselae type I (n=15), B. henselae type II (n=13) or B. clarridgeiae (n=8).All 36 cats became bacteremic (1.25x10(2)-1.44x10(6)CFU/ml) and bacteremia lasted from 37 to 582 days. Duration of bacteremia for cats inoculated with B. henselae type I was shorter than for cats inoculated with either B. henselae type II (P=0.025) or B. clarridgeiae (P=0.011).After challenge, 26 cats became bacteremic. Among the nine cats primarily inoculated with B. henselae type I and challenged with B. henselae type II, six cats stayed abacteremic. The three bacteremic cats had a transient low-level bacteremia. No bacteremia was observed in three cats primarily inoculated with B. henselae type I and challenged with another strain of B. henselae type I. Bacteremia levels in the 26 cats were significantly lower than for primary inoculation (P=0.022) and its duration was shorter (P=0.012). Among the eight cats challenged with B. clarridgeiae, duration of bacteremia in the four cats primarily inoculated with B. henselae type I was shorter than in the four cats primarily inoculated with B. henselae type II (P=0.01). Bartonella clarridgeiae inoculated cats were more likely to have relapses for both primary and secondary infections.This is the first demonstration of cross-protection, evidenced by absence of bacteremia, in cats primarily infected with B. henselae type I and challenged with B. henselae type II, whereas no cross-protection was previously shown for cats primarily infected with B. henselae type II and challenged with B. henselae type I. Such results are of major importance for future feline Bartonella vaccine development.  相似文献   

5.
The purpose of this study was to determine Bartonella henselae prevalance in cats in Ankara. Whole bloods and sera collected from 256 cats were investigated for the presence feline Bartonella species by culture and sera were tested for the presence of antibodies against B. henselae IgG using immunofluorescence assay. Bartonella species were isolated by blood culture from 24 (9.4%) cats. Bartonella isolates were subjected to restriction fragment length polymorphism (RFLP) by using TaqI and HhaI endonucleases to identify species. Twenty-one isolates were determined as B. henselae and three of 24 isolates were determined as Bartonella clarridgeiae with RFLP. The bacteraemia prevalence and seroprevalence of B. henselae IgG antibodies in cats was detected as 8.2% and 18.6% respectively. This is the first report on B. henselea and B. clarridgeiae in cats in Turkey.  相似文献   

6.
Cat scratch disease (CSD) has been difficult to diagnose in animals because of the protracted clinical course of infection and the quiescent phases when the microbial culprit lies dormant. The causative agent in CSD appears to be multiple species and strains of Bartonella. Using polymerase chain reaction (PCR) techniques for amplification of highly variable regions of the 16S ribosomal RNA (rRNA) gene sequence, a very sensitive species- and strain-specific assay for CSD-causing Bartonella species was developed. PCR primers were designed to specifically amplify the 16S rRNA gene of Bartonella species but not of other microbial pathogens. This initial PCR was multiplexed with a universal primer set, based on conserved sequence regions in the 16S rRNA gene, that provides a 162-bp fragment in all species tested. Subsequently, 3 distinct nested PCR primer sets enabled the individual amplification and specific detection of Bartonella henselae type 1, B. henselae type II, and B. clarridgeae. Thus, this 2-step PCR procedure enabled the sensitive detection and identification of these species and the B. henselae genotype by exploiting minor sequences differences. Verification of these results were demonstrated with both sequencing and ligase chain reaction techniques. The diagnostic usefulness of this CSD test has been demonstrated by the analysis of specimens from control and infected cats. The diagnosis was confirmed and the specific B. henselae strain was correctly identified in peripheral blood specimens obtained from control and strain-specific CSD-infected cats. Such an accurate and sensitive diagnostic tool for the detection and identification of CSD causative agents should be a useful for the medical, veterinary, and scientific communities.  相似文献   

7.
Prevalence of Bartonella infection in domestic cats in Denmark   总被引:1,自引:0,他引:1  
Whole blood and serum from 93 cats (44 pets and 49 shelter/stray cats) from Denmark were tested for the presence of feline Bartonella species by culture and for the presence of Bartonella antibodies by serology. Bartonella henselae was isolated from 21 (22.6%) cats. Bacteremia prevalence was not statistically different between shelter/stray cats (13/49, 26.5%) and pet cats (8/44, 18.2%), but varied widely by geographical origin of the cats, even after stratification for cat origin or age (p < 0.001). All isolates but one were B. henselae type II. The only cat bacteremic with B. henselae type I was not co-infected with B. henselae type II. None of the cats was harboring either B. clarridgeiae or B. koehlerae. Almost half (42/92, 45.6%) of the cats were seropositive for B. henselae and antibody prevalence was similar in shelter/stray cats (23/49, 46.9%) and pet cats (19/43, 44.2%). This is the first report of isolation of B. henselae from domestic cats in Denmark. This study also indicates that domestic cats, including pet cats, constitute a large Bartonella reservoir in Denmark.  相似文献   

8.
Domestic cats are the reservoir of Bartonella henselae, the main causative agent of cat scratch disease. We compared B. henselae type I infection characteristics in 6 SPF cats infected with a feline strain (4.8 x 10(7) colony-forming units (CFU)/mL) and in 6 SPF cats infected with the reference Houston I strain (6.6 x 10(6) CFU/mL to 9.6 x 10(7) /mL). All the cats inoculated with the feline strain, but none of the cats inoculated with B. henselae Houston I, developed a fever within 2-12 days (mean: 5.8 days) post inoculation (PI), which lasted for 1-2 weeks. However, all 12 cats became bacteremic. The duration of bacteremia was significantly longer in the cats inoculated with the feline strain (mean: 237 days) than in the cats inoculated with Houston I strain (mean: 60 days) (p < 0.01). Five (83%) cats inoculated with the feline strain and none of the six cats inoculated with B. henselae Houston I had relapsing bacteremia (p = 0.02). IgG antibodies were detected by IFA within 1-2 weeks for both strains, but peaked later (week 10 versus week 3 PI) for the feline strain. By ELISA, using antigens of each B. henselae strain, all 12 cats developed Bartonella specific IgM and IgG antibodies, but the cats infected with B. henselae Houston I antigen yielded significantly lower optical density values (p < 0.05). By SDS-PAGE, PFGE and Western blotting, protein profile differences (84 to 89% homology) were observed between the two strains. If a feline vaccine is to be developed in order to prevent human infection, the choice of the vaccine strain will be critical, since major differences were identified even between strains belonging to the same sero/genotype.  相似文献   

9.
Bartonella henselae is the main agent of cat scratch disease in humans and domestic cats are the main reservoir of this bacterium. We conducted a serosurvey to investigate the role of American wild felids as a potential reservoir of Bartonella species. A total of 479 samples (439 serum samples and 40 Nobuto strips) collected between 1984 and 1999 from pumas (Felis concolor) and 91 samples (58 serum samples and 33 Nobuto strips) collected from bobcats (Lynx rufus) in North America, Central America and South America were screened for B. henselae antibodies. The overall prevalence of B. henselae antibodies was respectively 19.4% in pumas and 23.1% in bobcats, with regional variations. In the USA, pumas from the southwestern states were more likely to be seropositive for B. henselae (prevalence ratio (PR) = 2.82, 95% confidence interval (CI) = 1.55, 5.11) than pumas from the Northwest and Mountain states. Similarly, adults were more likely to be B. henselae seropositive than juveniles and kittens (PR = 1.77, 95% CI = 1.07, 2.93). Adult pumas were more likely to have higher B. henselae antibody titers than juveniles and kittens (p = 0.026). B. henselae antibody prevalence was 22.4% (19/85) in bobcats from the USA and 33.3% (2/6) in the Mexican bobcats. In the USA, antibody prevalence varied depending on the geographical origin of the bobcats. In California, the highest prevalence was in bobcats from the coastal range (37.5%). These results suggest a potential role of wild felids in the epidemiological cycle of Bartonella henselae or closely related Bartonella species.  相似文献   

10.
The prevalence of Bartonella species DNA and antibodies for Bartonella henselae were studied in 40 clinically healthy cats (Felis catus, Linnaeus 1758) submitted to a spay/neuter program in Rio de Janeiro, Brazil. Additionally, the prevalence of Bartonella species DNA was investigated in the fleas found parasitizing the subject cats. For this purpose, blood samples were obtained from all cats, and DNA extraction was performed on the blood, and blood clotted samples, as well as on pools of fleas obtained from them. Antibodies for B henselae were detected on serum samples. Bartonella species DNA was detected in 17 cats, whereas serum reactivity for B henselae was found in 19. A total of 20 cats were flea-infested and nine of these 20 had Bartonella species DNA in their blood. In four of the 20 flea-infested cats, Bartonella species DNA was detected in the fleas obtained from those cats, but only one of these four cats had Bartonella species DNA in its blood.  相似文献   

11.
Serological and molecular surveys were conducted to determine the occurrence of Bartonella henselae in domestic cats in Central Italy. Samples from 234 pet cats were tested for B. henselae antibodies by indirect immunofluorescence with 78 (33.3%) positive. A PCR assay specific for the Bartonella 16S rRNA gene was carried out on DNA samples extracted from blood of the 234 cats; 26 (11.1%) of the seropositive cats were positive. Two PCR protocols, which discriminate genotypes I and II of B. henselae, were performed on all DNA samples. Sixteen (6.8%) cats were infected by genotype I, 6 (2.5%) by genotype II, and two males (0.8%) by both genotypes. Two female (0.8%) cats which were Bartonella sp. PCR positive, gave negative results with the types I and II PCR. This protocol facilitates the direct and rapid detection of Bartonella DNA in feline blood samples, and differentiates B. henselae genotypes.  相似文献   

12.
Cat scratch disease is caused by Bartonella henselae and the domestic cat represents its main reservoir. In immunocompromised patients, infection with B. henselae is characterized by more severe clinical forms than in non-immunocompromised individuals. The objective of the present study was to investigate the characteristics of B. henselae (Houston-I strain) infection in four splenectomized and three non-splenectomized cats, five of which were chronically infected with 'Candidatus Mycoplasma haemominutum'. No major clinical signs were observed in either group of cats. Cats in both splenectomized and non-splenectomized groups became bacteremic within a week post-inoculation. Although bacteremia was on average 10 days longer in the splenectomized cats, that difference was not statistically significant (P=0.72). In both groups, the level of bacteremia peaked within the same time frame; however, the level of bacteremia was about 10-fold higher in the splenectomized cats (P=0.007). Such a difference could be associated with a reduced immune response to the infection, especially a reduced ability to phagocytize Bartonella organisms in the splenectomized cats. Concurrent infection with 'Candidatus M. haemominutum' did not appear to alter the course of infection.  相似文献   

13.
OBJECTIVE: To assess the role of Bartonella spp in chronic rhinosinusitis (CRS) by determining detection rates for the organism by serologic testing and microbial culture of blood samples for Bartonella spp in cats with CRS and control cats (cats with other nasal diseases, cats with systemic illnesses, and healthy cats). DESIGN: Prospective case-control study. ANIMALS: 19 cats with CRS, 10 cats with other nasal diseases, 15 cats with systemic illness, and 15 healthy cats. Procedures-Serologic testing for Bartonella clarridgeiae and Bartonella henselae and microbial culture of blood samples were conducted in all cats. In cats with CRS and cats with other nasal diseases, a nasal biopsy specimen was submitted, when available, for tissue PCR assay to detect Bartonella spp. RESULTS: 9 of 19 cats with CRS had positive results for serologic testing for 1 or both Bartonella spp; whereas, 4 of 10 cats with other nasal diseases, 2 of 15 cats with systemic diseases, and 4 of 15 healthy cats had positive results for serologic testing to detect Bartonella spp. These values did not differ significantly among groups. Microbial culture of blood samples yielded B henselae in 1 cat with a nasopharyngeal abscess. The PCR assay for Bartonella spp in nasal tissues yielded negative results for 9 of 9 cats with CRS and 5 of 5 cats with other nasal diseases. CONCLUSIONS AND CLINICAL RELEVANCE: A role for Bartonella spp in the pathogenesis of CRS in cats was not supported by results of this study.  相似文献   

14.
Bartonella henselae has been identified and characterized for the first time in Italy. A strain, designed Pavia-1, was isolated from the blood of a cat whose owner developed cat scratch disease (CSD). Pavia-1 and two American B. henselae strains (Houston-1, ATCC 49882, type I and strain 269608, UC Davis, type II) were compared by whole-cell fatty analysis (CFA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for protein profiles, Western immunoblotting (WB) for reactivity with polyclonal antibodies, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), type-specific 16S rRNA PCRs, and pulsed-field gel electrophoresis (PFGE). Bartonella clarridgeiae (ATCC 51734) was also included for comparison. Pavia-1 was identified as a B. henselae type I. PFGE allowed differentiation between B. clarridgeiae and B. henselae and furthermore, between all the B. henselae strains. The fingerprints of PFGE observed for Pavia-1 were distinct from those of B. henselae type II and also of Houston-1, suggesting that the two type I strains derived from two different clones. These results show the capability of B. henselae to develop genotypic variability between genetically related strains.  相似文献   

15.
Bartonella species are emerging pathogens that have been isolated worldwide from humans and other mammals. Our objective was to estimate the prevalence of Bartonella infection in free-ranging African lions (Panthera leo) and cheetahs (Acinonyx jubatus). Blood and/or serum samples were collected from a convenience sample of 113 lions and 74 cheetahs captured in Africa between 1982 and 2002. Whole blood samples available from 58 of the lions and 17 of the cheetahs were cultured for evidence of Bartonella spp., and whole blood from 54 of the 58 lions and 73 of the 74 cheetahs tested for the presence of Bartonella DNA by TaqMan PCR. Serum samples from the 113 lions and 74 cheetahs were tested for the presence of antibodies against Bartonella henselae using an immunofluorescence assay. Three (5.2%) of the 58 lions and one (5.9%) of the 17 cheetahs were bacteremic. Two lions were infected with B. henselae, based on PCR/RFLP of the citrate synthase gene. The third lion and the cheetah were infected with previously unidentified Bartonella strains. Twenty-three percent of the 73 cheetahs and 3.7% of the 54 lions tested by TaqMan PCR were positive for Bartonella spp. B. henselae antibody prevalence was 17% (19/113) for the lions and 31% (23/74) for the cheetahs. The prevalence of seropositivity, bacteremia, and positive TaqMan PCR was not significantly different between sexes and age categories (juvenile versus adult) for both lions and cheetahs. Domestic cats are thus no longer the only known carriers of Bartonella spp. in Africa. Translocation of B. henselae seronegative and TaqMan PCR negative wild felids might be effective in limiting the spread of Bartonella infection.  相似文献   

16.
BACKGROUND: Bartonella spp. are emerging zoonotic agents that have been found in a wide variety of domestic animals and wildlife and cause a number of clinical syndromes. Bartonella sp. infection has been identified in a growing number of animal species, including cats, rodents, porpoises, and canids, but has not been reported in horses. OBJECTIVE: To document the presence of Bartonella sp. in the blood of horses. ANIMALS: One horse with chronic arthropathy and 1 horse with presumptive vasculitis. METHODS: Blood samples were tested for the presence of Bartonella sp. by a combination of multiplex real-time polymerase chain reaction and enrichment culture technique. RESULTS: Bartonella henselae was isolated or detected in the blood of both horses. CONCLUSION AND CLINICAL IMPORTANCE: Bartonella henselae infection should be investigated as the cause of disease in horses.  相似文献   

17.
Epidemiology of Bartonella infection in domestic cats in France   总被引:3,自引:0,他引:3  
Blood samples were collected between February and June 1996 from a convenience sample of 436 domestic French cats living in Paris and its environs and were tested for Bartonella bacteremia and seropositivity. Seventy-two cats (16.5%) were Bartonella bacteremic, of which 36 cats (50%) were infected with Bartonella henselae type II (B.h. II) only, 15 cats (21%) were infected with Bartonella clarridgeiae (B.c.) only, and 11 cats (15%) were infected with B. henselae type I (B.h. I) only. Eight cats (11%) were co-infected with B. henselae and B. clarridgeiae (B.h. II/B.c.: five cats; B.h. I/B.c.: three cats). Two cats (2.8%) were concurrently bacteremic with B. henselae types I and II. Risk factors associated with bacteremia included ownership for <6months (prevalence ratio (PR)=1.80; 95% confidence interval (CI)=1.13-2.85), adoption from the pound or found as a stray (PR=1.67, 95% CI=1.05-2.65), and cohabitation with one or more cats (PR=1.60, 95% CI=1.01-2.53). Bartonella antibodies to either B. henselae or B. clarridgeiae were detected in 179 cats (41.1%). Risk factors associated with seroposivity paralleled those for bacteremia, except for lack of association with time of ownership. Prevalence ratios of bacteremic or seropositive cats increased with the number of cats per household (p=0.02). The lack of antibodies to B. henselae or B. clarridgeiae was highly predictive of the absence of bacteremia (predictive value of a negative test=97.3%). Multiple logistic regression analysis indicated that bacteremia, after adjustment for age and flea infestation, and positive serology, after adjustment for age, were associated with origin of adoption and number of cats in the household. Flea infestation was associated with positive serology.  相似文献   

18.
The purpose of this study was to determine whether neonatal cats develop and maintain a persistent bacteremia for longer than do adult cats with a normal mature immune system, and whether neonatal cats are susceptible to infection with Bartonella henselae by oral inoculation. Neonatal specific pathogen-free (SPF) cats were inoculated with B. henselae intradermally (n = 4) or orally (n = 5) or with 0.9% NaCl (n = 2). Blood was collected periodically through 16 weeks post-inoculation (PI) for serology, bacteriology and complete blood count. Cats inoculated orally or intradermally at 3-5 days of age were bacteremic through 12-16 weeks PI, similar to what is documented for adult cats inoculated intradermally or intravenously. One cat inoculated at age 2 weeks was bacteremic through 10 weeks PI; the other was not bacteremic. Intradermally inoculated neonatal cats produced serum IgG antibodies to B. henselae but orally inoculated neonatal cats did not. Infected cats with and without serum IgG antibodies to B. henselae became blood-culture negative simultaneously, suggesting that IgG is not required to clear bacteremia.  相似文献   

19.
OBJECTIVE: To identify the prevalence of DNA of Mycoplasma haemofelis; 'Candidatus Mycoplasma haemominutum'; Anaplasma phagocytophilum; and species of Bartonella, Neorickettsia, and Ehrlichia in blood of cats used as blood donors in the United States. DESIGN: Prospective study. ANIMALS: 146 cats that were active blood donors. PROCEDURES: Environmental history was requested for each blood-donor cat from which a blood sample (mixed with EDTA) was available. Polymerase chain reaction assays capable of amplifying the DNA of the microorganisms of interest following DNA extraction from blood were performed. RESULTS: Overall, DNA of one or more of the infectious agents was detected in blood samples from 16 of 146 (11%) feline blood donors. Twenty-eight laboratory-reared cats housed in a teaching hospital had negative results for DNA of all organisms investigated. The DNA of at least 1 infectious agent was amplified from blood samples collected from 16 of 118 (13.6%) community-source cats; assay results were positive for 'Candidatus M haemominutum,' M haemofelis, or Bartonella henselae alone or in various combinations. Of the community-source cats allowed outdoors (n = 61) or with known flea exposure (44), DNA for a hemoplasma or B henselae was detected in 21.3% and 22.7%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: When community-source cats, cats allowed outdoors, or cats exposed to fleas are to be used as blood donors, they should be regularly assessed for infection with M haemofelis, 'Candidatus M haemominutum,' and Bartonella spp, and flea-control treatment should be regularly provided.  相似文献   

20.
The purpose of this study was to determine the serological and molecular prevalence of Bartonella spp. infection in a sick dog population from Brazil. At the S?o Paulo State University Veterinary Teaching Hospital in Botucatu, 198 consecutive dogs with clinicopathological abnormalities consistent with tick-borne infections were sampled. Antibodies to Bartonella henselae and Bartonella vinsonii subsp. berkhoffii were detected in 2.0% (4/197) and 1.5% (3/197) of the dogs, respectively. Using 16S-23S rRNA intergenic transcribed spacer (ITS) primers, Bartonella DNA was amplified from only 1/198 blood samples. Bartonella seroreactive and/or PCR positive blood samples (n=8) were inoculated into a liquid pre-enrichment growth medium (BAPGM) and subsequently sub-inoculated onto BAPGM/blood-agar plates. PCR targeting the ITS region, pap31 and rpoB genes amplified B. henselae from the blood and/or isolates of the PCR positive dog (ITS: DQ346666; pap31 gene: DQ351240; rpoB: EF196806). B. henselae and B. vinsonii subsp. berkhoffii (pap31: DQ906160; rpoB: EF196805) co-infection was found in one of the B. vinsonii subsp. berkhoffii seroreactive dogs. We conclude that dogs in this study population were infrequently exposed to or infected with a Bartonella species. The B. henselae and B. vinsonii subsp. berkhoffii strains identified in this study are genetically similar to strains isolated from septicemic cats, dogs, coyotes and human beings from other parts of the world. To our knowledge, these isolates provide the first Brazilian DNA sequences from these Bartonella species and the first evidence of Bartonella co-infection in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号