首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two experiments were conducted to evaluate the effect of dietary Se and Ca on Se utilization in postweaning swine. Two levels of dietary Se (.3 or 5.0 ppm) supplemented as sodium selenite and four levels of total dietary Ca (.50, .80, 1.10 or 1.40%) in a 20% protein, corn-soybean meal diet were evaluated. Inorganic Ca was supplied from dicalcium phosphate and limestone. In Exp. I, 135 pigs weaned at 4 wk of age were allotted by sex, litter and weight and fed a basal diet for 7 d and then their treatment diets for a 28-d period. Plasma and tissue were collected at the end of the trial for Se concentration and glutathione peroxidase (GSH-Px) activity. Dietary Ca had no effect on gain or feed measurements but 5.0 ppm Se depressed daily gain slightly. When 5.0 ppm dietary Se was fed, there resulted higher liver, kidney, heart and longissimus muscle Se concentrations than when .3 ppm was provided, but dietary Ca had no effect on tissue Se values within each dietary Se level. Plasma GSH-Px increased when higher dietary Se was provided, whereas neither heart nor liver GSH-Px activity was affected by dietary Se or Ca level. In Exp. II, a 5-d balance trial was conducted with 32 barrows after adjustment to their treatment diet for a 28-d period. Selenium retention increased quadratically as dietary Ca increased, whereas Ca retention was not affected by dietary Se. These results suggest that low dietary Ca levels may reduce total Se retention but not Se metabolism within body tissue.  相似文献   

2.
A total of 72 pigs weaned at 4 wk of age were allotted by litter and weight to nine treatment groups and fed 20% protein cornsoybean meal diets supplemented with various levels of inorganic Se during a 37-d postweaning period. Eight groups were fed diets with 0, 2.5, 5.0, 7.5, 10, 15, 20 or 40 ppm Se provided as sodium selenite, while a ninth was offered the 0- and 40-ppm Se diets in separate feeders. Gains and feed intakes were similar during the trial for the 0- and 2.5-ppm Se diets. Both gain and feed intake declined as dietary Se levels above 5.0 ppm increased. At a dietary Se concentration of 40 ppm, feed consumption ceased within a few days of feeding and subsequent gains were negative. Pigs offered both the 0- and 40-ppm Se diets preferentially selected the basal as compared with the 40-ppm Se diet. When the feeders were switched at 28 d they refused the 40-ppm Se diet within a few hours. After a 17-d period, pigs fed the 20- or 40-ppm Se diet were not able to coordinate their walk, with many exhibiting an inability to stand. Alopecia was demonstrated in pigs fed 15 ppm Se or higher at 17 d, but was evident in the 5.0-ppm group at 37 d. At the termination of the trial, abnormal hoof formation at the coronary band was evident in pigs fed diets containing Se greater than or equal to 5 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experiments were conducted to evaluate the effect of dietary Se and P levels on Se retention in postweaning swine. A 20% protein corn-soybean meal diet at two dietary Se levels (.3 and 5.0 ppm) and four total P levels (.50, .70, .90, 1.10%) were fed. Supplemental Se was provided from sodium selenite with inorganic P from dicalcium phosphate. In Exp. I, 151 pigs weaned at 4 wk of age were allotted by sex, litter and weight and fed their treatment diets for 28 d after a 7-d adjustment to a basal diet. Dietary Se level had no effect on performance measurements. As dietary P level increased, there was an increase in daily gain, feed intake and a decrease in feed to gain ratio. Dietary P resulted in similar plasma, longissimus muscle and kidney tissue Se values within each dietary Se level, while liver Se declined as dietary P level increased. Dietary P level had no effect on plasma, heart or liver glutathione peroxidase (GSH-Px) activity. In Exp. II, 32 barrows, after being fed their diets for a 28-d period, were placed in individual metabolism crates where a balance trial was conducted. Dietary P level reduced absolute and percentage Se retention, particularly at dietary P levels of .90 and 1.10%. Phosphorus retention was not affected by dietary Se. Neither dietary P nor Se level had any effect on N retention. These results suggest an effect of dietary P level on Se retention and liver Se, particularly at dietary P levels above the pig's P requirement, while the effect is minimal at or below the pig's P requirement.  相似文献   

4.
This experiment evaluated the effect of high dietary Se levels using organic or inorganic Se on the selenosis responses in growing-finishing swine. A 2 x 4 factorial arrangement of treatments in a randomized complete block design was conducted in two replicates. Sodium selenite or Se-enriched yeast was added at 5, 10, 15, or 20 ppm Se to corn-soybean meal diets. A basal diet without added Se was a ninth treatment group. Ninety crossbred barrows initially averaging 24.7 kg BW were allotted at five pigs per pen. Pigs were bled at 3-wk intervals and plasma Se, glutathione peroxidase (GSH-Px) activity, glutamic oxalacetic transaminase (PGOT), hemoglobin, packed cell volume, and blood cell Se concentration were measured. After 12 wk, pigs were killed and various tissues and bile were collected for Se analyses. Pig body weights, daily gains, and feed intakes were similar for both Se sources when provided at < or = 5 ppm Se, but each measurement declined in a different manner for each Se source as the dietary Se level increased. The decline was more rapid when the inorganic rather than organic Se source was fed, resulting in interaction responses (P < 0.01). Hair loss (alopecia) and separation of the hoof at the coronary band site occurred at > or = 10 ppm inorganic Se but at > or = 15 ppm organic Se level. Plasma GSH-Px activity increased (P < 0.01) when high dietary Se levels of either Se source was fed. Plasma and blood cell Se increased at each period as dietary Se level increased (P < 0.01) and was greater when organic Se was provided (P < 0.05). Blood cell Se concentration reached a plateau when inorganic Se, but not when organic Se, was fed and increased as the experiment progressed. This resulted in a three-way interaction (P < 0.01). Plasma GOT activity at the 12-wk period was elevated when inorganic Se was provided at > or = 15 ppm Se but not when organic Se was fed, resulting in an interaction (P < 0.05). Tissue Se concentrations increased as dietary Se level increased and when organic Se was provided, resulting in interaction responses (P < 0.05). Bile was a yellow color when the basal diet was fed but was dark brown at > 10 ppm inorganic Se and at 20 ppm when organic Se was provided. Bile Se increased as dietary Se level increased (P < 0.01). These results suggest that dietary Se from inorganic or organic sources was toxic at > or = 5 ppm Se, but subsequent selenosis effects were more severe and occurred sooner when sodium selenite was the Se source.  相似文献   

5.
Two experiments were conducted to evaluate supplementation of diets with 8% corn oil, lard or tallow. In Exp. 1, 36 barrows weaned at 21 d of age were used to evaluate the effects of these three diets on digestibilities of fat and dry matter and subsequent N retentions from wk 1 to 4 postweaning. In Exp. 2, 147 weanling pigs in six replicates were used to evaluate weekly growth and feed performance measurements when fed these same diets for a 4-wk postweaning period. A large quantity of fat was absorbed (P less than .01) during wk 1 postweaning by pigs fed the corn oil diet, with the quantity absorbed similar for the three sources of fat from wk 2 to 4. Diets with corn oil had a higher apparent fat digestibility than diets supplemented with lard or tallow during each week postweaning (P less than .05). Apparent digestibility of fat increased (P less than .01) for each fat source each week postweaning but appeared to reach a plateau by wk 3 postweaning. Differences in apparent digestibility of fat between fat sources narrowed from wk 1 to wk 4, with digestibility of corn oil increasing from 79 to 89% and of animal fat sources increasing from 67 to 84%. Apparent digestibility of dry matter tended (P less than .10) to be highest when corn oil was provided during the initial 2-wk postweaning period. Although N retention was highest during wk 1 postweaning when the corn oil was fed, this response was attributed to the higher feed intakes of pigs fed this diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Twenty mature geldings, averaging 535 kg, were used to determine the influence of dietary selenium (Se) on the blood levels of Se and Se-dependent glutathione peroxidase (SeGSH-Px) activity in the horse. Horses were randomly assigned within breed to four treatments consisting of five horses each and fed a basal diet containing .06 ppm of naturally occurring Se. Diets were supplemented with .05, .10 and .20 ppm Se, as sodium selenite. Blood was drawn for 2 wk before, and for 12 wk following, the inclusion of supplement Se in the diets. Whole blood and plasma Se concentrations and plasma SeGSH-Px activities were determined from all blood samples. Selenium concentrations in plasma and whole blood increased linearly from wk 1 to wk 5 and 6, respectively, in Se-supplemented horses. After these times, no significant changes in Se concentration were observed in Se-supplemented or in unsupplemented horses throughout the remainder of the 12-wk trial. Plasma Se reached plateaus of .10 to .11, .12 to .14, and .13 to .14 micrograms/ml in horses supplemented with .05, .10 and .20 ppm Se, respectively. Whole blood Se reached plateaus of .16 to .18, .19 to .21, and .17 to .18 micrograms/ml in horses supplemented with .05, .10 and .20 ppm Se, respectively. Plasma SeGSH-Px activity was not significantly affected by dietary treatment. Therefore, this enzyme was not a good indicator of dietary Se in these mature horses.  相似文献   

7.
Pigs from sows fed a diet deficient in Se and low in vitamin E were fed a Torula yeast diet supplemented with 100 IU dl-alpha-tocopheryl acetate/kg of diet. Dietary treatments were levels of supplemental Se of 0, .025, .050, .075 or .100 ppm. Some death loss occurred in pigs receiving no supplemental Se at approximately 5 wk of age. Autopsy revealed liver and heart lesions typical of vitamin E-Se deficiency. Selenium supplement had no significant effect on average daily gain, feed intake or gain to feed ratio for the 4-wk experiment. Selenium status of pigs was determined by serum Se concentration and serum glutathione peroxidase (GSH-Px) activity. Serum Se increased linearly (P less than .01) with increasing supplemental Se. Serum GSH-Px activity increased linearly (P less than .01) and quadratically (P less than .05) with increasing supplemental Se. With time, the level of serum Se and GSH-Px activity decreased in unsupplemental pigs, but increased in pigs fed diets supplemented with Se and resulted in significant interactions (P less than .01) between dietary Se level and time on experiment. The correlation between serum Se concentration and GSH-Px activity was .81 (P less than .01).  相似文献   

8.
The first experiment evaluated the effects of feeding various levels of Se, two Se sources, and hair color on selenosis responses in growing-finishing pigs. The study conducted in two replicates was a 2 x 6 x 2 factorial arrangement in a split-plot design. Sodium selenite and Se-enriched yeast added at 0.3, 1, 3, 5, 7, and 10 ppm Se served as the main plot and pig hair color as the subplot. A total of 96 crossbred pigs were allotted and fed their treatment diets for a 12-wk period. White and dark (red or black) hair samples were collected from the dorsal-midline at the 4-, 8-, and 12-wk periods from one pig of each hair color from each treatment pen. Lower pig weights (P < 0.10) and daily gains (P < 0.05) occurred as dietary Se level increased when pigs were fed either Se source. Selenosis responses were somewhat more severe, when the inorganic Se source was fed. Alopecia and hoof separation were encountered after the 8-wk period when pigs were fed inorganic rather than organic Se. Plasma Se increased as dietary level increased (P < 0.01), when organic Se was provided (P < 0.01), and was higher (P < 0.05) when pigs were white-haired. A time x hair color x dietary Se level interaction (P < 0.05) occurred, in which hair Se concentration was higher in dark- than in white-colored pigs and increased as dietary Se level increased as the experiment progressed. The correlation coefficient between dietary Se level and hair Se concentration averaged 0.90 (P < 0.01). Cysteine was the amino acid in the highest concentration in hair, but this and other amino acids were not affected by Se level, Se source, or hair color. A second experiment was a 3 x 6 factorial arrangement in a split-plot design with three 9-mo-old gilts from each of the Yorkshire, Duroc, and Hampshire breeds to determine whether hair Se concentration differed by body location and breed. Hair samples were collected from the shoulder, back, rump, front-leg, belly, and hind-leg areas. Hair Se concentration was higher in red- and white-haired pigs and lower in black-haired gilts (P < 0.01). Higher hair Se concentrations (P < 0.05) occurred from the lower than from the upper body areas. Our results suggest that selenosis occurs at dietary levels > 5 ppm and that white-haired pigs exhibit alopecia sooner than dark-haired pigs. No difference in hair Se concentration occurred when diets were < 1 ppm Se, but as dietary Se level increased dark-haired pigs retained more Se in their hair than white-haired pigs.  相似文献   

9.
A study was conducted to evaluate the short-term effects of feeding two dietary Se sources at various Se levels on the transfer of Se to the dam's milk and nursing pig. Six dietary treatments were arranged in a 2 x 2 factorial arrangement with two additional treatments in a randomized complete block designed experiment. Inorganic (sodium selenite) or organic (Se-enriched yeast) Se sources were added to the diet at .15 or .30 ppm Se. A non-Se-fortified corn-soybean meal basal diet served as a negative control, and a sixth group was fed .15 ppm Se from both inorganic and organic Se sources. A total of 43 sows were fed their treatment diets at 2.2 kg/d from 6 d prepartum to parturition and at full feed through a 14-d lactation period. Ten sows were initially bled at 6 d prepartum, and three sows and three pigs from their litters were bled at 7 and 14 d postpartum. Serum was analyzed for its Se concentration and glutathione peroxidase (GSH-Px) activity. Colostrum was collected within 12 h postpartum and milk at 7 and 14 d of lactation. When the basal diet was fed, sow serum GSH-Px activity declined from 6 d prepartum and remained low throughout lactation. When dietary Se levels increased, sow serum Se concentration and serum GSH-Px activity increased (P < .05) at both 7 and 14 d postpartum. The short-term feeding of either Se source at .15 or .30 ppm Se did not affect colostrum Se content when inorganic Se was fed, but it was increased when organic Se was provided. This resulted in a significant Se source x Se level interaction (P < .01). Milk Se at 7 and 14 d postpartum was 2.5 to 3 times higher when the organic Se source was provided and resulted in a significant Se source x Se level interaction (P < .05). When the combination of inorganic and organic Se was fed at .15 ppm Se, colostrum and milk Se contents were similar to those of sows fed .15 ppm Se from the organic Se source. Pig serum GSH-Px activity was not affected at 7 and 14 d of age by dietary Se level or Se source fed to the sow, but serum Se increased (P < .05) as dietary Se level increased, particularly when sows had been fed organic Se. The results demonstrated that organic Se increased milk Se content more than did inorganic Se and increased the nursing pig's serum Se. These results indicate that inorganic Se was more biologically available for sow serum GSH-Px activity, but organic Se was more effectively incorporated into milk.  相似文献   

10.
To investigate the effects of supplemental Se on the transfer of Se to nursing pigs when sows are fed diets containing a Se level above the NRC recommendation (0.15 ppm), sows were fed diets containing no supplemental Se or supplemental (0.3 ppm) Se from sodium selenite or Se yeast. A nonSe-fortified corn-soybean meal basal diet with a high endogenous Se content served as the negative control (0.20 to 0.23 ppm Se). Fifty-two sows were fed diets from 60 d prepartum until 14 d of lactation. Six sows per treatment were bled at 60 and 30 d prepartum, at farrowing, and at 14 d postpartum to measure serum Se concentrations. Colostrum was collected within 12 h postpartum, and milk was collected at 14 d of lactation. Blood was obtained from 3 pigs each from 12 litters per treatment at birth and at weaning (d 14), and pooled serum was analyzed for Se and immunoglobulin G concentrations and glutathione peroxidase activity. Regardless of treatment, serum Se in sows declined throughout gestation and gradually increased during lactation. Sows fed Se yeast tended (P < 0.06) to have greater serum Se at farrowing than sows fed unsupplemented diets. Colostrum and milk (d 14) Se concentrations increased (P < 0.01) when sows were fed Se from yeast but not from sodium selenite. At birth, serum Se was increased (P < 0.01) for pigs whose dams were fed Se yeast compared with pigs from sows fed the basal diet. At 14 d of age, there was no difference in serum Se concentration of pigs from dams fed any of the treatments. Pig serum immunoglobulin G concentrations and glutathione peroxidase-1 activity were unaffected by dietary Se source. Supplementation of gestating and lactating sow diets with Se (0.3 ppm) from an organic or inorganic source reduced the number of stillbirths per litter. However, only pigs born to sows fed organic Se (Se yeast) had greater serum Se at birth. Organic Se increased Se concentration of colostrum and 14-d milk to a greater degree than inorganic Se.  相似文献   

11.
Sixty crossbred (Yorkshire-Hampshire X Duroc) gilts were fed one of four corn-soybean meal diets fortified with .3 ppm Se and 0, 16, 33, or 66 IU of DL-alpha-tocopheryl acetate/kg. The study was conducted over a three-parity period to evaluate sow reproductive performance and the vitamin E tissue status of both sows and progeny at various time periods postcoitum and(or) postpartum. The basal diet averaged 8.4 mg of alpha-tocopherol/kg and .38 ppm of Se. Although litter size at birth was lowest (P less than .15) when sows were fed the basal diet, a higher incidence of agalactia when sows were fed the lower dietary vitamin E levels resulted in an increased (P less than .05) litter size at 7 d postpartum as dietary vitamin E increased. Sow serum alpha-tocopherol increased (P less than .01) at each measurement period as dietary vitamin E level increased. Colostrum and milk alpha-tocopherol concentrations increased (P less than .01) as dietary vitamin E level increased, and colostrum values were three to five times higher than at later milks. Colostrum alpha-tocopherol declined by parity from sows fed less than or equal to 16 IU/kg but was similar at each parity for sows fed greater than or equal to 33 IU/kg, resulting in a dietary vitamin E x parity interaction (P less than .01). The Se content of sow milk declined with parity but was not affected by dietary vitamin E level. Sow liver tocopherol at weaning (28 d postpartum) increased (P less than .01) as dietary vitamin E increased and increased with parity (P less than .05). Pig serum and liver alpha-tocopherol concentrations were elevated at birth and 7 and 28 d of age as sow dietary level of vitamin E increased. Upon weaning, pigs were fed a torula yeast-dextrose diet that contained 3.0 mg of alpha-tocopherol/kg and .32 ppm Se for a 28-d postweaning period. Liver and serum alpha-tocopherol concentrations declined during the postweaning period. Evidence of the vitamin E deficiency occurred at 28 d postweaning in the progeny from sows fed the basal diet or 16 IU of vitamin E; the incidence was more prevalent in the pigs from Parities II and III. These results suggest that a supplemental level of 16 IU of vitamin E/kg of diet was inadequate for the reproducing sow; higher levels are justified, particularly when females are retained in the herd for several parities.  相似文献   

12.
Two experiments were conducted to evaluate the effects and interactions of dietary levels of corn oil (0 vs 6%) and dried whey (0 vs 25%) on performance of young pigs during a 4-wk postweaning period. The first experiment, conducted in five replicates as a 2 x 2 factorial in a randomized block design, evaluated gain and feed intakes of 172 pigs weaned at 21 d of age. Pigs were bled at weekly intervals, and samples were assayed for serum triglyceride and urea concentrations. In a second experiment, 36 barrows in three replicates were used to evaluate the same treatments on apparent digestibility and absorption of fat and N retention during each week of a 4-wk postweaning period. The dietary inclusion of dried whey resulted in greater gains and feed intakes and reduced feed-to-gain ratios during each week of the postweaning period, with the largest relative improvement occurring during wk 1. Supplemental corn oil did not enhance pig gains the first 3 wk postweaning, but response improved by wk 4. Feed intakes were slightly (P less than .10) lower when corn oil was provided. The inclusion of corn oil resulted in an improved feed-to-gain ratio (P less than .01), particularly evident during wk 3 and 4 postweaning. Neither gain nor feed utilization were improved by added corn oil during the initial 2-wk postweaning period regardless of dried whey addition. Apparent digestibilities of fat were unaffected at each weekly interval by dietary dried whey inclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Four experiments evaluated the efficacy of Na or Cl or their combination added to weanling pig diets that contained plasma protein and lactose on pig performance and N digestibility. The four experiments used a total of 563 crossbred pigs weaned at 22+/-1 d of age averaging 6.4 kg body weight. The basal diet in each experiment contained 5.8% plasma protein and 20% lactose and analyzed .20% Na and .23% Cl. In Exp. 1, NaCl was added to treatment diets at 0, .20, .40, or .60%. The trial was conducted for a 21 d period in a randomized complete block (RCB) design in seven replicates. Improved growth rates (P < .01) and gain:feed ratios (P < .01) occurred up to a dietary salt level of .40%. In Exp. 2, we evaluated the interaction of Na and Cl on pig performance. The experiment was a 2 x 2 factorial arrangement in a RCB design conducted in seven replicates. Total dietary Na was .20 or .36%, and Cl was included at .25 or .45%. Although there was a numerical increase in pig gains with added Na, the response was not significant (P > .15), but both gains (P < .01) and gain:feed ratios (P < .01) increased at the higher dietary Cl level. In Exp. 3, we evaluated the effect of five dietary levels of Cl added at .06% increments to a basal diet that analyzed .34% Na and .20% Cl on postweaning pig performance. The experiment was a RCB design conducted in eight replicates. A growth response (P < .01) to the .38% Cl level occurred during the initial 14-d postweaning period and to the .32% Cl level from 14 to 21 d. Gain:feed ratio increased each week with added Cl, but it was significant only for the period from d 0 to 7 d (P < .01). A N digestibility trial, using the diets of Exp. 3, constituted Exp. 4, and groups of three pigs per stainless steel metabolism crate were pair-fed to pigs fed the basal diet. The experiment was a RCB design conducted in three replicates over a 3-wk period. The results demonstrated a weekly decrease in fecal N (P < .01), no effect on urinary N (P < .15), improved N retention (P < .01), and an improved apparent N digestibility (P < .01) to the .38% dietary Cl concentration during the initial 2 wk postweaning. These experiments suggest that although plasma protein contributed Na and Cl to the initial diets of weaned pigs, additional Na and Cl, but particularly Cl, improved pig growth, N retention, and N digestibility. The results suggest a dietary minimum of .38% total Cl level during the initial 2 wk postweaning.  相似文献   

14.
An experiment involving a total of 1,320 crossbred pigs was conducted at 3 universities to assess the effects of various levels of lactose in diets during phase 3 (wk 3 and 4 postweaning) of a 4-phase starter program. Pigs were weaned at 15 to 20 d (6.2-kg initial BW) and allotted to 5 treatments. All pigs were fed a complex phase 1 diet (20% lactose) the first week postweaning followed by a complex phase 2 diet (15% lactose) the second week postweaning. Phase 3 diets containing 0, 2.5, 5.0, 7.5, or 10.0% lactose were fed for wk 3 and 4, and then a common, corn-soybean meal diet was fed for an additional 1 to 2 wk (phase 4). The source of lactose was Dairylac 80, which contains 80% lactose. The phase 1, 2, and 3 diets were prepared at one site. Pigs were weighed, and feed intake was determined at weekly intervals. There were 8 replications at each station for a total of 24 replications per treatment with 5 or 23 pigs per pen. As expected, ADG, DFI, and G:F were not affected (P = 0.10) during the initial 2-wk period when all pigs received the same diet. During wk 3 and 4 (phase 3) when the 5 levels of lactose were fed, ADG and ADFI increased linearly (P < 0.01) with increasing levels of lactose, but G:F was not affected (P = 0.10). Although the quadratic component was not significant, ADG and ADFI reached a numerical plateau at the 7.5% inclusion level of lactose during phase 3. Compared with pigs fed the diet without lactose, the 7.5% level of lactose resulted in 350 g of additional BW gain coupled with 420 g of additional feed consumed per pig during phase 3, and most of the additional BW gain (294 g) was maintained through the end of the 5- to 6-wk study. These results suggest that pigs respond to dietary lactose during the mid to latter phase of the nursery period and that the response was obtained under different management and facility conditions.  相似文献   

15.
An experiment evaluated the selenosis effects from feeding high dietary Se levels of organic or inorganic Se sources to growing gilts with the dietary treatments continued through a reproductive cycle. A total of 88 gilts were allotted at 25 kg BW to two replicates in a 2 x 4 factorial arrangement in a randomized complete block design. Inorganic Se (sodium selenite) or organic (Se-enriched yeast) Se were added to diets at 0.3, 3, 7, or 10 ppm Se. At 105 kg BW, four gilts per treatment were killed and livers collected for Se analysis. At 8 mo of age, three gilts from each treatment group were bred and fed their treatment diet, with subsequent reproductive performance and selenosis effects evaluated. Serum collected at various intervals in gilts, sows, and progeny measured glutathione peroxidase activity and Se concentrations. Sow colostrum and milk was analyzed for their Se concentrations. Three pigs per treatment were killed before colostrum consumption and at weaning (14 d) and tissue collected for Se analysis. Gilt gains (P < 0.01) and feed intakes (P < 0.05) declined during the grower period as dietary Se level increased for both Se sources. Serum and liver Se concentrations increased as dietary Se level increased and was higher when organic Se was fed (P < 0.01). Sows fed dietary Se levels at > 7 ppm had lower gestation weights (P < 0.05) and lower lactation feed intakes (P < 0.05). As Se level increased, sows fed organic Se had a lower number of live pigs born (P < 0.05) and weaned fewer pigs (P < 0.05) with lower litter gains (P < 0.05) than did sows fed inorganic Se. Colostrum and milk Se concentrations increased as dietary Se levels increased particularly when organic Se was fed (P < 0.01). Neonatal and weanling pig tissue Se and serum Se concentrations increased as dietary Se level increased and when organic Se was fed, resulting in interaction responses (P < 0.01). Pigs nursing sows fed > 7 ppm inorganic Se had hoof separation and alopecia, with the severity being greater when sows were fed the inorganic Se source. These results suggest that both the organic and inorganic Se sources were toxic when fed at 7 to 10 ppm for a prolonged period, but organic Se seemed to express the selenotic effects more on reproductive performance, whereas inorganic Se was more detrimental during lactation.  相似文献   

16.
Weanling pigs (n = 160) were used to evaluate dietary essential microminerals (Cu, Fe, Mn, Se, and Zn) on performance, tissue minerals, and liver and plasma enzymatic activities during a 35-d postweaning period. A randomized complete block design with 5 treatments and 8 replicates was used in this study. Organic microminerals were added to complex nursery diets at 0 (basal), 50, 100, or 150% of the requirements of microminerals listed by the 1998 NRC. A fifth treatment contained inorganic microminerals at 100% NRC and served as the positive control. Pigs were bled at intervals with hemoglobin (Hb), hematocrit (Hct), glutathione peroxidase, and ceruloplasmin activities determined. Six pigs at weaning and 1 pig per pen at d 35 were killed, and the liver, heart, loin, kidney, pancreas, and the frontal lobe of the brain were collected for micromineral analysis. The liver was frozen in liquid N for determination of enzymatic activities. The analyzed innate microminerals in the basal diet met the NRC requirement for Cu and Mn but not Fe, Se, and Zn. Performance was not affected from 0 to 10 d postweaning, but when microminerals were added to diets, ADG, ADFI, and G:F improved (P < 0.01) from 10 to 35 d and for the overall 35-d period. Pigs fed the basal diet exhibited parakeratosis-like skin lesions, whereas those fed the supplemental microminerals did not. This skin condition was corrected after a diet with the added microminerals was fed. When the basal diet was fed, Hb and Hct declined, but supplemental microminerals increased Hb and Hct values. Liver catalase activity increased (P < 0.01) when microminerals were fed. The Mn superoxide dismutase activity tended to decline quadratically (P = 0.06) when supplemental microminerals were fed above that of the basal diet. Liver plasma glutathione peroxidase activities were greater (P < 0.01) when dietary organic and inorganic micromineral were fed. Liver concentrations of microminerals increased linearly (P < 0.01) as dietary microminerals increased, indicating that the liver was the primary storage organ. Micromineral tissue concentrations were least in pigs fed the basal diet and increased (quadratic, P < 0.01) to the 50% level of organic microminerals in the various tissues collected. The results indicated that innate microminerals, Cu and Mn, from a complex nursery diet may meet the micromineral needs of the weaned pig, but the need for Fe, Se, or Zn was not met by the basal diet.  相似文献   

17.
A study was conducted to determine the efficacy of organic (Se-yeast, SelenoSource AF, Diamond V Mills Inc., Cedar Rapids, IA) and inorganic sources of Se on growth performance, tissue Se accretion, and carcass characteristics of growing-finishing pigs fed diets with high endogenous Se content. A total of 180 pigs at 34.4 +/- 0.06 kg of BW were allotted to 1 of 5 dietary treatments: a negative control without added Se (NC); 3 treatment diets with 0.1, 0.2, or 0.3 mg/kg of added Se from an organic source; and a diet with 0.3 mg/kg of added Se as sodium selenite. Each treatment had 6 pens, with 6 pigs per pen-replicate. Experimental diets were changed twice at 66.1 +/- 0.5 kg and 99.0 +/- 0.9 kg of BW, and were fed until the pigs reached market weight. Growth performance was measured at the end of each phase. Upon reaching 129.9 +/- 1.4 kg of BW, the pigs were transported to a local abattoir (Seaboard Foods, Guymon, OK), where carcass, loin, and liver samples were obtained. Hair and blood samples were obtained at the beginning and end of the study for Se analysis. Growth performance did not differ (P > 0.05) among treatments. Percent drip loss of the NC pigs was greater (2.41 vs. 1.75, P = 0.011) compared with pigs supplemented with Se. Pigs fed diets with added Se had greater Se concentrations in the liver (0.397 vs. 0.323 ppm, P = 0.015), loin (0.236 vs. 0.132 ppm, P < 0.001), serum (0.087 vs. 0.062 ppm, P = 0.047), and hair (0.377 vs. 0.247 ppm, P = 0.003) compared with the NC pigs. Percentage drip loss was linearly reduced [percent drip loss = 2.305 - (2.398 x Se), r2 = 0.29, P = 0.007] as dietary organic Se concentration increased. The Se concentration (ppm) in the liver [liver Se = 0.323 + (0.291 x Se), r2 = 0.33, P = 0.003], loin [loin Se = 0.122 + (0.511 x Se), r2 = 0.57, P < 0.001], serum [serum Se = 0.060 + (0.113 x Se), r2 = 0.33, P = 0.004] and hair [hair Se = 0.237 + (0.638 x Se), r2 = 0.56, P < 0.001] increased linearly as dietary organic Se concentration increased. Slope ratio analysis indicated that the relative bioavailability of organic Se for percent drip loss and loin and hair Se response was 306, 192, and 197% of that for inorganic Se, respectively. The results of the study show a potential advantage of organic Se supplementation in reducing drip loss even when the basal diet contains an endogenously high Se concentration of 0.181 ppm.  相似文献   

18.
A total of 280 crossbred pigs weaned at 21 d of age and weighing approximately 6 kg were utilized in five replicates to evaluate pig growth responses when fed a basal diet or one of several dietary lipid sources during a 4-wk postweaning period. A basal corn-soybean meal-corn starch-dried whey diet was compared with diets supplemented at a 7.75% level with one of the following lipid sources: corn oil, coconut oil, soybean oil, medium-chain triglyceride (MCT) or an animal-vegetable blend. A sixth treatment evaluated a roasted soybean diet formulated to an energy:lysine level equivalent to that of the fat-supplemented diets. In Exp. II, 36 crossbred weanling barrows were used to determine apparent fat and N digestibilities when soybean oil, roasted soybean, coconut oil or the MCT-supplemented diets were fed. Although pigs fed coconut oil grew somewhat faster, fat inclusion generally did not increase pig growth rate or result in lowered feed intake during the initial weeks postweaning; during the latter portion of the starter phase the addition of dietary fat resulted in a higher growth rate but feed intake was unaffected, resulting in an overall improvement in feed-to-gain ratio (P less than .05) for all but the roasted soybean diet. Pigs fed coconut oil had higher serum triglyceride and lower serum urea concentrations than did pigs fed diets containing most other lipid sources. Pigs fed MCT and coconut oil diets had a higher (P less than .01) apparent fat digestibility during the initial 2 wk postweaning than pigs fed soybean oil or roasted soybean diets. Pigs fed MCT and roasted soybeans had poorest growth rates; apparent fat and N digestibilities were lowest (P less than .05) for the roasted soybean diet.  相似文献   

19.
This research evaluated the efficacy of inorganic and organic Se sources for growing-finishing pigs, as measured by performance and various tissue, serum, carcass, and loin quality traits. A total of 351 crossbred pigs were allotted at an average BW of 20.4 kg to six replicates of a 2x4 factorial experiment in a randomized complete block design. Pigs were fed diets containing Se-enriched yeast (organic) or sodium selenite (inorganic), each at .05, .10, .20, or .30 mg Se/kg diet. A non-Se-fortified basal diet was a ninth treatment group. Five pigs per pen were bled initially and at 30-d intervals with serum analyzed for Se and glutathione peroxidase (GSH-Px) activity. At 55 kg BW, one pig per pen from each of three replicates was killed, and tissues were collected for Se analysis. At 105 kg BW, the remaining pigs in the three replicates were killed, carcass measurements were collected, tissues were analyzed for Se, and loin quality was evaluated for pH, drip loss, and lightness. No performance or carcass measurement benefit resulted from either Se source or dietary Se levels. Pigs had a lower serum Se concentration and GSH-Px activity when the basal diet was fed, but both increased as dietary Se level increased (P<.01). Serum GSH-Px activities were increased by pig age and reached a plateau when the diet contained approximately .10 mg Se/kg (P<.01) at d 30, and 60 of the trial, and at .05 mg Se/kg diet at d 90 of the trial. The organic Se group fed .05 and .10 mg Se/kg had serum GSH-Px activities that tended to be lower than those of pigs fed the inorganic Se source, but GSH-Px activities in both groups were similar at higher Se levels. Tissue Se contents increased linearly as the dietary Se level increased, but the increase was markedly higher when organic Se was fed, resulting in an interaction (P<.01) response. Loin drip loss, pH, and lightness were unaffected (P>.15) by organic Se source or level, but there was a trend for a higher drip loss (P = .11) and a linear (P<.01) increase in loin paleness when the inorganic Se level increased. These results indicate that neither Se source nor Se level had an effect on pig performance or carcass measurements, but organic Se source increased tissue Se concentrations. Inorganic Se may, however, have a detrimental effect on loin quality, as reflected by higher drip loss and a paler color. Using serum GSH-Px activity as the measurement criterion, the supplemental dietary Se requirement did not seem to exceed .10 and .05 mg Se/kg diet for the growing and finishing phases, respectively, when added to a basal diet containing .06 mg Se/kg.  相似文献   

20.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号