首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a muscle biopsy technique in conjunction with real-time PCR analysis to examine the time course of changes in muscle IGF-I, IGFBP-3, myostatin, and hepatocyte growth factor (HGF) mRNA in the longissimus muscles of Revalor-S-implanted and nonimplanted steers on d 0, 7, 12, and 26 after implantation (nine steers/treatment group). Administration of a Revalor-S implant increased (P < 0.01) ADG and improved (P < 0.05) feed efficiency, 36 and 34%, respectively, compared with steers that received no implant during the 26-d trial. Daily dry matter intake did not differ (P > 0.15) between nonimplanted and implanted steers. Steers receiving the Revalor-S implant had increased (P < 0.001) circulating IGF-I concentrations compared with nonimplanted steers. The longissimus muscles of steers receiving the Revalor-S implant contained increased (P < 0.001) IGF-I mRNA levels compared with longissimus muscles of nonimplanted steers over the 26-d duration of the study. Longissimus muscle IGF-I mRNA levels in implanted steers were increased (P < 0.003) relative to d-0 concentrations on d 7 and 12 (101% and 128%, respectively), and byd 26, longissimus muscle mRNA levels were more than three times (P < 0.0001) those in the longissimus muscles of the same steers on d 0. There was no treatment effect on the level of IGFBP-3, myostatin, or HGF mRNA in the longissimus muscle at any time point; however, levels of IGFBP-3, myostatin, and HGF mRNA increased with time on feed. Based on current and previous studies, we hypothesize that the increased IGF-I level in muscle of implanted steers by d 7 of implantation stimulates satellite cell proliferation and maintains a high number of proliferating satellite cells at a point in the growth curve where satellite cell numbers and activity are normally dropping off. This would prolong the period of rapid muscle growth, resulting in the observed increased rate and efficiency of muscle deposition in implanted steers.  相似文献   

2.
Ribonuclease protection assays were used to measure steady-state semimembranosus muscle and/or hepatic levels of IGF-I, IGFBP-3, IGFBP-5, hepatocyte growth factor (HGF), and myostatin messenger RNA (mRNA) in steers implanted from 32 to 38 d with Revalor-S, a combined trenbolone acetate and estradiol implant. Insulin-like growth factor-ImRNA levels were 69% higher (P < 0.01, n = 7) in the livers of implanted steers than in the livers of nonimplanted steers. Similarly, IGF-I mRNA levels were 50% higher (P < 0.05, n = 7) in the semimembranosus muscles of implanted steers than in the same muscles from nonimplanted steers. Hepatic IGFBP-3 mRNA levels were 24% higher (P < 0.07, n = 7) in implanted steers than in nonimplanted steers. Hepatic HGF and IGFBP-5 mRNA levels did not differ between implanted and nonimplanted steers. Similarly, muscle IGFBP-3, IGFBP-5, HGF, and myostatin mRNA levels were not affected by treatment. Previous data from these same steers have shown that circulating IGF-I and IGFBP-3 concentrations were 30 to 40% higher (P < 0.01, n = 7) in implanted steers than in nonimplanted, control steers. Additionally, the number of actively proliferating satellite cells that could be isolated from the semimembranosus muscle was 45% higher (P < 0.01, n = 7) for implanted steers than for nonimplanted steers. Viewed together, these data suggest that increased muscle IGF-I levels stimulate increased satellite cell proliferation, resulting in the increased muscle growth observed in Revalor-S implanted steers.  相似文献   

3.
4.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

5.
Lipoprotein lipase (LPL) hydrolyzes triacylglycerols into monoacylglycerol and fatty acids, which are taken up by tissues and used for energy. Glycogenin is the core protein on which glycogen molecules are synthesized. There is one molecule of glycogenin per molecule of glycogen in skeletal muscle; therefore, glycogen storage is limited by the amount of glycogenin present in muscle. The objective of this study was to investigate the effect of feeding flaxseed, a source of PUFA, and administering a growth promoter on steady-state LPL and glycogenin mRNA content of muscle in finishing cattle. Sixteen crossbred steers (initial BW = 397 kg), given ad libitum access to a 92% concentrate diet for 28 d, were used in a four-treatment, 2 x 2 factorial experiment, with flaxseed supplementation (0 or 5% of dietary DM) and implanting (not implanted or implanted with Revalor-S) as the main effects. Muscle biopsies were obtained from the LM at 0, 14, and 28 d, and used to quantify LPL and glycogenin mRNA concentrations using real-time quantitative PCR. Implanting with Revalor-S did not affect LPL (P = 0.13) or glycogenin (P = 0.98) mRNA concentrations. A day x flaxseed interaction (P < 0.001) was observed for both LPL and glycogenin mRNA concentrations. No differences (P > 0.10) were observed between 0 and 5% flaxseed supplemented steers; however, at 28 d, nonflaxseed-fed steers had 4.1- and 5.7-fold increases (P < 0.001) over flaxseed steers for LPL and glycogenin mRNA concentrations, respectively. To further evaluate the effects of alpha-linolenic acid (alpha-LA) on LPL and glycogenin mRNA concentrations, muscle satellite cells were isolated from five finishing steers, and different alpha-LA concentrations were applied in culture. The RNA was isolated from the bovine satellite cells. Addition of alpha-LA numerically increased (P = 0.16) the LPL mRNA concentration 48% at 1 microM alpha-LA compared with the control. The expression of glycogenin was increased (P < 0.05) 50% at 1 microM alpha-LA compared with the control. These results suggest that flaxseed supplementation to finishing steers for 28 d decreased gene expression of both LPL and glycogenin compared with not feeding flaxseed. Alterations in local concentrations of these two proteins could affect the ability of muscle to use fatty acids and glucose for energy, and, ultimately, affect carcass quality.  相似文献   

6.
Hereford steers (290 +/- 6 kg of BW) were implanted (n = 4) with 140 mg of trenbolone acetate (TBA) and 28 mg of estradiol-17 beta (E2 beta) or nonimplanted (controls, n = 4). In Trial 1, effects of a single i.v. injection of 0, 20, 40, or 80 micrograms of a growth hormone-releasing factor (1-29 NH2) analogue (GRFa) on release of endogenous somatotropin (ST) were evaluated in a double 4 x 4 Latin square design. Plasma samples (n = 21) were obtained from -20 to 240 min after GRFa injection. Area under the ST response curve (AUC) increased (P = .009) in a dose-dependent manner (.2, 2.6, 3.6, 4.3 mg.min-1.mL-1, respectively). Mean ST concentration was not affected (P = .238) by implant but AUC was greater (P = .009) in implanted than in control steers. There was no interaction (P = .460) between dose of GRFa and presence of implant. In Trial 2, 80 micrograms of GRFa was administered at 12-h intervals to the same eight steers. Response of ST (AUC) to the first and last (13th) i.v. injection of GRFa was similar and not affected by implant. Before GRFa administration, plasma insulin-like growth factor I (IGF-I) concentrations were greater (P = .039) in implanted than in control steers (272 vs 164 ng/mL). Administration of GRFa increased plasma IGF-I (P = .0001), decreased plasma urea N (PUN) (P = .0001), and did not alter plasma glucose (P = .447) in both control and implanted steers. Data indicate that effects of GRFa and TBA/E2 beta on plasma IGF-I and PUN concentrations were additive in this study.  相似文献   

7.
Anabolic growth promotants influence beef grade factors and Warner-Bratzler shear force of steaks. No study has assessed the consumer acceptability of beef derived from implanted cattle. This study determined beef carcass grades and consumer acceptability for cooked beef from unimplanted (control) cattle and from cattle implanted with one of seven different implant strategies (initial implant/implant at 59 d = Encore & Component T-S/no implant, Ralgro/Synovex Plus, Ralgro/Revalor-S, Revalor-S/Revalor-S, Revalor-S/no implant, no implant/Synovex Plus, and Synovex Plus/no implant). British crossbred steers (n = 448) were allocated randomly into one of eight pens for each of the control and seven treatment groups. Carcass quality and yield grade (n = 403) and Warner-Bratzler shear force (n = 298) data were collected by trained personnel. Twenty steaks per control or treatment group were selected randomly for use in consumer sensory evaluation. Steaks were evaluated by consumers for overall like, tenderness like, tenderness level, flavor like, flavor intensity, and juiciness level using 9-point, end-anchored hedonic scales. Control carcasses had smaller (P < .05) longissimus muscle areas than carcasses in all treatment groups except those receiving Encore & Component T S/no implant, Ralgro/Synovex Plus, or Revalor S/no implant. Control carcasses had higher (P < .05) marbling scores than carcasses in all treatment groups except those receiving Ralgro/Revalor-S or Encore & Component T-S/no implant. Steaks from control steers had lower (P < .05) Warner-Bratzler shear force values than steaks from steers given Revalor-S/no implant. Consumer ratings for tenderness like and tenderness level were influenced (P < .05) by implant strategy. Effects of implant strategy on overall like, flavor like, and flavor intensity approached significance (P = .07 to .09). Consumers rated steaks from unimplanted steers as more tender (tenderness level; P < .05) than steaks from all treatment groups except that involving Encore & Component T-S/no implant. Consumers rated steaks from unimplanted steers as more desirable (P < .05) for tenderness like than steaks from all treatments except those involving Encore & Component T-S/no implant or Revalor-S/no implant. Although use of implants in this study resulted in heavier hot carcass weights and larger ribeyes, some of the implant strategies reduced consumer preference of tenderness of steaks.  相似文献   

8.
Steers were made hyperthyroid or hypothyroid to study the effects of physiological alterations in thyroid hormone status on plasma growth hormone (GH) profiles, plasma insulin-like growth factor-I (IGF-I) concentrations, and relative abundance of IGF-I mRNA in skeletal muscle and liver. Eighteen yearling crossbred steers (360 to 420 kg) were randomly allotted to hyperthyroid (subcutaneous injection 0.6 μg/kg BW L-thyroxine for 10 d), hypothyroid (oral thiouracil; 0.25% diet plus 12.5 g capsule/d for 17 d), or control (subcutaneous injection 0.9% NaCl) treatment groups. Blood samples were taken for measurement of GH, IGF-I, thyroxine (T4) and triiodothyronine (T3) by RIA. Samples of liver and skeletal muscle were taken by biopsy for measurement of IGF-I mRNA by solution hybridization. Steers receiving thiouracil had 57 and 53% (P<.05) lower T4 and T3, respectively, than control steers (84.1 and 1.7 ng/ml). The hyperthyroid steers had 228 and 65% greater (P<.05) T4 and T3 than control steers. Neither increased nor decreased thyroid status had any significant effects on plasma GH profiles, liver IGF-I mRNA, or plasma concentration of IGF-I. There was no effect of thyroid hormone alteration on skeletal muscle IGF-I mRNA concentrations. The results of this study suggest that short-term changes in thyroid status of cattle had no major impact on the GH-IGF-I axis or skeletal muscle IGF-I mRNA.  相似文献   

9.
In the first oftwo experiments, 123 calf-fed steers were used over a 2-yr period to evaluate the effects of trenbolone acetate (TBA)-based implants administered alone or in combination with zeranol implants on fresh beef muscle quality, color, and physiological maturity of the carcass. Implant treatments decreased (P < 0.05) a* values (d 0 and d 3 of retail display) and b* values (d 0, d 1, and d 3 of retail display) after 14 d of aging. Carcasses from cattle initially implanted with Revalor-S and reimplanted with Revalor-S on d 60 of the finishing period showed increased lean and bone maturity scores and ash content of the 9th to 11th thoracic buttons and Warner-Bratzler shear force values (WBS) compared to those initially implanted with Ralgro and subsequently reimplanted with Revalor-S or control cattle. In addition, implants decreased (P < 0.05) marbling, percentage of the carcasses grading Choice, and kidney, pelvic, and heart fat (KPH). Implant treatments increased (P < 0.05) ADG, hot carcass weights, and longissimus muscle (LM) area. In the second experiment over a 2-yr period, 166 steers fed as yearlings were allotted to one of two implant treatments and one of two vitamin D3 preharvest supplementation treatments. Implanted steers had heavier (P < 0.05) final body weights and higher (P < 0.05) ADG, less (P < 0.05) KPH fat, and larger (P < 0.05) LM. Also, implanted steers had more (P < 0.05) advanced bone maturity scores, higher (P < 0.05) ash content of the 9th to 11th thoracic buttons, and higher (P < 0.05) WBS values on 5-d postmortem loin steaks. Vitamin D3 feeding decreased (P < 0.05) final live weight, ADG (P < 0.05), and LM (P < 0.05), but did not significantly improve WBS values. In Experiment 2, neither implant treatment nor vitamin D3 supplementation had significant effects on L*, a*, or b* values of muscles in steaks before or during simulated retail display.  相似文献   

10.
Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.  相似文献   

11.
Two experiments evaluated the effects of conventional and natural feedlot management systems (MS) on ractopamine-HCl (RAC) response in yearling steers. Feedlot performance, carcass characteristics, skeletal muscle gene expression, and circulating IGF-I concentrations were measured. The conventional system included a combined trenbolone acetate and estradiol implant, Revalor-S (IMP), as well as monensin-tylosin feed additives (IA). Treatments were arranged in a 2 x 2 factorial and included: 1) natural (NAT): no IMP-no IA, no RAC; 2) natural plus (NAT+): no IMP-no IA, RAC; 3) conventional (CON): IMP-IA, no RAC; and 4) conventional plus (CON+): IMP-IA, RAC. In Exp. 1, one hundred twenty crossbred steers (initial BW = 400 +/- 26 kg) were allotted randomly to treatment in a randomized complete block design (BW was blocking criteria); pen was the experimental unit. In Exp. 2, twenty-four individually fed crossbred steers (initial BW = 452 +/- 25 kg) were used in a randomized complete block design (BW was blocking criteria) and assigned to the same treatments as Exp. 1, with 6 steers/treatment. In Exp. 2, serum was harvested on d 0 and 31 and within the 28-d RAC feeding period, at d 0, 14, and 28. Longissimus biopsy samples were taken on d 0, 14, and 28 of the RAC feeding period for mRNA analysis of beta-adrenergic receptors and steady-state IGF-I mRNA. In Exp. 1, ADG, G:F, final BW, and HCW were greatest for CON+ (P < 0.01). During the final 37 d, RAC increased ADG (P = 0.05) and increased overall G:F (P = 0.02). Marbling score was reduced (P = 0.02), and yield grade was improved with RAC (P = 0.02), but RAC did not affect dressing percentage (P = 0.96) or HCW (P = 0.31). In Exp. 2, MS x RAC interactions were detected in ADG and G:F the last 28 d, overall ADG and overall G:F, final BW, and HCW (P < 0.01). Dressing percentage, yield grade, and marbling score were not altered by MS or RAC (P > 0.10). Circulating IGF-I concentration was increased on d 31 by the conventional MS, and concentration was greater throughout the study than NAT steers (P < 0.01). Circulating IGF-I concentrations were not changed by RAC (P = 0.49). Abundance of beta(1)-AR mRNA tended to increase (P = 0.09) with RAC, but RAC did not affect beta(2)-AR, beta(3)-AR, or IGF-I mRNA (P > 0.40). Management system did not affect beta(1)-AR, beta(2)-AR, beta(3)-AR, or IGF-I mRNA (P > 0.18), yet a trend (P = 0.06) for MS x RAC for beta(2)-AR mRNA was detected. These results indicate that response to RAC is affected by feedlot management practices.  相似文献   

12.
Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less 125I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.  相似文献   

13.
In an effort to determine whether tropical adaptation influences circulating concentrations of the growth-related hormone IGF-I, 3-breed diallel matings were conducted using temperate Bos taurus (Angus), tropical Bos indicus (Brahman), and tropical Bos taurus (Romosinuano). Purebred Angus, Braham, and Romosinuano and crossbred Angus-Braham, Angus-Romosinuano, and Braham-Romosinuano heifers and steers were evaluated in 2 separate calf crops from 2003 and 2004. Blood samples were obtained from 10 heifers of each breed group (n = 90) for each year at weaning and on d 0 and 84 of postweaning trials. Samples were also taken from 10 steers of each breed group (n = 90) at weaning and on d 0 and 60 of individual finishing phase feeding trials for each year. Concentrations of IGF-I were determined by RIA. Analyses included effects of sire breed, dam breed, year of record, the age of the dam of the calf in years, and interactions. Age of calf in days was investigated as a linear and quadratic covariate. Separate analyses were conducted for steers and heifers. The direct effect of Angus was to reduce (P < 0.03) heifer concentrations of IGF-I at d 84 and in the repeated measures analysis. In the repeated measures analysis, the direct effect of Romosinuano was to increase concentrations of IGF-I (P = 0.01). Relative to the temperate Bos taurus breed, plasma concentrations of IGF-I were numerically greater in male and female tropically adapted breed groups.  相似文献   

14.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

15.
Interrelationships between circulating concentrations of the insulin-like growth factors (IGF-I and IGF-II) were investigated in 235 blood samples taken from 145 healthy beef or dairy calves, bulls and cows of different breeds and ages. Autoradiography of Western ligand blots indicated different IGF binding protein (IGFBP) profiles between sera from different categories of cattle. Each IGF radioimmunoassay was validated by determining the effects of IGFBPs, ligand and contraligand, as well as serial dilution and comparison with results obtained after molecular sieve chromatography in acid. In female cattle mean values for IGF-I varied from 5.1 nmol/l in postparturient Holstein cows to 18.5-20.5 nmol/l in growing beef heifers, while mean IGF-II concentrations ranged from 30.0 nmol/l in the cows to 14.7-15.7 nmol/l in the beef heifer calves. In male cattle mean serum IGF-I ranged widely from 8.2 nmol/l in 1-day-old Holstein calves to 67.4 nmol/l in 16-month-old Simmental-type bulls. Mean IGF-II concentrations decreased from 22.9 nmol/l in 1-day-old Holstein bull calves to 11.9 nmol/l in 12-month-old beef bulls. Thus, total molar IGF concentrations were fairly stable in female cattle (24.7-35.1 nmol/l) but extended from 27.3 nmol/l to 81.8 nmol/l in the male cattle. The tendency for a reciprocal relationship between serum concentrations of these growth factors was most obvious in the periparturient cows.  相似文献   

16.
Two experiments were conducted to determine effects of an estradiol implant (Compudose®) on locoweed consumption and toxicity in growing steers. In Exp. 1, 16 crossbred steers (185.3 ± 6.1 kg) were randomly assigned to two replicated treatments and received either an estradiol implant or no implant. Steers were assigned to one of four pastures and were rotated through all pastures, which differed in locoweed distribution, to allow equal access. Bite counts were recorded twice daily at 0600 and 1700 h during a period when steers were likely to consume locoweed. For bite counts, steers were observed for 5 min each, starting at 0600 and at 1700 h, and the number of bites taken of cool- and warm-season grasses, forbs, and locoweed were recorded. Blood was collected on d 0, 7, 28, 35, 63, and 119, and individual BW was recorded on d 0, 35, 63, and 119. Proportion of bites of locoweed consumed by implanted vs nonimplanted steers did not differ (P>0.10). Likewise, ADG, serum alkaline phosphatase activity, and thyroxine concentrations did not differ (P>0.10) between implanted and nonimplanted steers. In Exp. 2, 20 crossbred steers (212.3 ± 6.1 kg) were divided into four groups and individually fed in a 2 × 2 factorial arrangement of treatments. Treatments included: 1) estradiol implant + locoweed, 2) implant, no locoweed, 3) no implant + locoweed, and 4) no implant, no locoweed. Steers were implanted at d 0 and fed either a ground forage diet containing 80% sudangrass hay and 20% locoweed, or a diet of 100% sudangrass hay. Implanted steers had improved ADG vs nonimplanted steers (P<0.10) through 63 d on trial, but no differences were observed in steers fed locoweed vs sudangrass hay diets (P>0.90; locoweed x implant, P>0.10). Alkaline phosphatase activity was greater (P<0.05) for steers fed locoweed vs those not receiving locoweed on d 7, 14, and 21, whereas, thyroxine concentration was lower (P<0.06) in steers fed locoweed than those not fed locoweed on d 14 and 21. Estradiol concentrations were greater in implanted steers vs those not implanted (P<0.05). These results suggest no effect of an estrogen implant on locoweed consumption or on severity of locoweed toxicity by beef steers.  相似文献   

17.
Ge X  Yu J  Jiang H 《Journal of animal science》2012,90(4):1126-1133
Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.  相似文献   

18.
One hundred ninety-five steer calves were assigned to five zeranol implant treatment (trial 1). Treatments were no implants (0000), two implants during the finishing period (00XX), three implants during growing and finishing periods (0XXX), one implant at 1 to 2 mo of age during the suckling period and two during the finishing period (X0XX) or four implants (XXXX). The growing period implant was administered at weaning. Weaning weights (211 vs 208 kg) of implanted and nonimplanted suckling calves were not different (P greater than .05). Calves implanted at weaning, before shipment to the feedlot, had greater (P less than .05) weight loss in shipment than nonimplanted calves. In the feedlot, finishing-period daily gains of steers implanted in the growing and finishing period (0XXX) were greater (P less than .05) than gains of steers that had received a suckling period implant (X0XX and XXXX). Nonimplanted steer gains were less (P less than .05) than gains of steers from the other four treatment groups. Postweaning daily gains and final weights were 1.18 and 517 (0000), 1.26 and 533 (00XX), 1.32 and 551 (0XXX), 1.26 and 540 (X0XX) and 1.25 and 533 kg (XXXX), respectively. Gains and final weights of nonimplanted steers were less (P less than .05) than gains of steers implanted only in the feedlot growing and finishing periods (0XXX). In a second trial, 82 steers were assigned either to a 0XXX or XXXX implant scheme. Weaning weights were 11 kg greater (P less than .05) for the implanted steers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The influence of age, sex and castration on plasma concentrations of insulin-like growth factor-I (IGF-I) and other metabolic hormones related to growth was studied in cattle. Plasma was sampled from bulls, steers, heifers, and ovariectomized heifers at 20-min intervals for 12 hr at 5, 8, 12, and 15 mo of age. Plasma samples from each animal taken during each 12-hr period were composited for analysis of IGF-I, testosterone, total estrogens, thyroxine, triiodothyronine, insulin, and glucose. The mean plasma IGF-I concentration in all cattle increased from 61.6 to 158.6 ng/ml as the animals aged (p less than .01). Over all ages, bulls had greater concentrations of IGF-I than steers, heifers, or ovariectomized heifers (P less than .01). Bulls also had higher concentrations of testosterone (P less than .01) and total estrogens (P less than .01). Triiodothyronine concentration was greater in ovariectomized heifers than in bulls (P less than .01) or steers (P less than .05). Females had higher concentrations of thyroxine than males (P less than .01). Concentrations of triiodothyronine in the cattle were greater (P less than .01) during the winter and early spring as compared with the summer. Concentrations of insulin and glucose were not influenced by sex or castration; however, insulin increased in all cattle with age (P less than .01). The mean increase in IGF-I concentration with age within each of the four groups was associated with an increase in concentration of plasma insulin but the differences due to sex were not related to differences in insulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We summarized experimental data to quantify the change in final BW due to a particular implant strategy when cattle are adjusted to the same final body composition. The database developed for this study included 13 implant trials involving a total of 13,640 animals (9,052 steers and 4,588 heifers). Fifteen different implant strategies were used among these trials, including no implant (control), single implants, and combinations of implants. Individual carcass data collected at slaughter were used to calculate the adjusted final shrunk BW at 28% empty body fat (AFBW) for each treatment group within a trial, then the implant treatments were grouped into categories according to their effect on weight at 28% empty body fat (four groups for steers and two groups for heifers). All differences in AFBW between categories were significant (P < 0.01), indicating an incremental anabolic implant dose response in AFBW over unimplanted animals. Values for AFBW ranged from 520 kg in unimplanted steers to 564 kg in steers implanted and reimplanted with Revalor-S. For heifers, AFBW ranged from 493 kg in unimplanted heifers to 535 kg in heifers implanted and reimplanted with Revalor-H. After accounting for differences in mean BW and composition of gain, implanted steers and heifers had 4.2 and 3.1% higher apparent diet ME values, respectively. Increasing the anabolic implant dose increases the weight at which animals reach a common body composition. This study indicates that anabolic implant response is due to a combination of a reduced proportion of the DMI required for maintenance, reduced energy content of gain, and efficiency of use of absorbed energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号