首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

2.
The objective of this study was to compare active drug concentrations in the plasma vs. different effector compartments including interstitial fluid (ISF) and pulmonary epithelial lining fluid (PELF) of healthy preruminating (3‐week‐old) and ruminating (6‐month‐old) calves. Eight calves in each age group were given a single subcutaneous (s.c.) dose (8 mg/kg) of danofloxacin. Plasma, ISF, and bronchoalveolar lavage (BAL) fluid were collected over 96 h and analyzed by high‐pressure liquid chromatography. PELF concentrations were calculated by a urea dilution assay of the BAL fluids. Plasma protein binding was measured using a microcentrifugation system. For most preruminant and ruminant calves, the concentration–time profile of the central compartment was best described by a two‐compartment open body model. For some calves, a third compartment was also observed. The time to maximum concentration in the plasma was longer in preruminating calves (3.1 h) vs. ruminating calves (1.4 h). Clearance (CL/F) was 385.15 and 535.11 mL/h/kg in preruminant and ruminant calves, respectively. Ruminant calves maintained higher ISF/plasma concentration ratios throughout the study period compared to that observed in preruminant calves. Potential reasons for age‐related differences in plasma concentration–time profiles and partitioning of the drug to lungs and ISF as a function of age are explored.  相似文献   

3.
The purpose of this study was to determine the concentration of enrofloxacin and its active metabolite, ciprofloxacin, in alveolar macrophages (AM) and epithelial lining fluid (ELF) of the lungs in comparison to plasma concentrations in healthy dogs. Eleven dogs were given a single oral dose (5 mg/kg) of enrofloxacin. Four hours later, plasma and bronchoalveolar lavage (BAL) fluid were collected. Cells were separated from the BAL fluid and lysed for determination of drug concentrations within AM. Supernatant was used to determine concentrations of drugs in ELF. Drug assays were performed by high-performance liquid chromatography.
  The concentration of enrofloxacin (mean ± SD) was 0.33 ± 0.14 μg/mL in plasma, 3.34 ± 2.4 μg/mL in AM and 4.79 ± 5.0 μg/mL in ELF. The concentration of ciprofloxacin was 0.42 ± 0.26 μg/mL in plasma, 1.15 ± 1.03 μg/mL in AM and 0.26 ± 0.26 μg/mL in ELF. Mean concentrations of both drugs in AM were greater than in plasma (AM to plasma ratio, 10.3 for enrofloxacin and 4.7 for ciprofloxacin). Mean concentrations of enrofloxacin, but not ciprofloxacin, in ELF were greater than in plasma (ELF to plasma ratio, 13.5 for enrofloxacin and 0.52 for ciprofloxacin). Enrofloxacin concentrations in AM and ELF largely exceeded the MICs of the major bacterial pathogens and surpassed by about two times the breakpoint MIC of that drug, and ciprofloxacin concentrations in AM surpassed the MIC of many susceptible organisms. These results suggest that sufficient antimicrobial activity is present in AM and ELF of dogs following oral administration of enrofloxacin to be effective in the treatment of lower respiratory tract infections involving susceptible organisms.  相似文献   

4.
South Africa currently loses over 1000 white rhinoceros (Ceratotherium simum) each year to poaching incidents, and numbers of severely injured victims found alive have increased dramatically. However, little is known about the antimicrobial treatment of wounds in rhinoceros. This study explores the applicability of enrofloxacin for rhinoceros through the use of pharmacokinetic‐pharmacodynamic modelling. The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were evaluated in five white rhinoceros after intravenous (i.v.) and after successive i.v. and oral administration of 12.5 mg/kg enrofloxacin. After i.v. administration, the half‐life, area under the curve (AUCtot), clearance and the volume of distribution were 12.41 ± 2.62 hr, 64.5 ± 14.44 μg ml?1 hr?1, 0.19 ± 0.04 L h?1 kg?1, and 2.09 ± 0.48 L/kg, respectively. Ciprofloxacin reached 26.42 ± 0.05% of the enrofloxacin plasma concentration. After combined i.v. and oral enrofloxacin administration oral bioavailability was 33.30 ± 38.33%. After i.v. enrofloxacin administration, the efficacy marker AUC24: MIC exceeded the recommended ratio of 125 against bacteria with an MIC of 0.5 μg/mL. Subsequent intravenous and oral enrofloxacin administration resulted in a low Cmax: MIC ratio of 3.1. The results suggest that intravenous administration of injectable enrofloxacin could be a useful drug with bactericidal properties in rhinoceros. However, the maintenance of the drug plasma concentration at a bactericidal level through additional per os administration of 10% oral solution of enrofloxacin indicated for the use in chickens, turkeys and rabbits does not seem feasible.  相似文献   

5.
Enrofloxacin and marbofloxacin were administered to six healthy dogs in separate crossover experiments as a single oral dose (5 mg/kg) and as a constant rate IV infusion (1.24 and 0.12 mg/h.kg, respectively) following a loading dose (4.47 and 2 mg/kg, respectively) to achieve a steady-state concentration of approximately 1 microg/mL for 8 h. Interstitial fluid (ISF) was collected with an in vivo ultrafiltration device at the same time period as plasma to measure protein unbound drug concentrations at the tissue site and assess the dynamics of drug distribution. Plasma and ISF were analyzed for enrofloxacin, its active metabolite ciprofloxacin, and for marbofloxacin by high performance liquid chromatography (HPLC). Lipophilicity and protein binding of enrofloxacin were higher than for marbofloxacin and ciprofloxacin. Compared to enrofloxacin, marbofloxacin had a longer half-life, higher Cmax, and larger AUC(0-infinity) in plasma and ISF after oral administration. Establishing steady state allowed an assessment of the dynamics of drug concentrations between plasma and ISF. The ISF and plasma-unbound concentrations were similar during the steady-state period despite differences in lipophilicity and pharmacokinetic parameters of the drugs.  相似文献   

6.
The objective of this study was to determine the pharmacokinetics (PK) of enrofloxacin in pigs and compare to the tissue interstitial fluid (ISF). Six healthy, young pigs were administered 7.5 mg/kg enrofloxacin subcutaneously (SC). Blood and ISF samples were collected from preplaced intravenous catheters and ultrafiltration sampling probes placed in three different tissue sites (intramuscular, subcutaneous, and intrapleural). Enrofloxacin concentrations were measured using high-pressure liquid chromatography with fluorescence detection, PK parameters were analyzed using a one-compartment model, and protein binding was determined using a microcentrifugation system. Concentrations of the active metabolite ciprofloxacin were negligible. The mean ± SD enrofloxacin plasma half-life, volume of distribution, clearance, and peak concentration were 26.6 ± 6.2 h (harmonic mean), 6.4 ± 1.2 L/kg, 0.18 ± 0.08 L/kg/h, and 1.1 ± 0.3 μg/mL, respectively. The half-life of enrofloxacin from the tissues was 23.6 h, and the maximum concentration was 1.26 μg/mL. Tissue penetration, as measured by a ratio of area-under-the-curve (AUC), was 139% (± 69%). Plasma protein binding was 31.1% and 37.13% for high and low concentrations, respectively. This study demonstrated that the concentration of biologically active enrofloxacin in tissues exceeds the concentration predicted by the unbound fraction of enrofloxacin in pig plasma. At a dose of 7.5 mg/kg SC, the high tissue concentrations and long half-life produce an AUC/MIC ratio sufficient for the pathogens that cause respiratory infections in pigs.  相似文献   

7.
The objectives of this study were to determine (i) whether an association exists between individual pharmacokinetic parameters and treatment outcome when feeder cattle were diagnosed with bovine respiratory disease (BRD) and treated with gamithromycin (Zactran®) at the label dose and (ii) whether there was a stronger association between treatment outcome and gamithromycin concentration in plasma or in the pulmonary epithelial lining fluid (PELF) effect compartment. The study design was a prospective, blinded, randomized clinical trial utilizing three groups of 60 (362–592 lb) steers/bulls randomly allocated within origin to sham injection or gamithromycin mass medication. Cattle were evaluated daily for signs of BRD by a veterinarian blinded to treatment. Animals meeting the BRD case definition were enrolled and allocated to a sample collection scheme consisting of samples for bacterial isolation (bronchoalveolar lavage fluid and nasopharyngeal swabs) and gamithromycin concentration determination (PELF and plasma). Gamithromycin susceptibility of M. haemolytica (n = 287) and P. multocida (n = 257) were determined using broth microdilution with frozen panels containing gamithromycin at concentrations from 0.03 to 16 μg/mL. A two‐compartment plasma pharmacokinetic model with an additional compartment for gamithromycin in PELF was developed using rich data sets from published and unpublished studies. The sparse data from our study were then fit to this model using nonlinear mixed effects modeling to estimate individual parameter values. The resulting parameter estimates were used to simulate full time–concentration profiles for each animal in this study. These profiles were analyzed using noncompartmental methods so that PK/PD indices (AUC24/MIC, AUC/MIC, CMAX/MIC) could be calculated for plasma and PELF (also T>MIC) for each individual. The calculated PK/PD indices were indicative that for both M. haemolytica and P. multocida a higher drug exposure in terms of concentration, and duration of exposure relative to the MIC of the target pathogen, was favorable to a successful case outcome. A significant association was found between treatment success and PELF AUC0–24/MIC for P. multocida. The calves in this study demonstrated an increased clearance and volume of distribution in plasma as compared to the healthy calves in two previously published reports. Ultimately, the findings from this study indicate that higher PK/PD indices were predictive of positive treatment outcomes.  相似文献   

8.
Accumulation and elimination of enrofloxacin and its metabolite ciprofloxacin were evaluated in Exopalaemon carinicauda following medicated feed at dose of 10 mg/kg weight body per day for five consecutive days and 10 mg/L bath for five consecutive days at 18 °C. At different times, nine ridgetail white prawns were randomly selected from the tank and sampled after the last medicated feed or bath administration. The concentration of enrofloxacin and ciprofloxacin in the main tissues (hepatopancreas, muscle, gill, and ovary) was detected by HPLC. The results showed that the maximum concentrations of enrofloxacin were 3.408 ± 0.245, 0.554 ± 0.088, 0.789 ± 0.074, and 0.714 ± 0.123 μg/g for hepatopancreas, muscle, gill, and ovary, respectively, at 1 day after the last medicated feed treatment. The enrofloxacin concentrations were 2.389 ± 0.484, 0.656 ± 0.012, 0.951 ± 0.144, and 3.107 ± 0.721 μg/g in hepatopancreas, muscle, gill, and ovary, respectively, at 1 day after the last bath administration. Ciprofloxacin could be detected in hepatopancreas, muscle, gill, and ovary. However, the concentrations of ciprofloxacin were much lower in comparison with that of enrofloxacin in various tissues. The concentrations of enrofloxacin plus ciprofloxacin in hepatopancreas, muscle, gill, and ovary followed an eliminating pattern during the sampling time after the two routes of administration. Based on data derived from this study, to avoid the enrofloxacin and ciprofloxacin residue in E. carinicauda, it should take at least 20 and 25 days to wash out the drug from the tissues after the last medicated feed and bath administration with enrofloxacin, respectively. These results helped the Chinese fishery department to lay down the current guidelines on enrofloxacin plus ciprofloxacin withdrawal periods for farmed shrimp.  相似文献   

9.
The objectives of this study were to determine the serum and pulmonary disposition of tilmicosin in foals and to investigate the in vitro activity of the drug against Rhodococcus equi and other common bacterial pathogens of horses. A single dose of a new fatty acid salt formulation of tilmicosin (10 mg/kg of body weight) was administered to seven healthy 5- to 8-week-old foals by the intramuscular route. Concentrations of tilmicosin were measured in serum, lung tissue, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils. Mean peak tilmicosin concentrations were significantly different between sampling sites with highest concentrations measured in blood neutrophils (66.01+/-15.97 microg/mL) followed by BAL cells (20.1+/-5.1 microg/mL), PELF (2.91+/-1.15 microg/mL), lung tissue (1.90+/-0.65 microg/mL), and serum (0.19+/-0.09 microg/mL). Harmonic mean terminal half-life in lung tissue (193.3 h) was significantly longer than that of PELF (73.3 h), bronchoalveolar cells (62.2 h), neutrophils (47.9 h), and serum (18.4 h). The MIC90 of 56 R. equi isolates was 32 microg/mL. Tilmicosin was active in vitro against most streptococci, Staphylococcus spp., Actinobacillus spp., and Pasteurella spp. The drug was not active against Enterococcus spp., Pseudomonas spp., and Enterobacteriaceae.  相似文献   

10.
The purpose of this study was to compare the pharmacokinetics and relative bioavailability of tilmicosin enteric granules and premix after oral administration at a dose of 40 mg/kg in pigs. Three kinds of different respiratory pathogens were selected for determination of minimal inhibitory concentration (MIC) to tilmicosin. Eight healthy pigs were assigned to a two‐period, randomized crossover design. A modified rapid, sensitive HPLC method was used for determining the concentrations of tilmicosin in plasma. Pharmacokinetic parameters were calculated by using WinNonlin 5.2 software. The MIC90 of tilmicosin against Haemophilus parasuis, Actinbacillus pleuropneumoniae, and Pasteurella multocida were all 8 μg/ml. These results indicated that these common pig respiratory bacteria are sensitive to tilmicosin. The main parameters of time to reach maximum plasma concentration (Tmax), elimination half‐life (t1/2β), mean residence time (MRT), and apparent volume of distribution (VF) were 2.03 ± 0.37 hr, 29.31 ± 5.56 hr, 25.22 ± 2.57 hr, 4.06 ± 1.04 L/kg, and 3.05 ± 0.08 hr, 17.06 ± 1.77 hr, 15.55 ± 1.37 hr, 2.95 ± 0.62 L/kg after the orally administrated tilmicosin enteric granules and premix. The relative bioavailability of tilmicosin enteric granules to premix was 114.97 ± 7.19%, according to the AUC0‐t values. These results demonstrated that tilmicosin enteric granules produced faster tilmicosin absorption, slower elimination, larger tissue distribution, and higher bioavailability compared to the tilmicosin premix. The present study results manifest that tilmicosin enteric granules can be used as a therapeutic alternative to premix in clinical treatment.  相似文献   

11.
This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 105 CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms.  相似文献   

12.
Macrolides are used for treatment of pneumonia and extrapulmonary conditions caused by Rhodococcus equi. In foals, macrolides have an extraordinary capacity to accumulate in different lung tissue compartments. These drugs show unique pharmacokinetic features such as rapid and extensive distribution and long persistence in pulmonary epithelial lining fluid (PELF) and bronchoalveolar lavage (BAL) cells from foals. This article reviews the pharmacokinetic characteristics of erythromycin, azithromycin, clarithromycin, tulathromycin, telithromycin, gamithromycin, and tilmicosin in foals, with emphasis on PELF and BAL cell concentrations.  相似文献   

13.
The objectives of this study were to determine the plasma and pulmonary disposition of gamithromycin in foals and to investigate the in vitro activity of the drug against Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) and Rhodococcus equi. A single dose of gamithromycin (6 mg/kg of body weight) was administered intramuscularly. Concentrations of gamithromycin in plasma, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils were determined using HPLC with tandem mass spectrometry detection. The minimum inhibitory concentration of gamithromycin required for growth inhibition of 90% of R. equi and S. zooepidemicus isolates (MIC(90)) was determined. Additionally, the activity of gamithromycin against intracellular R. equi was measured. Mean peak gamithromycin concentrations were significantly higher in blood neutrophils (8.35±1.77 μg/mL) and BAL cells (8.91±1.65 μg/mL) compared with PELF (2.15±2.78 μg/mL) and plasma (0.33±0.12 μg/mL). Mean terminal half-lives in neutrophils (78.6 h), BAL cells (70.3 h), and PELF (63.6 h) were significantly longer than those in plasma (39.1 h). The MIC(90) for S. zooepidemicus isolates was 0.125 μg/mL. The MIC of gamithromycin for macrolide-resistant R. equi isolates (MIC(90)=128 μg/mL) was significantly higher than that for macrolide-susceptible isolates (1.0 μg/mL). The activity of gamithromycin against intracellular R. equi was similar to that of azithromycin and erythromycin. Intramuscular administration of gamithromycin at a dosage of 6 mg/kg would maintain PELF concentrations above the MIC(90) for S. zooepidemicus and phagocytic cell concentrations above the MIC(90) for R. equi for approximately 7 days.  相似文献   

14.
Measurement of unbound drug concentrations at their sites of action is necessary for accurate PK/PD modeling. The objective of this study was to determine the unbound concentration of carprofen in canine interstitial fluid (ISF) using in vivo ultrafiltration and to compare pharmacokinetic parameters of free carprofen concentrations between inflamed and control tissue sites. We hypothesized that active concentrations of carprofen would exhibit different dispositions in ISF between inflamed vs. normal tissues. Bilateral ultrafiltration probes were placed subcutaneously in six healthy Beagle dogs 12 h prior to induction of inflammation. Two milliliters of either 2% carrageenan or saline control was injected subcutaneously at each probe site, 12 h prior to intravenous carprofen (4 mg/kg) administration. Plasma and ISF samples were collected at regular intervals for 72 h, and carprofen concentrations were determined using HPLC. Prostaglandin E2 (PGE2) concentrations were quantified in ISF using ELISA. Unbound carprofen concentrations were higher in ISF compared with predicted unbound plasma drug concentrations. Concentrations were not significantly higher in inflamed ISF compared with control ISF. Compartmental modeling was used to generate pharmacokinetic parameter estimates, which were not significantly different between sites. Terminal half‐life (T½) was longer in the ISF compared with plasma. PGE2 in ISF decreased following administration of carprofen. In vivo ultrafiltration is a reliable method to determine unbound carprofen in ISF, and that disposition of unbound drug into tissue is much higher than predicted from unbound drug concentration in plasma. However, concentrations and pharmacokinetic parameter estimates are not significantly different in inflamed vs. un‐inflamed tissues.  相似文献   

15.
The objective of this study was to compare the pharmacokinetics of minocycline in foals vs. adult horses. Minocycline was administered to six healthy 6‐ to 9‐week‐old foals and six adult horses at a dose of 4 mg/kg intragastrically (IG) and 2 mg/kg intravenously (i.v.) in a cross‐over design. Five additional oral doses were administered at 12‐h intervals in foals. A microbiologic assay was used to measure minocycline concentration in plasma, urine, synovial fluid, and cerebrospinal fluid (CSF). Liquid chromatography–tandem mass spectrometry was used to measure minocycline concentrations in pulmonary epithelial lining fluid (PELF) and bronchoalveolar (BAL) cells. After i.v. administration to foals, minocycline had a mean (±SD) elimination half‐life of 8.5 ± 2.1 h, a systemic clearance of 113.3 ± 26.1 mL/h/kg, and an apparent volume of distribution of 1.24 ± 0.19 L/kg. Pharmacokinetic variables determined after i.v. administration to adult horses were not significantly different from those determined in foals. Bioavailability was significantly higher in foals (57.8 ± 19.3%) than in adult horses (32.0 ± 18.0%). Minocycline concentrations in PELF were higher than in other body fluids. Oral minocycline dosed at 4 mg/kg every 12 h might be adequate for the treatment of susceptible bacterial infections in foals.  相似文献   

16.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

17.
The pharmacokinetics of enrofloxacin and the metabolite ciprofloxacin were studied in horseshoe crabs after a single injection of 5 mg/kg. Twelve Atlantic horseshoe crabs (Limulus polyphemus) of undetermined age were injected with enrofloxacin into the dorsal cardiac sinus. Hemolymph samples were collected by syringe and needle at regular intervals for 120 hr. Samples were analyzed by high‐pressure liquid chromatography and compartmental analysis performed on the results. Following injection, the elimination half‐life (T½), peak concentration, area under the curve (AUC), and volume of distribution (VD) for enrofloxacin were 27.9 (29.13) hr, 8.98 (18.09) μg/ml, 367.38 (35.41) hr μg/ml, and 0.575 (20.48) L/kg, respectively (mean value, CV%). For ciprofloxacin, the elimination T½, peak concentration, and AUC were 61.36 (34.55) hr, 2.34 (24.11) μg/ml, and 304.46 (24.69) μg hr/ml. In these animals, the ciprofloxacin concentrations comprised an average of 45.8% of the total fluoroquinolone concentrations, which is substantial compared to other marine invertebrates. The total AUC produced (sum of enrofloxacin and ciprofloxacin) was 682.69 ± 180.61 μg hr/ml. Concentrations that were achieved after a single dose of 5 mg/kg horseshoe crabs were sufficient to treat bacteria susceptible to enrofloxacin and ciprofloxacin.  相似文献   

18.
[Correction added on 23 March 2015, after first online publication: Terminal half‐life values of enrofloxacin is corrected in the fourth sentence of the abstract] Clinically healthy common ringtail possums (= 5) received single doses of 10 mg/kg enrofloxacin orally and then 2 weeks later subcutaneously. Serial plasma samples were collected over 24 h for each treatment phase, and enrofloxacin concentrations were determined using a validated HPLC assay. Pharmacokinetic parameters were determined by noncompartmental analysis. Following oral administration, plasma concentrations were of therapeutic relevance (Cmax median 5.45 μg/mL, range 2.98–6.9 μg/mL), with terminal‐phase half‐life (t½) shorter than in other species (median 3.09 h, range 1.79–5.30 h). In contrast, subcutaneous administration of enrofloxacin did not achieve effective plasma concentrations, with plasma concentrations too erratic to fit the noncompartmental model except in one animal. On the basis of the AUC:MIC, enrofloxacin administered at 10 mg/kg orally, but not subcutaneously, is likely to be effective against a range of bacterial species that have been reported in common ringtail possums.  相似文献   

19.
This crossover study compared the pharmacokinetics of cytarabine in six healthy dogs following intravenous constant rate infusion (CRI) and subcutaneous (SC) administrations, as these are two routes of administration commonly employed in the treatment of meningoencephalitis of unknown etiology. Each dog received a SC cytarabine injection of 50 mg/m2 or an 8 h CRI of 25 mg/m2 per hour, with a 7‐day washout before receiving the alternative treatment. Blood samples were collected for 16 h after CRI initiation and for 8 h after SC injection. Plasma concentrations were measured by high‐pressure liquid chromatography (HPLC). Pharmacokinetic parameters were estimated using the best‐fit compartmental analysis for both CRI and SC routes. Terminal half‐life (T½) of cytarabine was 1.35 ± 0.3 and 1.15 ± 0.13 h after SC administration and CRI, respectively. Mean peak concentration (Cmax) was 2.88 and 2.80 μg/mL for SC and CRI administration, respectively. Volume of distribution was 0.66 ± 0.07 l/kg. The 8‐h CRI produced steady‐state plasma concentrations as determined by consecutive measurement that did not decline until the end of the infusion. The SC administration did not achieve steady‐state concentrations because cytarabine administered by this route was rapidly absorbed and eliminated quickly. The steady state achieved with the cytarabine CRI may produce a more prolonged exposure of cytarabine at cytotoxic levels in plasma compared to the concentrations after SC administration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号