首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two different sets of polyamide 66(PA66)-based composite films containing 2.0-10.0 wt% acid-treated multiwalled carbon nanotubes (MWCNT) were manufactured by solution mixing and casting method in the presence or absence of a nonionic surfactant. For the improved dispersion and interfacial interaction of MWCNTs in the PA66 matrix, carboxylic acid-functionalized MWCNTs were prepared by the acid-treatment of pristine MWCNTs. The uniform dispersion of the acidtreated MWCNTs in the PA66 matrix was confirmed from FE-SEM images of the fractured composite film surfaces. DSC thermograms supported that the acid-treated MWCNTs served as nucleating agents for the melt-crystallization of PA66 in both composite films prepared with/without the addition of the surfactant. The electrical and tensile mechanical properties of the composite films prepared with the surfactant were ~20 % higher than those of the composite films manufactured without the surfactant. For both composite films, sheet resistivity and tensile mechanical properties were found to be highly decreased and increased, respectively, with the increment of the acid-treated MWCNT content.  相似文献   

2.
Elastomeric copolyetherester (CPEE)-based composite fibers incorporating various neat and functionalized multiwalled carbon nanotubes (MWCNTs) were prepared through a conventional wet-spinning and coagulation process. The influence of functionalized MWCNTs on the morphological features, and the thermal, mechanical properties and electrical conductivity of CPEE/MWCNT (80/20, w/w) composite fibers were investigated. FE-SEM images show that a composite fiber containing poly(ethylene glycol)-functionalized MWCNTs (MWCNT-PEG) has a relatively smooth surface owing to the good dispersion of MWCNT-PEGs within the fiber, whereas composite fibers including pristine MWCNTs (p-MWCNT), acid-functionalized MWCNTs (a-MWCNT), and ethylene glycol-modified MWCNTs (MWCNT-EG) have quite a rough surface morphology owing to the presence of MWCNT aggregates. As a result, the CPEE/MWCNT-PEG composite fiber exhibits noticeably increased thermal and tensile mechanical properties as well as a faster crystallization behavior, which stems from an enhanced interfacial interaction between the CPEE matrix and MWCNT-PEGs.  相似文献   

3.
Electrically conductive nanofibers were fabricated from elastic polyurethane (PU) and PU/multiwalled carbon nanotubes (MWCNTs) nanocomposite by electrospinning method. The nanocomposites were electrospun at various MWCNTs loading. Electron microscopy was used to investigate nanofibers morphology and dispersion of MWCNTs in the electrospun nanofibers. The results showed that the presence of the MWCNTs promoted the creation of fibrous structures in comparison with the PU without MWCNTs. On the other hand, increasing the MWCNTs content resulted in a slight increase in the average fiber diameter. TEM micrographs and mechanical properties of the electrospun mats indicated that the homogeneous dispersion of MWCNTs throughout PU matrix is responsible for the considerable enhancement of mechanical properties of the nanofiber mats. Electrical behavior of the conductive mats was also studied, in view of possible sensor applications. Cyclic experiments were conducted to establish whether the electrical properties were reversible, which is an important requirement for sensor materials.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with hyperbranched aromatic polyamide (HAP) by in situ polymerization and by the AB 2 approach to enhance the mechanical properties of poly(methylmethacrylate) (PMMA) composites. Various concentrations of HAP-functionalized MWCNTs (HAP-f-MWCNTs) were used to prepare HAP-f-MWCNT-reinforced PMMA composite films. The covalent attachment of HAP to the MWCNTs, as achieved by in situ functionalization, resulted in effective dispersion of the MWCNTs in the PMMA matrix, thus enhancing the mechanical and thermal properties of the composite films. The breaking stress of the composites increased largely with the HAP-f-MWCNT loading.  相似文献   

5.
Polystyrene (PS) composites with nanofibrous structure consisting of multi-walled carbon nanotubes (MWCNTs) with 0-10 wt.% of nanofiller have been fabricated via electrospinning technique. The surface morphology and thermal properties of the composites were evaluated by scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The SEM analysis of the composite nanofibers samples revealed that the average diameter of the nanofibers increases with increasing MWCNTs content. The resultant MWCNTs/PS composite nanofibers diameters were in the range of 391±63 to 586±132 nm. The thermal stability of composites was increased after addition of MWCNTs to PS matrix. The electrical conductivity of the composites with different weight percentage of MWCNTs was investigated at room temperature. Electrical conductivity of MWCNTs/PS composite nanofiber followed percolation theory having a percolation threshold V c= 0.45 vol% (~0.75 wt. %) and critical exponent q=1.21. The electrical conductivity and thermal properties confirmed the presence of good dispersion and alignment MWCNTs encapsulated within the electrospun nanofibers. The electromagnetic interference (EMI) shielding effectiveness of the MWCNTs/PS composites was examined in the measurement frequency range of 8.2-12.4 GHz (X-band). The total EMI shielding efficiency of MWCNTs/PS composite nanofibers increased up to 32 dB. The EMI shielding results for MWCNTs/PS composite nanofibers showed that absorption loss was the major shielding mechanism and reflection was the secondary mechanism. The present study has shown the possibility of utilizing MWCNTs/PS composite nanofibers as EMI shielding/absorption materials.  相似文献   

6.
Cellulose/multi-walled carbon nanotubes (MWCNTs)- composite membranes applied in electrochemical and biomedical fields were prepared using 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDEP) as solvent in this study. With the increasing of MWCNTs amount, the membrane conductivity increased, and the conductivity reached 9.1 S/cm as the mass ratio of MWCNTs to cellulose being 2:1. The additions of sodium dodecyl sulfate (SDS), 1-hexadecyl-3-methylimidazolium bromide (C16mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) efficiently improved the conductivity, mechanical property, and thermal stability by promoting the dispersion of MWCNTs. When the mass ratio of C16mimBr to MWCNTs changed from 0 to 0.3:1, the conductivity increased from 0.08 S/cm to 0.14 S/cm, and the tensile strength increased from 13.3 MPa to 17.0 MPa. These results indicate that the binary ionic liquids (ILs) system can regulate the properties of the composite membranes, and is a feasible approach for preparing cellulose/MWCNTs composite membranes with enhanced properties.  相似文献   

7.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

8.
Electrically conducting nanofibers based on cellulosic materials offer cheap and safe class of materials that can be used for water desalination. In the present work, high conducting cellulose triacetate (CTA) nanofibers containing multiwall carbon nanotubes (MWCNTs) with very low percolation threshold concentration (0.014 wt%) were produced by electrospinning. Unprecedentedly, a hydrophilic ionic liquid consists of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was used to dissolve CTA producing a solution of 10 wt%. This CTA solution was used to engineer both bare CTA nanofibers and CTA nanofibers impregnated with MWCNT. The fabricated nanofibers were characterized by the field emission-scanning electron microscopy (FE-SEM) and the high-resolution transmission electron microscopy (HR-TEM). Both FE-SEM and HR-TEM images showed that the MWCNTs were inserted and uniformly distributed inside electrospun nanofibers. Furthermore, mechanical properties such as tensile strength of MWCNTs loaded-CTA electrospun nanofibers was significantly improved by up to 280 % and 270 % for the Young modulus, when compared with the bare CTA fibers. In addition, the surface properties as the hydrophilicity of electrospun nanofibers membrane was enhanced due to the presence of MWCNTs. Moreover, the electrical conductivity of MWCNT loaded-CTA electrospun nanofibers was greatly enhanced after the implementation of the MWCNTs inside the CTA fiber. The performance of composite nanofiber for water desalination was examined in a lab-scale classic capacitive deionization (CDI) unit, at different concentrations of salt. The obtained data revealed that the electro-adsorption of anions and cations on the surface of MWCNTs loaded-CTA electrospun nanofibers electrodes were monitored with time and their concentration were decreased progressively with time and reaches equilibrium.  相似文献   

9.
Single walled carbon nanotubes (SWNTs) are considered as a highly potential reinforcement material for the epoxy composites. Dispersion of SWNTs in epoxy and poor interfacial strain transfer are two major challenges. Surface functionalization is one efficient way to change the dispersion and interfacial properties of SWNTs. In this study, five different modification methods of SWNTs were used, and the functional groups on the SWNTs were tested by X-ray photoelectron spectroscopy and Raman spectroscopy. The SWNTs/epoxy composite were prepared using dimethylformamide (DMF) as the solvent. SWNTs at two concentration levels of 0.05 wt% and 0.5 wt% and with five different surface modifications were filled in to epoxy resins. The dispersion of the nanotubes in epoxy resin was evaluated by light optical microscope (LOM), with high content of SWNTs more aggregates appear. The interfacial strain transfer was tested by Raman shift of the 2D band when applying a strain on the epoxy composite sample. With equal strain levels in the composite more strain was transferred from epoxy matrix to SWNTs with 0.05 wt% of SWNTs than the 0.5 wt% of SWNTs filled epoxy resin. Mechanical properties were influenced by the strain transfer efficiency and the curing degree of the samples.  相似文献   

10.
Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.  相似文献   

11.
A surfactant is used to enhance spinnability of carbon nanotube (CNT) fibers during direct spinning via chemical vapor deposition (CVD). In this study, the non-ionic surfactant, polysorbate, is used due to its good solubility in the CNT synthesis solution. The addition of the surfactant increased the specific strength and electrical conductivity of CNT fibers. Due to these enhanced properties, CNT fibers can be spun at higher speeds which results in lower linear density. These enhancements are due to the reduced agglomeration of iron catalysts during the synthesis of CNT fibers via CVD. This simple approach may create new applications for CNT fibers, such as for artificial muscles and power cables.  相似文献   

12.
The effects of graphene nanoplatelets (GNP) and multiwall carbon nanotube (MWCNT) hybrid nanofillers on the mechanical and thermal properties of reinforced polyethylene terephthalate (PET) have been investigated. The nanocomposites were melt blended using the counter rotating twin screw extruder followed by injection molding. Their morphology, mechanical and thermal properties were characterized. Combination of the two nanofillers in composites formulation supplemented each other which resulted in the overall improvement in adhesion between fillers and matrix. The mechanical properties and thermal stability of the hybrid nanocomposites (PET/GNP1.5/MWCNT1.5) were significantly improved compared to PET/GNP3 and PET/MWCNT3 single filer nanocomposites. However, it was observed that GNP was better in improving the mechanical properties but MWCNT resulted in higher thermal stability of Nanocomposite. The transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) revealed uniform dispersion of the hybrid fillers in PET/GNP1.5/MWCNT1.5 nanocomposites while agglomeration was observed at higher filler content. The MWCNT prevented the phenomenal stacking of the GNPs by forming a bridge between adjacent GNP planes resulting in higher dispersion of fillers. This complimentary geometrical structure is responsible for the significant improvement in the thermal stability and mechanical properties of the hybrid nanocomposites.  相似文献   

13.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

14.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

15.
研究二硫化钼用量、不同改性二硫化钼对天然胶乳胶膜力学性能的影响,在最佳用量之下,用硅烷偶联剂KH550、KH560、KH570以及Si69对二硫化钼进行改性,研究二硫化钼与天然胶乳硫化胶膜的力学性能,并通过热重分析仪分析其热稳定性,扫描电镜(SEM)分析二硫化钼在胶膜中的分散效果。结果表明:随着二硫化钼用量的增加,硫化胶膜的力学性能先增加后降低,当二硫化钼的用量为6份和9份时天然胶乳硫化胶膜的力学性能较好;使用KH560改性过的二硫化钼制得天然胶乳硫化胶膜的性能好,且KH560的最佳用量为2份时,硫化胶膜的力学性能最好,且此改性二硫化钼在天然胶乳中的分散效果好;热失重分析可知,改性的硫化胶膜的热稳定性有所提高。  相似文献   

16.
This study evaluates the influence of different silane coupling agents on the thermal and physical properties of epoxy-anhydride composite reinforced with basalt fiber. The silane coupling agents were selected by their functional groups so that they could have different chemical interactions with the epoxy and anhydride curing agents. The thermal and degradation behavior of the composites with different fiber contents were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Through the evaluation of T g and thermal degradation behavior of both systems, it was deduced that the silane coupling agents have a great influence on the thermal properties of the composites as well as interfacial improvement. Also, the tensile properties of the composites were systematically evaluated in order to further understand the effect of silane coupling agents on the interaction with basalt fiber and epoxy matrix.  相似文献   

17.
The present study represents the influence of adding different weight fractions (0, 0.1, 0.25 and 0.4 wt.%) of multi-walled carbon nanotubes (MWCNT) on the high velocity impact behavior of anisogrid stiffened composite (AGSC) plates. AGSC plates were fabricated through hand lay-up method where E-glass woven fabrics and unidirectional carbon fiber rovings were used as fibrous reinforcement of ribs and skin, respectively. High velocity impact test was performed on these plates by cylindrical projectile with conical nose. Obtained results revealed that the maximum improvement of the high velocity impact properties of AGSC plates were obtained through addition of 0.4 wt.% of MWCNTs. Field emission scanning electron microscopy (FESEM) examinations of the fracture surfaces clearly indicated the improvement in the interfacial adhesion between the fibers and epoxy matrix in the case of the nanocomposite specimens. Also, it was observed that the addition of MWCNTs to the AGSC specimens led to reduce the damage area and increased the damage tolerance, considerably.  相似文献   

18.
A proper collector is designed and examined in electrospinning process to produce electrospun nanofibers with favored mechanical propertied. The quality of product was controlled by changing and optimizing the process variables, namely electrospinning time, gap distance, and collector rotating speed in a manner that well-aligned yarns were fabricated from polyacrylonitrile (PAN) dilute solutions. It was found that the tensile characteristics of fabricated yarns are greatly dependent on the process variables. Incorporation of multi-walled carbon nanotubes (MWCNTs) into the polymer solution revealed improvement to the yarn strength because of enhancement in alignment of the filaments. The state of fiber alignment and dispersion of MWCNTs were detected by means of scanning electron microscopy. It was illustrated that combination of nanofibers and microfibers gives PAN/MWCNTs composite nanofibers with high surface area and high porosity to satisfy sophisticated users.  相似文献   

19.
Graphene nanoplatelet (GnP) was chemically functionalized by amine groups for improvement of compatibility in poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) blend. PMMA/PEO (90/10) nanocomposites with non-functionalized GnP and functionalized GnP (FGnP) were prepared by solution casting method. Successful grafting of amine groups on the GnP surface was confirmed by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The Transmission electron microscopy (TEM) images showed that the dispersion state of FGnP was better than that of GnP in PMMA/PEO nanocomposites. The effects of FGnP and GnP on rheological, thermal and electrical properties of PMMA/PEO nanocomposites were investigated by various methods. The results indicated that the FGnP-based nanocomposites had higher storage modulus, glass transition temperature and thermal stability as compared to the GnP-based nanocomposites. The electrical conductivity of the nanocomposites with FGnP was better than that of GnP-based nanocomposites. The higher conductivity was attributed to homogeneous and well dispersion state of FGnP in PMMA/PEO nanocomposites.  相似文献   

20.
In this research work, aramid and semi-carbon fibers (SCFs) were hybridized in the form of interlayer or layer by layer into epoxy matrix by hand lay-up method. Afterward, the effect of hybridization on the thermal and mechanical properties of epoxy composites was characterized by thermal analysis; horizontal burning; tensile and bending tests. Based on the results of the mechanical tests, increasing SCFs to aramid fibers ratio decreased tensile strength, elastic and flexural modulus. But with increasing this ratio to 53 % failure strain reduced, whereas in the ratios of more than 53 %, the failure strain enhanced. The results of thermal analysis curves indicated that there are three stage mass loss at the temperature ranges of 100-220, 270-470 and 500-620 °C. It was also found that with increasing the SCFs to aramid fibers ratio decreased the third-stage of the mass loss. The results of horizontal burning showed that increasing the SCFs to aramid fibers ratio decreased the rate of burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号