首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The objective of this study was to compare the plasma pharmacokinetic profile of ceftiofur crystalline‐free acid (CCFA) and ceftiofur sodium in neonatal calves between 4 and 6 days of age. In one group (n = 7), a single dose of CCFA was administered subcutaneously (SQ) at the base of the ear at a dose of 6.6 mg/kg of body weight. In a second group (n = 7), a single dose of ceftiofur sodium was administered SQ in the neck at a dose of 2.2 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) in plasma were determined by HPLC. Median time to maximum DCA concentration was 12 h (range 12–48 h) for CCFA and 1 h (range 1–2 h) for ceftiofur sodium. Median maximum plasma DCA concentration was significantly higher for calves given ceftiofur sodium (5.62 μg/mL; range 4.10–6.91 μg/mL) than for calves given CCFA (3.23 μg/mL; range 2.15–4.13 μg/mL). AUC0‐∞ and Vd/F were significantly greater for calves given CCFA than for calves given ceftiofur sodium. The median terminal half‐life of DCA in plasma was significantly longer for calves given CCFA (60.6 h; range 43.5–83.4 h) than for calves given ceftiofur sodium (18.1 h; range 16.7–39.7 h). Cl/F was not significantly different between groups. The duration of time median plasma DCA concentrations remained above 2.0 μg/mL was significantly longer in calves that received CCFA (84.6 h; range 48–103 h) as compared to calves that received ceftiofur sodium (21.7 h; range 12.6–33.6 h). Based on the results of this study, CCFA administered SQ at a dose of 6.6 mg/kg in neonatal calves provided plasma concentrations above the therapeutic target of 2 μg/mL for at least 3 days following a single dose. It is important to note that the use of ceftiofur‐containing products is restricted by the FDA and the use of CCFA in veal calves is strictly prohibited.  相似文献   

2.
The use of an extended release ceftiofur crystalline‐free acid formulation (CCFA, Excede For Swine®, Pfizer Animal Health) in koi was evaluated after administration of single intramuscular (i.m.) or intracoelomic (i.c.) doses. Twenty koi were divided randomly into a control group and four treatment groups (20 mg/kg i.m., 60 mg/kg i.m., 30 mg/kg i.c., and 60 mg/kg i.c.). Serum ceftiofur‐free acid equivalents (CFAE) concentrations were quantified. The pharmacokinetic data were analyzed using a nonlinear mixed‐effects approach. Following a CCFA injection of 60 mg/kg i.m., time durations that serum CFAE concentrations were above the target concentration of 4 μg/mL ranged from 0.4 to 2.5 weeks in 3 of 4 fish, while serum CFAE concentrations remained below 4 μg/mL for lower doses evaluated. Substantial inter‐individual variations and intra‐individual fluctuations of CFAE concentrations were observed for all treatment groups. Histological findings following euthanasia included aseptic granulomatous reactions, but no systemic adverse effects were detected. Given the unpredictable time vs. CFAE concentration profiles for treated koi, the authors would not recommend this product for therapeutic use in koi at this time. Further research would be necessary to correlate serum and tissue concentrations and to better establish MIC data for Aeromonas spp. isolated from naturally infected koi.  相似文献   

3.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

4.
Pharmacokinetic (PK)–pharmacodynamic (PD) integration of crystalline ceftiofur‐free acid (CCFA) was established in six healthy female goats administered subcutaneously (s.c.) on the left side of the neck at a dosage of 6.6 mg/kg body weight. Serum concentrations of ceftiofur and desfuroylceftiofur (DFC) were determined using high‐performance liquid chromatography. Mutant prevention concentration (MPC), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ceftiofur were determined for Pasteurella (P.) multocida. Mean terminal half‐life and mean residence time of ceftiofur + DFC were 48.6 h and 104 h, respectively. In vitro plasma protein binding of ceftiofur was 46.6% in goats. The MIC and MBC values of ceftiofur were similar in serum and MHB and a very small difference between these values confirmed bactericidal activity of drug against P. multocida. In vitro and ex vivo time–kill curves for P. multocida demonstrated a time‐dependent killing action of drug. Considering target serum concentration of 0.20 μg/mL, PK‐PD values for AUC24 h/MIC90 and T > MIC90, respectively, were 302 h and 192 h against P. multocida. A MPC/MIC ratio of 10–14 indicated that selective pressure for proliferation of resistant mutants of P. multocida is minimal after CCFA single‐dose administration. Based on MPC = 1.40 μg/mL for P. multocida, the PK‐PD indices, viz. T > MPC and AUC24/MPC, were 48 h and 43 h, respectively. The data suggested the use of single dose (6.6 mg/kg, s.c.) of CCFA in goats to obtain clinical and bacteriological cure of pneumonia due to P. multocida.  相似文献   

5.
Dechant, J. E., Rowe, J. D., Byrne, B. A., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single and multiple subcutaneous administrations in healthy alpacas (Vicugna pacos). J. vet. Pharmacol. Therap.  36 , 122–129. Six adult male alpacas received one subcutaneous administration of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. After a washout period, the same alpacas received three subcutaneous doses of 6.6 mg/kg CCFA at 5‐day intervals. Blood samples collected from the jugular vein before and at multiple time points after each CCFA administration were assayed for ceftiofur‐ and desfuroylceftiofur‐related metabolite concentrations using high‐performance liquid chromatography. Pharmacokinetic disposition of CCFA was analyzed by a noncompartmental approach. Mean pharmacokinetic parameters (±SD) following single‐dose administration of CCFA were Cmax (2.7 ± 0.9 μg/mL); Tmax (36 ± 0 h); area under the curve AUC0→∞ (199.2 ± 42.1 μg·h/mL); terminal phase rate constant λz (0.02 ± 0.003/h); and terminal phase rate constant half‐life t1/2λz (44.7 h; harmonic). Mean terminal pharmacokinetic parameters (±SD) following three administrations of CCFA were Cmax (2.0 ± 0.4 μg/mL); Tmax (17.3 ± 16.3 h); AUC0→∞ (216.8 ± 84.5 μg·h/mL); λz (0.01 ± 0.003/h); and t1/2λz (65.9 h; harmonic). The terminal phase rate constant and the Tmax were significantly different between single and multiple administrations. Local reactions were noted in two alpacas following multiple CCFA administrations.  相似文献   

6.
Collard, W. T., Cox, S. R., Lesman, S. P., Grover, G. S., Boucher, J. F., Hallberg, J. W., Robinson, J. A., Brown, S. A. Pharmacokinetics of ceftiofur crystalline‐free acid sterile suspension in the equine. J. vet. Pharmacol. Therap. 34 , 476–481. Absolute bioavailability and dose proportionality studies were performed with ceftiofur in horses. In the absolute bioavailability study, thirty animals received either an intravenous dose of ceftiofur sodium at 1.0 mg/kg or an intramuscular (i.m.) dose of ceftiofur crystalline‐free acid (CCFA) at 6.6 mg/kg. In the dose proportionality study, 48 animals received daily i.m. ceftiofur sodium injections at 1.0 mg/kg for ten doses or two doses of CCFA separated by 96 h, with CCFA doses of 3.3, 6.6, or 13.2 mg/kg. Noncompartmental and mixed‐effect modeling procedures were used to assess pharmacokinetics (PK). CCFA was well absorbed with a bioavailability of 100%. AUC0–∞ and Cmax increased in a dose‐related manner following administration of the two doses of CCFA at 3.3, 6.6, and 13.2 mg/kg. The least‐squares mean terminal half‐life (t½) following the tenth daily i.m. injection of ceftiofur sodium at 2.2 mg/kg was 40.8 h, but the least‐squares mean t½ following the second i.m. injection of CCFA at 6.6 mg/kg was 100 h. The time that plasma ceftiofur equivalent concentrations remain above a threshold concentration of 0.2 μg/mL has been associated with efficacy, and following administration of two 6.6 mg/kg doses of CCFA, the mean time above 0.2 μg/mL was 262 h. Simulations with the nonlinear mixed‐effect PK model predicted that more than 97.5% of horses will have plasma ceftiofur equivalent concentrations >0.2 μg/mL for 96 h after the second 6.6 mg/kg dose of CCFA.  相似文献   

7.
Ponazuril (toltrazuril sulfone) is a triazine antiprotozoal agent that targets apicomplexan organisms. Ponazuril may have clinical application in the treatment of clinical coccidiosis due to Eimeria species in goats, along with other protozoal infections. To evaluate the absorption, distribution and elimination characteristics of ponazuril in goats, a sensitive, validated high‐pressure liquid chromatography and mass spectroscopy method for ponazuril in caprine plasma was developed. After a single oral dose of ponazuril at 10 mg/kg, plasma samples from seven weanling goats were collected and assayed. Plasma concentrations of ponazuril in the goats peaked at 36 ± 13 h post drug administration at a concentration of 9 ± 2 μg/mL. Concentrations declined to an average of 4.2 ± 0.8 μg/mL after 168 h with an average elimination half‐life of 129 ± 72 h post drug administration. This study shows that ponazuril is relatively well absorbed after a single oral dose in goats. Efficacy trials are underway to determine clinical efficacy of ponazuril in the treatment of clinical coccidiosis in goats at 10 mg/kg dosage.  相似文献   

8.
The objectives of this study were to determine the plasma and pulmonary disposition of ceftiofur crystalline free acid (CCFA) in weanling foals and to compare the plasma pharmacokinetic profile of weanling foals to that of adult horses. A single dose of CCFA was administered intramuscularly to six weanling foals and six adult horses at a dose of 6.6 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) were determined in the plasma of all animals, and in pulmonary epithelial lining fluid (PELF) and bronchoalveolar lavage (BAL) cells of foals. After intramuscular (IM) administration to foals, median time to maximum plasma and PELF concentrations was 24 h (12-48 h). Mean (± SD) peak DCA concentration in plasma (1.44 ± 0.46 μg/mL) was significantly higher than that in PELF (0.46 ± 0.03 μg/mL) and BAL cells (0.024 ± 0.011 μg/mL). Time above the therapeutic target of 0.2 μg/mL was significantly longer in plasma (185 ± 20 h) than in PELF (107 ± 31 h). The concentration of DCA in BAL cells did not reach the therapeutic level. Adult horses had significantly lower peak plasma concentrations and area under the curve compared to foals. Based on the results of this study, CCFA administered IM at 6.6 mg/kg in weanling foals provided plasma and PELF concentrations above the therapeutic target of 0.2 μg/mL for at least 4 days and would be expected to be an effective treatment for pneumonia caused by Streptococcus equi subsp. zooepidemicus at doses similar to the adult label.  相似文献   

9.
Eleven pregnant pony mares (D270‐326) were administered ceftiofur sodium intramuscularly at 2.2 mg/kg (n = 6) or 4.4 mg/kg (n = 5), once daily. Plasma was obtained prior to ceftiofur administration and at 0.5, 1, 2, 4, 8, 12, and 24 hr after administration. Eight pony mares were re‐enrolled in the study at least 3 days from expected foaling to ensure steady‐state concentrations of drug at the time of foaling. Mares were administered ceftiofur sodium (4.4 mg/kg, IM) daily until foaling. Parturition was induced using oxytocin 1 hr after ceftiofur sodium administration. Allantoic and amniotic fluid, plasma, and colostrum samples were collected at time of foaling. Serial foal plasma samples were obtained. Placental tissues were collected. Desfuroylceftiofur acetamide (DCA) concentrations were measured in samples by high‐performance liquid chromatography (HPLC). Mean (±SD) peak serum concentrations of DCA were 3.97 ± 0.50 μg/ml (low dose) and 7.45 ± 1.05 μg/ml (high dose). Terminal half‐life was significantly (p = .014) shorter after administration of the low dose (2.91 ± 0.59 hr) than after administration of the high dose (4.10 ± 0.72 hr). The mean serum concentration of DCA from mares at time of foaling was 7.96 ± 1.39 μg/ml. The mean DCA concentration in colostrum was 1.39 ± 0.70 μg/ml. DCA concentrations in allantoic fluid, amniotic fluid, placental tissues, and foal plasma were below the limit of quantification (<0.1 μg/ml) and below the minimum inhibitory concentration of ceftiofur against relevant pathogens. These results infer incomplete passage of DCA across fetal membranes after administration of ceftiofur sodium to normal pony mares.  相似文献   

10.
Macpherson, M. L., Giguère, S., Hatzel, J. N., Pozor, M., Benson, S., Diaw, M., Sanchez, L. C., Vickroy, T. W., Tell, L., Wetzlich, S., Sims, J. Disposition of desfuroylceftiofur acetamide in serum, placental tissue, fetal fluids, and fetal tissues after administration of ceftiofur crystalline free acid (CCFA) to pony mares with placentitis. J. vet. Pharmacol. Therap.  36 , 59–67. The objective of this study was to determine the pharmacokinetics of CCFA in mares with placentitis and evaluate the disposition of the drug in fetal fluids, fetal membranes, colostrum, and serum of foals. A secondary objective was to obtain pilot data regarding the efficacy of CCFA for improving foal survival in mares with placentitis. Twelve pregnant pony mares were enrolled in the study, inoculated with Streptococcus zooepidemicus, intracervically and assigned to one of three groups: CEFT (n = 3; administered CCFA only; 6.6 mg/kg, IM, q96h); COMBO (n = 6; administered combination therapy of CCFA, altrenogest, and pentoxifylline); UNTREAT (n = 3, no treatment). Treatment was initiated at the onset of clinical signs. Concentrations of desfuroylceftiofur acetamide (DCA), the acetamide derivative of ceftiofur and desfuroylceftiofur metabolites, were measured using high‐performance liquid chromatography. Maximum and minimum serum concentrations of DCA at steady state in treated mares were 2.40 ± 0.40 μg/mL and 1.06 ± 0.29 μg/mL, respectively. Concentration of DCA in colostrum was 1.51 ± 0.60 μg/mL. DCA concentrations in placenta and fetal tissues were very low (median = 0.03 μg/mL) and below the minimum inhibitory concentration of relevant pathogens. DCA was not detected in amniotic fluid or foal serum. Treatment did not appear to improve foal survival (CEFT: 0/3; COMBO: 2/6; UNTREAT: 2/3). Bacteria were recovered from the uterus of most mares postpartum and from blood cultures of most foals regardless of treatment.  相似文献   

11.
Neonatal foals have unique pharmacokinetics, which may lead to accumulation of certain drugs when adult horse dosage regimens are used. Given its lipophilic nature and requirement for hepatic metabolism, metronidazole may be one of these drugs. The purpose of this study was to determine the pharmacokinetic profiles of metronidazole in twelve healthy foals at 1–2.5 days of age when administered as a single intravenous (IV) and intragastric (IG) dose of 15 mg/kg. Foals in the intravenous group were studied a second time at 10–12 days of age to evaluate the influence of age on pharmacokinetics within the neonatal period. Blood samples were collected at serial time points after metronidazole administration. Metronidazole concentration in plasma was measured using LC‐MS. Pharmacokinetic parameters were determined using noncompartmental analysis and compared between age groups. At 1–2.5 days of age, the mean peak plasma concentration after IV infusion was 18.79 ± 1.46 μg/mL, elimination half‐life was 11.8 ± 1.77 h, clearance was 0.84 ± 0.13 mL/min/kg and the volume of distribution (steady‐state) was 0.87 ± 0.07 L/kg. At 10–12 days of age, the mean peak plasma concentration after IV infusion was 18.17 ± 1.42 μg/mL, elimination half‐life was 9.07 ± 2.84 h, clearance was 1.14 ± 0.21 mL/min/kg and the volume of distribution (steady‐state) was 0.88 ± 0.06 L/kg. Oral approximated bioavailability was 100%. Cmax and Tmax after oral dosing were 14.85 ± 0.54 μg/mL and 1.75 (1–4) h, respectively. The elimination half‐life was longer and clearance was reduced in neonatal foals at 1–2.5 days as compared to 10–12 days of age (P = 0.006, P = 0.001, respectively). This study warrants consideration for altered dosing recommendations in foals, especially a longer interval (12 h).  相似文献   

12.
Meloxicam is a nonsteroidal anti‐inflammatory drug commonly used in avian species. In this study, the pharmacokinetic parameters for meloxicam were determined following single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of the drug (1 mg/kg·b.w.) in adult African grey parrots (Psittacus erithacus; n = 6). Serial plasma samples were collected and meloxicam concentrations were determined using a validated high‐performance liquid chromatography assay. A noncompartmental pharmacokinetic analysis was performed. No undesirable side effects were observed during the study. After i.v. administration, the volume of distribution, clearance and elimination half‐life were 90.6 ± 4.1 mL/kg, 2.18 ± 0.25 mL/h/kg and 31.4 ± 4.6 h, respectively. The peak mean ± SD plasma concentration was 8.32 ± 0.95 μg/mL at 30 min after i.m. administration. Oral administration resulted in a slower absorption (tmax = 13.2 ± 3.5 h; Cmax = 4.69 ± 0.75 μg/mL) and a lower bioavailability (38.1 ± 3.6%) than for i.m. (78.4 ± 5.5%) route. At 24 h, concentrations were 5.90 ± 0.28 μg/mL for i.v., 4.59 ± 0.36 μg/mL for i.m. and 3.21 ± 0.34 μg/mL for p.o. administrations and were higher than those published for Hispaniolan Amazon parrots at 12 h with predicted analgesic effects.  相似文献   

13.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

14.
Seven sea otters received a single subcutaneous dose of cefovecin at 8 mg/kg body weight. Plasma samples were collected at predetermined time points and assayed for total cefovecin concentrations using ultra‐performance liquid chromatography and tandem mass spectrometry. The mean (±SD) noncompartmental pharmacokinetic indices were as follows: CMax (obs) 70.6 ± 14.6 μg/mL, TMax (obs) 2.9 ± 1.5 h, elimination rate constant (kel) 0.017 ± 0.002/h, elimination half‐life (t1/2kel) 41.6 ± 4.7 h, area under the plasma concentration‐vs.‐time curve to last sample (AUClast) 3438.7 ± 437.7 h·μg/mL and AUC extrapolated to infinity (AUC0→∞) 3447.8 ± 439.0 h·μg/mL. The minimum inhibitory concentrations (MIC) for select isolates were determined and used to suggest possible dosing intervals of 10 days, 5 days, and 2.5 days for gram‐positive, gram‐negative, and Vibrio parahaemolyticus bacterial species, respectively. This study found a single subcutaneous dose of cefovecin sodium in sea otters to be clinically safe and a viable option for long‐acting antimicrobial therapy.  相似文献   

15.
Doré, E., Angelos, J. A., Rowe, J. D., Carlson, J. L., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single subcutaneous administration in lactating and nonlactating domestic goats (Capra aegagrus hircus). J. vet. Pharmacol. Therap. 34 , 25–30. Six nonlactating and six lactating adult female goats received a single subcutaneous injection of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. Blood samples were collected from the jugular vein before and at multiple time points after CCFA administration. Milk samples were collected twice daily. Concentrations of ceftiofur and desfuroylceftiofur‐related metabolites were measured using high‐performance liquid chromatography. Data were analyzed using compartmental and noncompartmental approaches. The pharmacokinetics of CCFA in the domestic goat was best described by a one compartment model. Mean (±SD) pharmacokinetic parameters were as follows for the nonlactating goats: area under the concentration time curve0–∞ (159 h·μg/mL ± 19), maximum observed serum concentration (2.3 μg/mL ± 1.1), time of maximal observed serum concentration (26.7 h ± 16.5) and terminal elimination half life (36.9 h; harmonic). For the lactating goats, the pharmacokinetic parameters were as follows: area under the concentration time curve0–∞ (156 h·μg/mL ± 14), maximum observed serum concentration (1.5 μg/mL ± 0.4), time of maximal observed serum concentration (46 h ± 15.9) and terminal elimination half life (37.3 h; harmonic). Ceftiofur and desfuroylceftiofur‐related metabolites were only detectable in one milk sample at 36 h following treatment. There were no significant differences in the pharmacokinetic parameter between the nonlactating and lactating goats.  相似文献   

16.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

17.
A simple LC/MSMS method has been developed and fully validated to determine concentrations and characterize the concentration vs. time course of methocarbamol (MCBL) and guaifenesin (GGE) in plasma after a single intravenous dose and multiple oral dose administrations of MCBL to conditioned Thoroughbred horses. The plasma concentration–time profiles for MCBL after a single intravenous dose of 15 mg/kg of MCBL were best described by a three‐compartment model. Mean extrapolated peak (C0) plasma concentrations were 23.2 (±5.93) μg/mL. Terminal half‐life, volume of distribution at steady‐state, mean residence time, and systemic clearance were characterized by a median (range) of 2.96 (2.46–4.71) h, 1.05 (0.943–1.21) L/kg, 1.98 (1.45–2.51) h, and 8.99 (6.68–10.8) mL/min/kg, respectively. Oral dose of MCBL was characterized by a median (range) terminal half‐life, mean transit time, mean absorption time, and apparent oral clearance of 2.89 (2.21–4.88) h, 2.67 (1.80–2.87) h, 0.410 (0.350–0.770) h, and 16.5 (13.0–20) mL/min/kg. Bioavailability of orally administered MCBL was characterized by a median (range) of 54.4 (43.2–72.8)%. Guaifenesin plasma concentrations were below the limit of detection in all samples collected after the single intravenous dose of MCBL whereas they were detected for up to 24 h after the last dose of the multiple‐dose oral regimen. This difference may be attributed to first‐pass metabolism of MCBL to GGE after oral administration and may provide a means of differentiating the two routes of administration.  相似文献   

18.
Ceftiofur, a third generation cephalosporin, demonstrates in vitro efficacy against microorganisms isolated from septicemic neonatal foals. This pharmacokinetic study evaluated the intravenous and subcutaneous administration of ceftiofur sodium (5 mg/kg body weight; n = 6 per group) and subcutaneous administration of ceftiofur crystalline free acid (6.6 mg/kg body weight; n = 6) in healthy foals. Plasma ceftiofur- and desfuroylceftiofur-related metabolite concentrations were measured using high performance liquid chromatography following drug administration. Mean (±SD) noncompartmental pharmacokinetic parameters for i.v. and s.c. ceftiofur sodium were: AUC(0→∝) (86.4 ± 8.5 and 91 ± 22 h·μg/mL for i.v. and s.c., respectively), terminal elimination half-life (5.82 ± 1.00 and 5.55 ± 0.81 h for i.v. and s.c., respectively), C(max(obs)) (13 ± 1.9 μg/mL s.c.), T(max(obs)) (0.75 ± 0.4 h for s.c.). Mean (± SD) noncompartmental pharmacokinetic parameters for s.c. ceftiofur crystalline free acid were: AUC(0→∝) (139.53 ± 22.63 h·μg/mL), terminal elimination half-life (39.7 ± 14.7), C(max(obs)) (2.52 ± 0.35 μg/mL) and t(max(obs)) (11.33 ± 1.63 h). No adverse effects attributed to drug administration were observed in any foal. Ceftiofur- and desfuroylceftiofur-related metabolites reached sufficient plasma concentrations to effectively treat common bacterial pathogens isolated from septicemic foals.  相似文献   

19.
The objective of this study was to evaluate the plasma and serum concentrations of cytarabine (CA) administered via constant rate infusion (CRI) in dogs with meningoencephalomyelitis of unknown etiology (MUE). Nineteen client‐owned dogs received a CRI of CA at a dose of 25 mg/m2/h for 8 h as treatment for MUE. Dogs were divided into four groups, those receiving CA alone and those receiving CA in conjunction with other drugs. Blood samples were collected at 0, 1, 8, and 12 h after initiating the CRI. Plasma (n = 13) and serum (n = 11) cytarabine concentrations were measured by high‐pressure liquid chromatography. The mean peak concentration (CMAX) and area under the curve (AUC) after CRI administration were 1.70 ± 0.66 μg/mL and 11.39 ± 3.37 h·μg/mL, respectively, for dogs receiving cytarabine alone, 2.36 ± 0.35 μg/mL and 16.91 + 3.60 h·μg/mL for dogs administered cytarabine and concurrently on other drugs. Mean concentrations for all dogs were above 1.0 μg/mL at both the 1‐ and 8‐h time points. The steady‐state achieved with cytarabine CRI produces a consistent and prolonged exposure in plasma and serum, which is likely to produce equilibrium between blood and the central nervous system in dogs with a clinical diagnosis of MUE. Other medications commonly used to treat MUE do not appear to alter CA concentrations in serum and plasma.  相似文献   

20.
The effects of maturation on the intravenous (IV) and intramuscular (IM) pharmacokinetics of ceftiofur sodium following a dose of 2.2 mg ceftiofur equivalents/kg body weight were evaluated in 16 one-day-old Holstein bull calves (33-53 kg body weight initially; Group 1) and 14 six-month-old Holstein steers (217-276 kg body weight initially; Group 2). Group 1 calves were fed unmedicated milk replacer until 30 days of age and were then converted to the same roughage/concentrate diet as Group 2. Groups 1-IV and 2-IV received ceftiofur sodium IV, and Groups 1-IM and 2-IM received ceftiofur sodium IM. Group 1 calves were dosed at 7 days of age and at 1 and 3 months of age; group 2 calves were dosed at 6 and 9 months of age. Blood samples were obtained serially from each calf, and plasma samples were analysed using an HPLC assay that converts ceftiofur and all desfuroylceftiofur metabolites to desfuroylceftiofur acetamide. Cmax values were similar in all calves, and were no higher in younger calves than in older calves. Plasma concentrations remained above 0.150 μg ceftiofur free acid equivalents/mL for 72 h in 7-day-old calves, but were less than 0.150 μg/mL within 48 h following IV or IM injection for 6- and 9-month-old calves. Intramuscular bioavailability, assessed by comparing the model-derived area under the curve (AUCmod) from IM and IV injection at each age, appeared to be complete. After IV administration, the AUCmod in 7-day-old and 1-month-old calves (126.92±21.1 μg-h/mL and 135.0±21.6 μg.h/mL, respectively) was significantly larger than in 3-, 6- and 9-month-old calves (74.0±10.7 μg.h/mL, 61.0±17.7 μg.h/mL and 68.5±12.8 μg.h/mL, respectively; P< 0.0001). The Vd(ss) decreased linearly within the first 3 months of life in cattle (0.345±0.0616 L/kg, 0.335±0.919 L/kg and 0.284±0.0490 L/kg, respectively; P= 0.031), indicative of the decreasing extracellular fluid volume in maturing cattle. The Clb was significantly smaller in 7-day-old and 1-month-old calves (0.0178±0.00325 L/h.kg and 0.0167±0.00310 L/h.kg, respectively) than in 3-, 6- and 9-month-old calves (0.0303±0.0046 L/h.kg, 0.0398±0.0149 L/h.kg and 0.0330±0.00552 L/h.kg, respectively; P≦0.001). This observation may be indicative of maturation of the metabolism and/or excretion processes for ceftiofur and desfuroylceftiofur metabolites. The approved dosage regimens for ceftiofur sodium of 1.1-2.2 mg/kg administered once daily for up to 5 consecutive days will provide plasma concentrations above the MIC for bovine respiratory disease pathogens for a longer period of time in neonatal calves than in older calves. Peak plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were no higher in neonatal calves than in more mature cattle, highly suggestive that peak tissue concentrations would be no higher in neonatal calves than in more mature cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号