首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
根据系统实测资料,利用根层土壤水的变化量,按水平衡公式反演得观测年,季及旱月的土壤蒸散量,以三年平均及旱年土壤吸入水量减去蒸散量的结果显示,两个观测试区0~100cm,土层蒸散量大于吸入水量;若以月平均计,则每月蒸散量大于土壤吸水量3.84~8.60mm,土壤水的吸入略小于消耗,一年内土壤水量接近平衡。  相似文献   

2.
松嫩平原不同地表覆盖蒸散特征的遥感研究   总被引:7,自引:4,他引:3  
为了准确估算松嫩平原不同地表覆盖的蒸散量,以MODIS产品及实测气象资料为数据源,通过SEBAL模型估算了松嫩平原2008年生长季(5-9月)的蒸散量,并利用涡动相关数据验证估算结果,发现估算值与实测值的变化趋势相吻合,整个生长季蒸散量的相对误差为18.26%,基本可以满足区域蒸散研究需求。通过探讨松嫩平原蒸散量的时空格局,发现2008年生长季蒸散量为183~1 003 mm,具有从西南部向东部、东北部逐渐增加的变化趋势,水体、林地、湿地的平均蒸散量最高,耕地、居工地次之,草地最低。最后,将蒸散量与降水量进行对比,分析了2008年生长季水分亏缺状态,发现松嫩平原平均水分亏缺量为195.96 mm,97%以上区域的蒸散量大于降水量,蒸散过程中很大程度上还需依靠地下水、径流来弥补降水量不足,生长季蒸散强烈,而降水量相对不足,对松嫩平原生态环境的稳定发展造成了重大影响及压力。  相似文献   

3.
明确黄土高原地表蒸散对土地利用变化的响应,有助于评估退耕还林/还草工程对区域气候的影响。为此,在陕西长武黄土塬区5个地点分别采集农地和20龄苹果园10 m深土壤剖面样品,测定土壤水分和氯离子含量,结合当地22龄苹果园4~18 m土壤水分历史数据,基于空间换时间的方法定量评估农地转化为苹果园后对地表蒸散的影响。结果表明:(1)由农地转化的20龄苹果园4~10 m土壤水分明显减小,仅为农地的71%;(2)农地对地下水的平均潜在补给量和地表蒸散量分别为57 mm·a-1和527 mm·a-1,分别占年均降水量的10%和90%;(3)农地转化为苹果园后地表蒸散量增加,22龄苹果园平均蒸散量为625 mm·a-1,相比农地增加量为98 mm·a-1,其中4~10 m和4~18 m深层土壤水分别贡献了24 mm·a-1和41 mm·a-1,约占总蒸散量的4%和7%。本文首次定量评估了黄土高原地区农地转化为苹果园对地表蒸散的影响以及深层土壤水对深根系苹果树蒸散的贡献,为...  相似文献   

4.
利用1988年和1989年对中熟水稻品种桂密实地观测的蒸散资料,分析了影响蒸散的气象因子和作物因子,并与气候学方法估算的蒸散量作了比较。初步得出南宁郊区水稻蒸散的一些规律。从移栽到成熟的总蒸散量为422mm,平均日蒸散量为5.3mm。水稻蒸散主要取决于叶面积和温度,风速和日照也有影响。蒸散最低值出现在生长初期,最高值出现在穗始分化至开花期,但早晚稻有所差异。  相似文献   

5.
不同水分处理旱稻农田蒸散特征和水分利用效率   总被引:2,自引:1,他引:1  
该文通过2001~2004年4年北京地区早稻田间试验,利用农田水量平衡方法计算了早稻农田蒸散量,用微型棵间蒸渗仪测定了不同土壤水分条件下农田土壤棵间蒸发,在此基础上分析了不同水分处理旱稻生长期间的农田蒸散特征、土壤棵间蒸发特征和水分利用效率.结果表明:北京地区早稻出苗~成熟的农田蒸散量为574~630 mm,年际间略有波动;日蒸散强度孕穗~抽穗期最高,平均为9.8 mm/d,该阶段为旱稻需水关键期;在出苗~拔节期间土壤棵间蒸发量占农田蒸散量比例最大,在此生育阶段应采取适当措施降低土壤蒸发无效消耗,提高水分利用效率;限量灌溉处理中以前期适当胁迫,后期充分灌溉处理的水分利用效率最高.  相似文献   

6.
太行山低山区不同植被群落蒸散与水量平衡研究   总被引:1,自引:0,他引:1  
杨帆  张万军 《土壤通报》2007,38(3):434-438
通过大型非称重式蒸渗仪方法对黄背草、荆条及二者之间的复合群落的蒸散过程及水量平衡进行研究,结果表明三种植被蒸散规律是以8月为峰值的单峰曲线,且7~9月为蒸散高峰期。三种群落蒸散量比较,5~6月黄背草蒸散量较其它两种植被群落高。然而其它月份蒸散量低,复合群落蒸散量高。三种群落土壤含水量均在7~8月份高,黄背草5~6月土壤含水量较其它两种植被低,9月后土壤含水量较其它两种植被群落高;土壤水势与土壤含水量有着相同的变化;三种群落水量平衡:整个生长季,11%~13%的降雨用于地下水的补给,87%~89%的降雨储存到土壤水库供植被生长。不同植被地下出流量变化不大,植被蒸散量不同主要是消耗土壤水不同所引起的。  相似文献   

7.
基于地形校正的山区蒸散时空格局模拟   总被引:1,自引:0,他引:1  
利用实测气象数据采用Thornthwaite模型对岷江上游区域蒸散时空格局进行了模拟,同时引入山区日照时数算法对模型进行校正以提高模拟精度。结果表明.校正后的Thornthwaite模型模拟误差在0.13%~20.72%之间,与未校正结果0.72%~46.72%的误差相比有显著降低,误差平均降低5%左右。研究表明,近30年来,研究区域多年蒸散呈现先上升后下降的趋势。1970s初期生长季蒸散量为307.11 mm;而1980s中期上升为315.84 mm,上升8.73 mm,相当于1970s初期生长季蒸散量的2.8%。1980s中期岷江上游蒸散上升到峰值,之后开始逐步下降。到1990s末期岷江上游生长季蒸散下降为305.72 mm,与1980s中期相比下降10.12 mm,为1980s中期生长季蒸散的3.2%。  相似文献   

8.
苏北典型滩涂区土壤盐分动态与水平衡要素之间的关系   总被引:12,自引:0,他引:12  
为获知苏北滩涂区土壤水盐动态行为,从而为后续的节水灌溉和滩涂区农田水管理策略提供理论依据,该文选取典型滩涂区,进行土壤水、盐和地下水埋深的长期连续监测,并根据大丰市气象站提供的降水、地表蒸散数据,对土壤盐分变化和水平衡要素之间的关系进行探讨。结果表明:土壤表层盐分最高,波动最为剧烈,随深度不断增加,盐分逐渐降低,且波动趋缓。试验区夏季降水丰富,蒸散量相对较低,土壤含水率高,地下水埋深浅;冬季降水少,蒸散量较高,土壤含水率下降,地下水埋深较深。地下水埋深和水补充量是0~40 cm土层土壤盐分的主要影响因子;地下水埋深和蒸散量是60~80 cm土层土壤盐分的主要影响因子。地下水盐分是土壤盐分累积的主要来源,降水脱盐作用仅对0~40 cm表土作用显著,蒸发积盐作用则在整个土壤剖面上具有影响。该研究为消减苏北滩涂区土壤盐渍化灾害提供了科学依据,对指导农业生产具有重要意义。  相似文献   

9.
干旱区内陆河流域中游低湿草地蒸散特征   总被引:2,自引:1,他引:2  
以气象观测资料为基础,采用波文比能量平衡法(BREB)对低湿草地的蒸散进行了估算。结果表明,在一个完整年度内,试验地蒸散量(ET)为611.5mm,日均1.67mm。在牧草不同生长季节,ET变化剧烈,非生长期、生长初期、生长中期、生长末期分别为0.57mm/d、2.01mm/d、3.82mm/d和1.49mm/d,蒸散量分别占全年蒸散总量的18.26%、9.20%、61.83%和10.71%。ET月变化显示,从3月开始草地蒸散量有所增大,6月牧草进入生长中期后蒸散量迅速增大,到7月蒸散量达到最大,9月牧草进入生长末期,蒸散急剧减小;随着牧草生长终结和土壤冻结,蒸散量逐步减小,在11月中旬到次年2月蒸散基本停止。蒸散的日内变化规律显示,草地蒸散开始于早晨7:00~8:00,13:00左右达到最大,19:00~20:00蒸散趋于0。晴天蒸散强度远大于阴天。  相似文献   

10.
基于MODIS产品和SEBAL模型的三江平原日蒸散量估算   总被引:4,自引:0,他引:4  
在SEBAL模型的基础上,集成MODIS产品和气象数据进行了三江平原的日蒸散量估算,然后以2005年6月22日的蒸散量估算结果为例,在ArcGIS空间分析模块的支持下对不同土地覆盖类型的日蒸散量进行统计分析。结果表明:遥感估算的蒸散量与利用涡度相关系统实测的蒸散量的相对误差较小且相关性较好,平均相对误差为11.2%;不同土地利用类型的日蒸散量间差别显著。水体和林地的蒸散量较大,平均蒸散量分别为8.2mm和6.5mm;湿地和水田次之,平均分别为5.2mm和4.8mm;旱田的蒸散量最低,平均仅为3.7mm,基本符合蒸散规律。  相似文献   

11.
联合国粮农组织推荐的蒸散计算方法中,蒸散系数是计算实际蒸散必不可少的参数。本文从蒸散系数的定义出发,在2005年额济纳绿洲生长季连续观测的基础上,运用波文比能量平衡法计算额济纳绿洲草地的实际蒸散量,利用FAO 56Penman-Monteith模型计算草地的参考蒸散,将实际蒸散与参考蒸散相除即得到额济纳绿洲草地的蒸散系数。通过研究发现:生长季草地的蒸散量(ETc)为446.96mm,从生长季初期开始,草地的蒸散量开始增加,在6月后半月达到最大值6.724mm/d,此后蒸散量开始快速下降,在生长季末期达到最低值1.215mm/d;蒸散系数(Kc)呈现出与蒸散量(ETc)相同的变化趋势,自生长季初期开始蒸散系数快速上升,在6月后半月达到生长季最大值0.623,之后随着草地生长减缓,蒸散系数快速下降,直至生长季末期草地停止生长。对额济纳绿洲草地蒸散系数的计算可以为该地区准确估算草地生态需水量提供依据。  相似文献   

12.
冬小麦拔节抽穗期作物系数的研究   总被引:4,自引:1,他引:4  
在2000~2004年4个冬小麦生长季节研究了冬小麦拔节抽穗期农田蒸散量和参考作物腾发量(FAO56 PM方法计算)的关系,以及作物系数和叶面积指数及作物株高的关系。研究发现在冬小麦拔节抽穗前期,参考作物腾发量要大于或者接近于农田蒸散量,而在后期则要明显小于农田蒸散量。作物系数随着叶面积指数的增加和株高的增加而增加。用2003和2004年的数据回归建立了叶面积指数和株高与作物系数的数学表达式,并计算了2001和2002年的农田蒸散量。结果显示用叶面积和株高两种方法都能够很好的估算农田蒸散量。但是当农田蒸散量小于3 mm/d时,计算值要小于观测值。用叶面积指数和株高两种方法计算的农田蒸散量没有明显差别,说明用株高计算农田蒸散量是可行的。  相似文献   

13.
蒸发散量为-水资源涵养重要指标,据此,研究乃择定台湾西南部泥岩丘陵地上优势植被包括:番荔枝及莉竹,观测莉竹林冠层上进行全天日射量、净辐射量、气温、相对湿度及地中传导热量等微气象观测,藉以鲍温比与热收支法估测3种不同地表植被之蒸发散量,另配合蒸发散量实测值进行验证,可获知番荔枝及莉竹蒸发散量分别为:0.1~1.6 mm及1.9~3.6 mm,且与A型蒸发皿蒸发量之关系分别为0.27倍及0.74倍.  相似文献   

14.
西部部分地区农田实际蒸散量分布特征   总被引:9,自引:0,他引:9  
利用我国西部五省16个农业气象站9年的土壤湿度资料,采用土壤水分平衡法估算了农田实际蒸散量,结合干燥度的计算,分析了时间和空间上的分布特点。结果表明:各地农田实际蒸散量与降水量的变化基本一致:从东南向西北随着干燥度的上升(降水量的减少),农田实际蒸散量逐步增加,其超过降水量的部分逐步增大,说明西部地区农田实际蒸散量的大小与灌溉及降水量密切相关。  相似文献   

15.
The objective of this study was to quantify the main terms of the water cycle in a Scots pine stand (Pinus sylvestris L.) growing on a sandy soil and to estimate the contribution of the shallow water table (0.80 m deep in spring) to the forest water use. Continuous monitoring was organized in 2005 to measure climate, throughfall, soil moisture, tree transpiration and water table variations at a half-hourly basis. Leaf area index seasonal dynamic was measured and roots were counted down to the bottom of the soil profile. Forest floor evapotranspiration was modelled with Granier et al. [Granier, A., Bréda, N., Biron, P., Villette, S., 1999. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 116, 269–283]. From May to November, pine transpiration never exceeded 1.85 mm d−1 and reached a total of 176.4 mm, which corresponded to 25% of potential evapotranspiration, whereas the understorey evapotranspiration was 130 mm (i.e. 18–20% of the stand water use). The maximum soil water reserve measured over the soil rooted zone was 250 mm, in which 145 mm was extractable water. A 3.5-week period with no rain was observed in June, which induced a regulation of pine transpiration when the soil extractable water reached 0.25 of its maximum value.We applied the water table fluctuation (WTF) method [White, W., 1932. A method for estimating groundwater supplies based on discharge by plants and evaporation from soil. US Geol. Survey Water Supply Paper 659-A. United States Government Printing Office, Washington, DC] to estimate the water table daily loss of water. A relationship was established with potential evapotranspiration and the actual transpiration fluxes of the stand. Yet, it was not possible to extract from the WTF results the part that was effectively contributing to actual transpiration. We applied then the WTF methodology on longer time intervals, with a focus on periods with no rains. From May to November, the contribution of the water table to forest transpiration reached 61%. During the drought period in June, the water table contributed to 98.5% of the water uptake by vegetation, through its contribution to the capillary rise above the water table. The presence of a groundwater table with a floor down to 180–200 cm allowed this stand to rely upon water that otherwise would have drained deeper.  相似文献   

16.
Daily matrix flow at 1-m depth in a volcanic ash soil was calculated during a period of one year using Darcy's law. Unsaturated hydraulic conductivity of undisturbed core samples could be expressed as a unique function of the soil water content. Hydraulic gradient obtained from soil water suction by a tensiometer installed at 90- and 110-cm depths, and hydraulic conductivity converted from the soil water content by time domain reflectometry (TDR) were monitored every 30 min throughout a year in a maize (Zea mays L.) Chinese cabbage (Brassica pekinensis Rupr.) field. The matrix flow obtained by this method was substituted for the water balance equation to estimate the bypass flow, and monthly and annual evapotranspiration. Annual rainfall in 1997 was 989 mm and evapotranspiration was estimated to be 730 mm. Net matrix flow at 1-m depth was 164 mm downward even though upward matrix flow occurred during half of the year. Downward flow determined by the water balance method exceeded the downward matrix flow during two heavy rain events in the year and the difference between the two flows was 63 mm, which was considered to correspond to a bypass flow. The bypass flow accounted for only 6.4% of the annual rainfall. Matrix flow was well monitored by the application of unsaturated Darcy's law in a field, and monthly evapotranspiration and bypass flow could be quantified by the introduction of the water balance equation.  相似文献   

17.
为了扩大气象卫星FY-3在科研、业务中的应用范围,将数据尽快用于遥感反演蒸散量业务工作中,根据FY-3/VIRR卫星通道特点,以山东为研究区域,基于地表能量平衡方程,结合地面气象要素,提出了利用FY-3卫星遥感数据进行区域蒸散反演的方法,建立了省级的区域逐日蒸散量估算系统。以2013年5月11日、8月20日、10月16日估算的日蒸散量为例,分析表明:基于FY-3/VIRR卫星反演的日蒸散量与利用Pen-man公式方法得到的数据对比,偏差分别为-0.19、-0.12和0.16 mm/d,相对偏差分别为10%、12%和11%;反演结果可准确揭示区域内不同地表覆盖类型的蒸散量的空间特点和差异性,结果较为合理;与同区域、同时段的EOS/MODIS蒸散产品进行对比分析表明:2种日蒸散产品的空间分布特征总体非常相似,相关系数在0.99以上,均方根差在0.36 mm以下,说明2种产品的一致性较好。利用中国新型自主研发的FY-3卫星资料估算蒸散量是可行的。  相似文献   

18.
双作物系数模型SIMDual_Kc的验证及应用   总被引:2,自引:5,他引:2  
为了将棵间蒸发与叶面蒸腾有效地分开,该文利用3 a冬小麦的田间实测数据(土壤含水率和实际腾发量),率定和验证双作物系数模型SIMDual_Kc 在华北地区的适用性,并计算各生育阶段以及整个生育期冬小麦棵间蒸发量占作物腾发量比例。结果表明,模型模拟土壤含水率及实际腾发量的效果均比较好,拟合度较高。模型所模拟的棵间蒸发变化过程趋势明显,与作物生长阶段密切相关,整个生育期棵间蒸发量占作物腾发量比例在17%~22%左右变化,此模型在华北地区具有一定的适用性。  相似文献   

19.
基于南京2012年水稻生长季蒸渗仪水稻实际蒸散数据及相应生物、气象环境资料,对水稻生长季的参考作物蒸散量、实际蒸散量及作物系数进行分析,并建立作物系数估计模型。结果表明:水稻生长季内逐日参考作物蒸散量呈单峰曲线变化,峰值出现在分蘖-拔节期;逐日实际蒸散量变化则表现为双峰型,耗水双高峰发生于分蘖-抽穗期。日参考作物蒸散量和实际蒸散量均有明显的季节性变化特征。水稻生长季内实际作物系数趋势变化特征与FAO修正作物系数较一致,但二者在数值上具有较大差异,建立的水稻作物系数与其影响因子(叶面积指数、气温、净辐射)的关系模型检验表明,其拟合度为0.887,将模型应用于计算水稻农田蒸散量,其拟合度为0.943,说明模型能较精确地估算稻田日蒸散量。该模型基于日尺度影响因子,在一定程度上简化了水稻作物系数的计算过程,明确了不同类型因子对水稻作物系数的影响程度,可应用于水稻作物系数的连续动态估算。  相似文献   

20.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号