首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为充分利用苏南冬闲稻田发展适宜绿肥作物种植,在大田试验条件下,研究了毛叶苕子(Vicia villosa Roth)、 光叶苕子(Vicia villosa var.)、 紫云英(Astragalus sinicus L.)和肥田萝卜(Raphanus sativus L.)4种绿肥作物的生长、 营养特性,比较分析了绿肥作物翻压前不同处理间耕层土壤无机氮含量与构成的差异。结果表明,在绿肥作物翻压期,4种绿肥作物均达到较高生物量和养分累积量,鲜重、 干重分别为24.8 30.7 t/hm2和3.6 4.2 t/hm2,不同绿肥作物间无显著差异。 4种绿肥作物的吸氮量为69.8 136.4 kg/hm2,毛叶苕子最高,肥田萝卜最低。吸磷量为7.1~11.3 kg/hm2,肥田萝卜最高,紫云英最低。吸钾量为117.6~151.3 kg/hm2,毛叶苕子最高,光叶苕子最低。与对照冬闲相比,种植绿肥作物不同程度地降低了耕层土壤无机氮含量(平均降低38.9 kg/hm2),其中硝态氮含量下降明显,铵态氮含量均较对照土壤有增加趋势(平均提高6.5 kg/hm2),毛叶苕子和光叶苕子处理铵态氮含量增加显著。4种绿肥作物均适合苏南冬闲稻田种植,能潜在降低无机氮的损失风险和为后季水稻作物生长提供养分。  相似文献   

2.
Background: Cover cropping appears as a useful land management practice with numerous benefits for ecosystem functions. Aim: The objectives of this study were to determine the effects of different winter cover crops on soil microbial biomass, activity, and community composition in intensively managed agriculture systems as function of cover crop diversity. Methods: For this purpose, an on‐farm experiment was conducted at a podzolized Stagnosol‐Cambisol during seven months growing oil radish as single cover crop and five different cover crop mixtures comprising 5 to 13 plant species. A fallow treatment was used as control. Phospholipid fatty acids were used to determine the soil microbial biomass and soil microbial community composition. Basal respiration of the soil microorganisms was measured as a proxy for microbial activity. Results: The results show that none of the cover crop mixture could increase soil organic carbon or total nitrogen content. Three cover crop mixtures and oil radish as single cover crop significantly increased soil microbial biomass by about 50% and all of the investigated cover crops significantly increased microbial respiration and metabolic quotient by 50–150%. Only highly diverse cover crop mixtures significantly increased individual microbial groups such as Gram‐positive and Gram‐negative bacteria, actinobacteria, and saprotropic and mycorrhizal fungi by about 20% compared to the control. However, the ratio of fungi to bacteria was not influenced by any of the cover crop mixtures under study. Conclusion: These findings corroborate that aboveground plant diversity is linked to belowground microbial diversity.  相似文献   

3.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

4.
In organic farming systems, it has been demonstrated that grain pulses such as peas often do not enhance soil N supply to the following crops. This may be due to large N removals via harvested grains as well as N‐leaching losses during winter. In two field‐trial series, the effects of legume (common vetch, hairy vetch, peas) and nonlegume (oil radish) cover crops (CC), and mixtures of both, sown after peas, on soil nitrate content, N uptake, and yield of following potatoes or winter wheat were studied. The overall objective of these experiments was to obtain detailed information on how to influence N availability after main‐crop peas by adapting cover‐cropping strategies. Cover crops accumulated 56 to 108 kg N ha–1 in aboveground biomass, and legume CC fixed 30–70 kg N ha–1 by N2 fixation, depending on the soil N supply and the length of the growing period of the CC. Nitrogen concentration in the aboveground biomass of legume CC was much higher and the C : N ratio much lower than in the nonlegume oil radish CC. At the time of CC incorporation (wheat series) as well as at the end of the growing season (potato series), soil nitrate content did not differ between the nonlegume CC species and mixtures, whereas pure stands of legume CC showed slightly increased soil nitrate content. When the CC were incorporated in autumn (beginning of October) nitrate leaching increased, especially from leguminous CC. However, most of the N leached only into soil layers down to 1.50 m and was recovered more or less by the following winter wheat. When CC were incorporated in late winter (February) no increase in nitrate leaching was observed. In spring, N availability for winter wheat or potatoes was much greater after legumes and, after mixtures containing legumes, resulting in significantly higher N uptake and yields in both crops. In conclusion, autumn‐incorporated CC mixtures of legumes and nonlegumes accomplished both: reduced nitrate leaching and larger N availability to the succeeding crop. When the CC were incorporated in winter and a spring‐sown main crop followed even pure stands of legume CC were able to achieve both goals.  相似文献   

5.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

6.
Cover crops (CC) can promote nutrient retention and recycling for main crops yet may also promote soilborne pathogens or suppress beneficial root symbionts such as arbuscular mycorrhizal fungi (AMF). We investigated how root fungal communities of main crop are affected by preceding CC monocultures and mixtures and by main crop identity. We expected that AMF abundance and diversity in main crops are promoted by AM-host CC, and suppressed by non-AM-host CC, and that mixtures of CC species can promote beneficial and suppress pathogenic root fungi. Our full-factorial field experiment comprised crop rotation in sand soil with different CC treatments (monocultures of radish [AM non-host], ryegrass, clover, vetch [AM hosts], mixtures of radish + vetch, ryegrass + clover and fallow) and two main crops (oat and endive). At peak crop growth, we investigated the root fungal communities in the main crops using microscopy and high throughput sequencing (Illumina MiSeq). Cover crop identity was of prime importance and CC legacy overruled main crop identity in determining root fungal communities in main crops. Compared with fallow, CC with ryegrass increased AMF colonization and richness in both main crops and of non-AMF in oat. Legacies of ryegrass, ryegrass + clover and vetch resulted in distinct root fungal communities in the main crops, while the legacy of CC with radish were similar to the legacy of fallow. Root fungal community in crops after clover had highest abundance of representative fungal pathogens in contrast with the other CC treatments that resulted in fungal communities where pathogens were scarce. Oppositely to expected, CC mixtures did not enhance fungal symbionts or suppressed pathogens. Overall, fungal communities in roots of the main crops in our field experiment were determined by the preceding CC species in monoculture, rather than by the CC AMF preference or functional group. This research highlights that the choice of CC determines the root fungal community in main crop which may influence crop quality.  相似文献   

7.
In Northern Europe, cover crops are traditionally established before spring crops by undersowing, but some cover crops might also have an effect if preharvest sown before spring crops and even winter crops. The effects of cover crop sowing date, sowing technique and succeeding main crop on biomass production, N uptake, nitrate leaching and soil inorganic N were tested in lysimeters and in the field. Cruciferous cover crops (oil radish, white mustard) were sown preharvest by broadcasting into winter wheat in July and were allowed to grow until a following winter wheat was established in September. Other preharvest cover crops were left in place until late autumn. For comparison, the same cruciferous cover crops were established postharvest after light harrowing. Perennial ryegrass undersown in spring barley was also included. Aboveground N uptake in preharvest cover crops amounted to a maximum of 24 kg N/ha in September before sowing winter wheat. When left until late autumn, preharvest oil radish took up a maximum of 66 kg N/ha, and ryegrass and postharvest cover crops 35 kg N/ha. Preharvest establishment of cruciferous cover crops before a spring‐sown crop thus seems promising. The soil was depleted of inorganic N to the same extent in late autumn irrespective of cover crop type, sowing time and technique within winter wheat or spring barley. However, the reduction in nitrate leaching of preharvest cover crops incorporated after 2 months and followed by winter wheat was only half of that achieved by cover crops left until late autumn or spring.  相似文献   

8.
 This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study, the cover crops were seeded each year in late September or early October after the corn harvest and incorporated into the soil in late April or early May. Corn was seeded 10 days to 2 weeks after the cover crop residues had been incorporated, and N fertilizer was applied as a side-dressing at rates of 0, 67, 134, or 201 kg N ha–1 each year. While the average annual total N input from the above-ground biomass of the cover crops was highest for hairy vetch (72.4 kg N ha–1), the average annual total C input was highest for cereal rye (1043 kg C ha–1) compared with the other cover crops. Hairy vetch was the only cover crop that significantly increased pre-side-dressed NO3 -N (Ni) corn biomass and N uptake at 0 N. At an N fertilizer rate of 134 kg N ha–1 or higher, the cover crops had a minimal effect on corn biomass. This indicated that even after 9 years of winter cover cropping, the effect of the cover crops on corn growth resulted primarily from their influence on soil N availability. The amount of available N estimated from the cover crops (Nac) was significantly correlated with relative corn biomass production (r 2=0.707, P<0.001). The total amount of available N, comprising Nac and N added from fertilizer (Nf), was strongly correlated (r 2=0.820, P<0.001)) with relative corn biomass production. The correlation was also high for the available N comprising Ni and Nf (r 2=0.775, P<0.001). Although cereal rye and annual ryegrass did not improve corn biomass production in the short term, they benefited soil organic N accumulation and gradually improved corn biomass production compared with the control over the long term. Received: 10 August 1999  相似文献   

9.
Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. The management and environmental factors controlling microbial biomass and community structure were identified in a three-year field experiment. The experiment consisted of a tomato production agroecosystem with the following nine treatments: bare soil, black polyethylene mulch, white polyethylene mulch, vetch cover crop, vetch roots only, vetch shoots only, rye cover crop, rye roots only, and rye shoots only. The following hypotheses were tested: (1) Temperature and moisture differences between polyethylene-covered and cover-cropped treatments are partly responsible for treatment effects on soil microbial community composition, and (2) Different species of cover crops have unique root and shoot effects on soil microbial community composition. Microbial biomass and community composition were measured by phospholipid fatty acid analysis. Microbial biomass was increased by all cover crop treatments, including root only and shoot only. Cover cropping increased the absolute amount of all microbial groups, but Gram-positive bacteria decreased in proportion under cover crops. We attribute this decrease to increased readily available carbon under cover-cropped treatments, which favored other groups over Gram-positive bacteria. Higher soil temperatures under certain treatments also increased the proportion of Gram-positive bacteria. Vetch shoots increased the amount and proportion of Gram-negative bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere of tomato plants. The imposed treatments were much more significant than soil temperature, moisture, pH, and texture in controlling microbial biomass and community structure.  相似文献   

10.
Plants have developed different mechanisms to absorb and solubilize phosphorus (P) in the soil, especially in environments with low P availability. This study evaluated the effects of different winter cover crops on soil P availability in a clayey subtropical (Hapludox) soil receiving soluble P fertilizer and a rock phosphate applied to the summer crop, under no‐tillage. The experiment was carried out over 3 yrs (2009–2011) with five different cover crop species: common vetch, fodder radish, ryegrass, black oat, white clover and fallow as control. The soil was sampled after the third year of cover crop cultivation and analysed for inorganic and organic P forms according to the well‐established Hedley fractionation procedure. Phosphate fertilizers promoted accumulation of both labile and nonlabile P pools in soil in the near surface layer, especially under rock phosphate. Fertilizer applications were not able to change P fractions in deeper layers, emphasizing that the Brazilian clayey soils are a sink of P from fertilizer and its mobility is almost nil. Although the cover crops recycled a great amount of P in tissue, in a short‐term evaluation (3 yrs) they only changed the content of moderately labile P in soil, indicating that long‐term studies are needed for more conclusive results.  相似文献   

11.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

12.
The uniformity, low cost and ease of application associated with inorganic fertilizers have diminished the use of organic nutrient sources. Concern for food safety, the environment and the need to dispose of animal and municipal wastes have focused attention on organic sources of N such as animal-derived amendments, green manures, and crop rotations. Managing organic N sources to provide sufficient N for crop growth requires knowledge of C and N decomposition over several years, particularly where manure and compost are applied. We report a comparison of compost and chemical fertilizer, use of a corn-corn-soybean-wheat rotation compared to continuous corn and the use of cover crops. Nitrogen (150 d) and C incubations (317 d) were conducted to determine the effect of cropping system and nutrient management on: N mineralization potential (NMP), the mineralizable organic N pool (No), the mean residence time (MRT) of No, C mineralization (Cmin), and soil organic carbon (SOC) pool sizes and fluxes. Compost applications over 6 y increased the resistant pool of C by 30% and the slow pool of C by 10%. The compost treatment contained 14% greater soil organic C than the fertilizer management. Nitrogen was limiting on all compost treatments with the exception of first year corn following wheat fallow and clover cover crop. The clover cover crop and wheat-fallow increased inorganic N in both nutrient managements. We recommend that growers adjust their N fertilizer recommendation to reflect the quantity and timing of N mineralized from organic N sources and the N immobilization that can be associated with compost or other residue applications. Proper management of nutrients from compost, cover crops and rotations can maintain soil fertility and increase C sequestration.  相似文献   

13.
《Applied soil ecology》2008,38(3):247-255
Soil microbial community structure and crop yield was investigated in field tomato production systems that compared black polyethylene mulch to hairy vetch mulch and inorganic N to organic N. The following hypotheses were tested: (1) hairy vetch cover cropping increases crop yield and significantly affects soil microbial community structure when compared to the standard plastic mulch and synthetic fertilizer-based system; (2) within plastic mulch systems, organic amendments will increase crop yield and significantly affect soil microbial community structure when compared to synthetic fertilizer; (3) crop yields and microbial community structure will be similar in the hairy vetch cover cropping and the organic amended plasticulture systems. Treatments consisted of ammonium nitrate (control), hairy vetch cover crop, hairy vetch cover crop and poultry manure compost (10 Mg/ha), three levels of poultry manure compost (5, 10, and 20 Mg/ha), and two levels of poultry manure (2.5 and 5 Mg/ha). Black polyethylene mulch was used in all treatments without hairy vetch. Fatty acid analysis was used to characterize the total soil microbial community structure, while two substrate utilization assays were used to investigate the community structure of culturable bacteria and fungi. Crop yield was not significantly increased by hairy vetch cover cropping when compared to black polyethylene mulch, although microbial community structure was significantly affected by cover cropping. Under black polyethylene mulch, crop yields were significantly increased by the highest levels of compost and manure when compared to inorganic fertilizer, but there was no detectable effect on soil microbial community structure. When cover cropping was compared to organic amended plasticulture systems, crop yields were similar one year but dissimilar the next. However, hairy vetch cover cropping and organic amendments under black plastic mulch produced significantly different soil microbial community structure.  相似文献   

14.
Cover crops improve soil quality properties and thus land productivity. We compared soil chemical and biological changes influenced by hairy vetch (Vicia villosa Roth.) and cereal rye (Secale cereal) cover crops grown in Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs), Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualfs), or sand in the greenhouse. Cover crop biomass, soil β-glucosidase, β-glucosaminidase, and fluorescein diacetate (FDA) hydrolase activities, and soil chemical properties were measured at six, nine, and twelve weeks after planting. Cover crop biomass increased with highest (p < 0.0001) yields for hairy vetch and cereal rye in Menfro and Mexico soils, respectively. β-glucosaminidase, FDA, organic carbon (C), total nitrogen (N), and total phosphorus (P) contents significantly decreased in all soils for both cover crops. However, β-glucosidase activity significantly increased (p < 0.0001). Long-term field studies are needed to evaluate soil quality improvement under cover crops, especially for soils with marginal organic matter and fertility.  相似文献   

15.
冬季作物对水稻生育期土壤微生物量碳、氮的影响   总被引:3,自引:1,他引:2  
选取我国南方4种冬季作物黑麦草、紫云英、油菜、马铃薯,以冬闲田作对照,对水稻生育期土壤微生物量碳(SMBC)和土壤微生物量氮(SMBN)的短期内动态变化进行了研究。结果表明,早稻田翻耕前,冬季作物处理土壤SMBC和SMBN与冬闲田存在显著差异(P0.05),黑麦草处理SMBC为398.5 mg/kg,显著高于其他作物;紫云英处理SMBN最高,为97.8 mg/kg。在早稻整个生育期,黑麦草处理SMBC显著高于其他处理,晚稻生长过程中各处理无显著差异。冬季作物对稻田土壤微生物商(MQ)的影响,随着水稻生长发育进程有不同程度的变化,黑麦草处理在早稻整个生育期高于冬闲田。  相似文献   

16.
Apparent net N mineralization (mineralization minus immobilization) in fertilized and unfertilized treatments was determined in 133 fertilizer trials with cereals and sugar beet over 3 years (1988-90). Apparent net mineralization was defined as follows: Apparent net N mineralization = (crop N at harvest - crop N in spring) - (Nmin in spring - Nmin at harvest) - N fertilizer applied. Results can be summarised as follows:
  • 1 For both crop species, apparent net N mineralization decreased in the following order: unfertilized > optimally fertilized > overfertilized.
  • 2 The decrease in apparent net mineralization of N with increasing rate of N fertilizer was attributed to immobilization. This was confirmed by measurements of increased remineralization during the following autumn, winter and during the growing season in the following year.
  • 3 Both the soil Nmin at harvest and fertilizer N which was immobilized and remineralized during autumn and winter, is at risk of being leached. At optimal fertilizer doses 30 kg N/ha and 74 kg N/ha were leached on average over winter from loamy and sandy soils respectively.
  • 4 Apparent net mineralization was not important for optimally fertilized cereals and therefore does not need to be considered for fertilizer recommendations for winter cereals. This does not apply to land receiving slurry applications before or during the growth period.
  • 5 In contrast to cereals, apparent net mineralization contributed considerably to the nutrition of sugar beet. Approximately 140 kg N/ha were mineralized at the optimum rate of N fertilizer application. However, the EUF- and CaCl2-methods were unable to predict N mineralization and were therefore unable to improve the prediction of fertilizer requirement even in combination with the NO3 soil N fraction.
  相似文献   

17.
Microbial community responses to alternative management may be indicative of soil quality change. In this study, soils were collected from research plots over 2 years and from commercial grower fields over 1 year. Treatments at the sites included 1-9 years of either winter cover cropping or winter fallow practices. Soils were assayed for microbial fatty acid methyl esters (FAMEs), direct count microscopy and Biolog substrate utilization potentials to assess management and environmental influences on soil communities. The strongest influence was season. Soils in early spring (prior to termination of the cover crop) utilized fewer carboxylic acids and generally were enriched in eukaryotic FAMEs, whereas proportionally more bacterial FAMEs were detected in soils at canopy closure and harvest of the summer vegetable crop. Within a season, community FAME and Biolog patterns were related to field properties. FAME profiles from grower fields in early spring and harvest were correlated significantly with soil texture, cation exchange capacity, and carbon content. Changes in community structure and Biolog potential occurred in some soils in response to winter cover crops, although effects were not observed until cover crop incorporation. Greater amounts of fungal and protozoan FAME markers were detected in some cover-cropped soils compared to winter fallow soils. Cover crop residues increased FAME diversity at one research station and Biolog diversity at two research stations and the grower fields. Although seasonal and field-dependent factors are major determinants of microbial community structure, shifts can occur as soil physical and chemical properties change in response to alternative practices, as demonstrated by this study.  相似文献   

18.
Effect of cover crop management on soil organic matter   总被引:1,自引:0,他引:1  
Characterization of soil organic matter (SOM) is important for determining the overall quality of soils, and cover crop system may change SOM characteristics. The purpose of this study was to examine the effect of cover crops on the chemical and structural composition of SOM. We isolated humic substances (HS) from soils with the following cover crop treatments: (a) vetch (Vicia Villosa Roth.)/rye (Sesale cereale L.), (b) rye alone, and (c) check (no cover crops) that were treated with various nitrogen (N) fertilizer rates. CPMAS-TOSS (cross-polarization magic-angle-spinning and total sideband suppression) 13C NMR results indicated that humic acids (HA) from soils under rye only were more aromatic and less aliphatic in character than the other two cover crop systems without fertilizer N treatment. Based on the DRIFT (diffuse reflectance Fourier transform infrared) spectra peak O/R ratios, the intensities of oxygen-containing functional groups to aliphatic and aromatic (referred to as recalcitrant) groups, the highest ratio was found in the HA from the vetch/rye system with fertilizer N. The lowest ratio occurred at the vetch/rye system without fertilizer N treatment. The O/R ratio of fulvic acids (FA) can be ranked as: vetch/rye without fertilizer>vetch/rye with fertilizer>no cover crop without fertilizer>rye alone (with or without fertilizer) soils. Both organic carbon (OC) and light fraction (LF) contents were higher in soils under cover crop treatments with and without fertilizer N than soils with no cover crop. These chemical and spectroscopic data show that cover crops had a profound influence on the SOM and LF characteristics.  相似文献   

19.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

20.
《土壤圈》2016,(2)
Cover crops can have beneficial effects on soil microbiology by increasing carbon(C) supply,but these beneficial effects can be modulated by precipitation conditions.The objective of this study was to compare a fallow-winter wheat {TYiticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains.Experiments were carried out at two sites,Sidney in Nebraska,and Akron in Colorado,USA,with three times of soil sampling in2012-2013 at cover crop termination,wheat planting,and wheat maturity.The experiments included four single-species cover crops,a 10-species mixture,and a fallow treatment.The variables measured were soil C and nitrogen(N),soil community structure by fatty acid methyl ester(FAME) profiles,and soil fi-glucosidase,P-glucosaminidase,and phosphodiesterase activities.The fallow treatment,devoid of living plants,reduced the concentrations of most FAMEs at cover crop termination.The total FAME concentration was correlated with cover crop biomass(R = 0.62 at Sidney and 0.44 at Akron).By the time of wheat planting,there was a beneficial effect of irrigation,which caused an increase in mycorrhizal and protozoan markers.At wheat maturity,the cover crop and irrigation effects on soil FAMEs had subsided,but irrigation had a positive effect on the fi-glucosidase and phosphodiesterase activities at Akron,which was the drier of the two sites.Cover crops and irrigation were slow to impact soil C concentration.Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity.In the semiarid environment,longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure,soil enzyme activities,and soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号