首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new indole-diterpenoids, named penerpenes K-N (1–4), along with twelve known ones (5–16), were isolated from the fermentation broth produced by adding L-tryptophan to the culture medium of the marine-derived fungus Penicillium sp. KFD28. The structures of the new compounds were elucidated extensively by 1D and 2D NMR, HRESIMS data spectroscopic analyses and ECD calculations. Compound 4 represents the second example of paxilline-type indole diterpene bearing a 1,3-dioxepane ring. Three compounds (4, 9, and 15) were cytotoxic to cancer cell lines, of which compound 9 was the most active and showed cytotoxic activity against the human liver cancer cell line BeL-7402 with an IC50 value of 5.3 μM. Moreover, six compounds (5, 7, 10, 12, 14, and 15) showed antibacterial activities against Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633.  相似文献   

2.
Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A–D (4–7), together, with seven known metabolites (3 and 8–13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4′ in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 μM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 μM, respectively.  相似文献   

3.
Three new alkaloids (1, 4 and 8), together with nine known analogues (2, 3, 5–7, and 9–12), were isolated from the marine-derived fungus Penicillium expansum Y32. Their structures including the absolute configurations were elucidated by spectroscopic and Mosher’s and Marfey’s methods, along with quantum electronic circular dichroism (ECD) calculations. Each of the compounds was evaluated for cardiovascular effects in a live zebrafish model. All of the compounds showed a significant mitigative effect on bradycardia caused by astemizole (ASM) in the heart rate experiments. Compounds 4–6 and 8–12 exhibited potent vasculogenetic activity in vasculogenesis experiments. This is the first study to report that these types of compounds show cardiovascular effects in zebrafish. The results suggest that these compounds could be promising candidates for cardiovascular disease lead compounds.  相似文献   

4.
Nine new secondary metabolites, including six isocoumarin analogues, 7-hydroxyoospolactone (1), 7-methoxyoospolactone (2), 7-methoxy-9-hydroxyoospolactone (3), 10-acetoxy-9-hydroxyoospolactone (4), 6-dehydroxysescandelin (5), parapholactone (6), and three compounds with a rare skeleton of isocoumarin coupled with phenylethylamine, namely paraphamide A (12), paraphamide B (13), and paraphamide C (14), together with five known compounds, oospolactone (7), 8-O-methyloospolactone (8), 10-hydroxyoospolactone (9), 9,10-dihydroxyoospolactone (10), and oospoglycol (11), were isolated and identified from the marine-derived fungus Paraphoma sp. CUGBMF180003. Their chemical structures were determined using spectroscopic data, including HRESIMS and 1D and 2D NMR techniques. Furthermore, the stereogenic carbons in 5 and 14 were determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectra. The carbon skeleton of 12–14 was identified as the first example of isocoumarin coupled with phenylethylamine derivatives. All of these compounds were examined for antimicrobial activities against Candida albicans and Staphylococcus aureus. Both 1 and 6 showed antibacterial activity against S. aureus with MIC values of 12.5 μg/mL.  相似文献   

5.
One new meroterpenoid-type alkaloid, oxalicine C (1), and two new erythritol derivatives, penicierythritols A (6) and B (7), together with four known meroterpenoids (2–5), were isolated from the marine algal-derived endophytic fungus Penicillium chrysogenum XNM-12. Their planar structures were determined by means of spectroscopic analyses, including UV, 1D and 2D NMR, and HRESIMS spectra. Their stereochemical configurations were established by comparing the experimental and calculated electronic circular dichroism (ECD) spectra for compound 1, as well as by comparison of the optical rotations with literature data for compounds 6 and 7. Notably, oxalicine C (1) represents the first example of an oxalicine alkaloid with a cleaved α-pyrone ring, whereas penicierythritols A (6) and B (7) are the first reported from the Penicillium species. The antimicrobial activities of compounds 1–7 were evaluated. Compounds 1 and 6 exhibited moderate antibacterial effects against the plant pathogen Ralstonia solanacearum with minimum inhibitory concentration (MIC) values of 8 and 4 μg/mL, respectively. Compound 6 also possesses moderate antifungal properties against the plant pathogen Alternaria alternata with a MIC value of 8 μg/mL.  相似文献   

6.
Seven new compounds, namely talaromanloid A (1), talaromydene (2), 10-hydroxy-8-demethyltalaromydine and 11-hydroxy-8-demethyltalaromydine (3 and 4), talaromylectone (5), and ditalaromylectones A and B (6 and 7), together with seven known compounds were identified from a marine-derived fungus, Talaromyces mangshanicus BTBU20211089, which was isolated from a sediment sample collected from the South China Sea. Their chemical structures were determined using spectroscopic data, including HRESIMS, 1D, and 2D NMR techniques. The absolute configurations of 1 and 2 were elucidated by comparing experimental and calculated ECD spectra. Compounds 1, 2, 6, and 7 are new compounds possessing a novel carbon skeleton. Compound 6 is a dimeric molecule of 3 and 9. Compound 7 shared a unique structure of the cyclized dimer of 3 and 4. All the compounds were tested for their bioactivities against Staphylococcus aureus, Escherichia coli, and Candida albicans.  相似文献   

7.
Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4–14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.  相似文献   

8.
Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.  相似文献   

9.
In the present study, four new compounds including a pair of 2-benzoyl tetrahydrofuran enantiomers, namely, (−)-1S-myrothecol (1a) and (+)-1R-myrothecol (1b), a methoxy-myrothecol racemate (2), and an azaphilone derivative, myrothin (3), were isolated along with four known compounds (4–7) from cultures of the deep-sea fungus Myrothecium sp. BZO-L062. Enantiomeric compounds 1a and 1b were separated through normal-phase chiral high-performance liquid chromatography. The absolute configurations of 1a, 1b, and 3 were assigned by ECD spectra. Among them, the new compound 1a and its enantiomer 1b exhibited anti-inflammatory activity, inhibited nitric oxide formation in lipopolysaccharide-treated RAW264.7 cells, and exhibited antioxidant activity in the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and oxygen radical absorbance capacity assays.  相似文献   

10.
Quinomycin G (1), a new analogue of echinomycin, together with a new cyclic dipeptide, cyclo-(l-Pro-4-OH-l-Leu) (2), as well as three known antibiotic compounds tirandamycin A (3), tirandamycin B (4) and staurosporine (5), were isolated from Streptomyces sp. LS298 obtained from a marine sponge Gelliodes carnosa. The planar and absolute configurations of compounds 1 and 2 were established by MS, NMR spectral data analysis and Marfey’s method. Furthermore, the differences in NMR data of keto-enol tautomers in tirandamycins were discussed for the first time. Antibacterial and anti-tumor activities of compound 1 were measured against 15 drug-sensitive/resistant strains and 12 tumor cell lines. Compound 1 exhibited moderate antibacterial activities against Staphylococcuse pidermidis, S. aureus, Enterococcus faecium, and E. faecalis with the minimum inhibitory concentration (MIC) values ranged from 16 to 64 μg/mL. Moreover, it displayed remarkable anti-tumor activities; the highest activity was observed against the Jurkat cell line (human T-cell leukemia) with an IC50 value of 0.414 μM.  相似文献   

11.
Deep-sea fungi have become a new arsenal for the discovery of leading compounds. Here five new ophiobolins 1–5, together with six known analogues 6–11, obtained from a deep-sea derived fungus WHU0154. Their structures were determined by analyses of IR, HR-ESI-MS, and NMR spectra, along with experimental and calculated electronic circular dichroism (ECD) analysis. Pharmacological studies showed that compounds 4 and 6 exhibited obvious inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine macrophage RAW264.7 cells. Mechanical study revealed that compound 6 could inhibit the inducible nitric oxide synthase (iNOS) level in LPS-stimulated RAW264.7 cells. In addition, compounds 6, 9, and 10 could significantly inhibit the expression of cyclooxygenase 2 (COX 2) in LPS-induced RAW264.7 cells. Preliminary structure-activity relationship (SAR) analyses revealed that the aldehyde group at C-21 and the α, β-unsaturated ketone functionality at A ring in ophiobolins were vital for their anti-inflammatory effects. Together, the results demonstrated that ophiobolins, especially for compound 6, exhibited strong anti-inflammatory effects and shed light on the discovery of ophiobolins as new anti-inflammatory agents.  相似文献   

12.
Marine fungi-derived natural products represent an excellent reservoir for the discovery of novel lead compounds with biological activities. Here, we report the identification of two new drimane sesquiterpenes (1 and 2) and six new polyketides (3–8), together with 10 known compounds (9–18), from a marine-derived fungus Penicillium sp. TW58-16. The planar structures of these compounds were elucidated by extensive 1D and 2D NMR, which was supported by HR-ESI-MS data. The absolute configurations of these compounds were determined by experimental and calculated electronic circular dichroism (ECD), and their optical rotations compared with those reported. Evaluation of the anti-inflammatory activity of compounds 1–18 revealed that compound 5 significantly inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) in RAW264.7 cells, correlating with the inhibition of expression of inducible nitric oxide synthase (iNOS). In addition, we revealed that compounds 1, 3–6, 14, 16, and 18 showed strong α-glucosidase inhibitory effects with inhibition rates of 35.4%, 73.2%, 55.6%, 74.4%, 32.0%, 36.9%, 88.0%, and 91.1%, respectively, which were comparable with or even better than that of the positive control, acarbose. Together, our results illustrate the potential of discovering new marine-based therapeutic agents against inflammation and diabetes mellitus.  相似文献   

13.
Two novel aspochalasins, 20-β-methylthio-aspochalsin Q (named as aspochalasin V), (1) and aspochalasin W (2), were isolated from culture broth of Aspergillus sp., which was found in the gut of a marine isopod Ligia oceanica. The structures were determined on the basis of NMR and mass spectral data analysis. This is the first report about methylthio-substituted aspochalasin derivatives. Cytotoxicity against the prostate cancer PC3 cell line and HCT116 cell line was assayed using the MTT method. Apochalasin V showed moderate activity at IC50 values of 30.4 and 39.2 μM, respectively.  相似文献   

14.
Three new glycosylated secondary metabolites, including a new indole alkaloid, pityriacitrin D (1), and two new trehalose lipids (2 and 3), together with three known compounds (4–6) were isolated from two marine-derived bacterial strains, Bacillus siamensis 168CLC-66.1 and Tsukamurella pseudospumae IV19-045. The structures of 1–3 were determined by extensive analysis and comparison of their spectroscopic data with literature values. The absolute configurations of sugar moieties were determined by chemical derivatization followed by LC-MS analysis. Cytotoxicity of 1–3 against six cancer cell lines was evaluated by SRB assay, and 1 showed moderate activity against all the tested cell lines with GI50 values ranging from 8.0 to 10.9 µM.  相似文献   

15.
Two new cytotoxic twelve-membered macrolides, sporiolides A (1) and B (2), were isolated from the cultured broth of a fungus Cladosporium sp., which was separated from an Okinawan marine brown alga Actinotrichia fragilis, and the structures were elucidated by spectroscopic data. Sporiolides A (1) and B (2) exhibited cytotoxicity against murine lymphoma L1210 cells. Spoliolide A (1) showed antifungal activity against Cryptococcus neoformans and Neurospora crassa.  相似文献   

16.
为了研究红树林来源真菌Xylaria sp. HNWSW-2的次生代谢产物及其生物活性,综合利用多种色谱技术对该菌株发酵产物进行分离纯化,结合波谱学与理化常数分析进行化合物结构鉴定,分别采用液体浸泡法和Ellman比色法对化合物的全齿复活线虫致死活性和乙酰胆碱酯酶抑制活性进行测试。从Xylaria sp. HNWSW-2发酵产物乙酸乙酯萃取物中分离鉴定了7个异香豆素类化合物,分别为 (S)-(+)-8-O-methylmellein (1),(3S,4S)-(+)-4-hydroxy-8-O- methylmellein (2),(3S,4R)-(+)-4-hydroxy-8-O-methylmellein (3),(3S,4S)-(+)-4-hydroxymellein (4),(3S,4R)-(+)-4- hydroxymellein (5),(3R,4R)-(-)-4-hydroxy-5-methylmellein (6)和(3R,4S)-(+)-4-hydroxy-5-methylmellein (7)。其中,化合物1具有较强全齿复活线虫致死活性,化合物1~3、6和7具有一定的乙酰胆碱酯酶抑制活性。本研究首次发现化合物(S)-(+)-8-O-methylmellein具有较强的抗线虫活性,为相关杀线虫药物的研发提供理论依据。  相似文献   

17.
Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.  相似文献   

18.
Three new tripeptide derivatives asterripeptides A–C (1–3) were isolated from Vietnamese mangrove-derived fungus Aspergillus terreus LM.5.2. Structures of isolated compounds were determined by a combination of NMR and ESIMS techniques. The absolute configurations of all stereocenters were determined using the Murfey’s method. The isolated compounds 1–3 contain a rare fungi cinnamic acid residue. The cytotoxicity of isolated compounds against several cancer cell lines and inhibition ability of sortase A from Staphylococcus aureus of asterripeptides A–C were investigated.  相似文献   

19.
The marine-derived fungus Stilbella fimetaria is a chemically talented fungus producing several classes of bioactive metabolites, including meroterpenoids of the ascochlorin family. The targeted dereplication of fungal extracts by UHPLC-DAD-QTOF-MS revealed the presence of several new along with multiple known ascochlorin analogues (19–22). Their structures and relative configuration were characterized by 1D and 2D NMR. Further targeted dereplication based on a novel 1,4-benzoquinone sesquiterpene derivative, fimetarin A (22), resulted in the identification of three additional fimetarin analogues, fimetarins B–D (23–25), with their tentative structures proposed from detailed MS/HRMS analysis. In total, four new and eight known ascochlorin/fimetarin analogues were tested for their antimicrobial activity, identifying the analogues with a 5-chloroorcylaldehyde moiety to be more active than the benzoquinone analogue. Additionally, the presence of two conjugated double bonds at C-2′/C-3′ and C-4′/C-5′ were found to be essential for the observed antifungal activity, whereas the single, untailored bonds at C-4′/C-5′ and C-8′/C-9′ were suggested to be necessary for the observed antibacterial activity.  相似文献   

20.
Six new fusarin derivatives, fusarins G–L (1–6), together with five known compounds (5–11) were isolated from the marine-derived fungus Fusarium solani 7227. The structures of the new compounds were elucidated by means of comprehensive spectroscopic methods (1D and 2D NMR, HRESIMS, ECD, and ORC) and X-ray crystallography. Compounds 5–11 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide, with IC50 values ranging from 3.6 to 32.2 μM. The structure–activity relationships of the fusarins are discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号