首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
作物叶片含氮量是作物长势监测、产量及品质估测的重要依据,实时、无损地监测植株体内氮素营养状况有助于棉花氮肥的正确施用。本研究比较2种近地可见光传感器的光谱和颜色信息用于监测棉花氮素营养的能力, 确定MSI200成像光谱仪和数码相机监测棉花冠层叶片氮含量最佳的波段、光谱指数和颜色参数并建立估测模型。结果表明,在可见光波段,冠层反射率随着冠层叶片氮素含量的增加而降低,且叶片含氮量的光谱敏感波段主要位于绿光和红光区域;与棉花冠层叶片含氮量的拟合效果最好的2种传感器的光谱指数为差值指数DI(R580, R680)和G–R,而颜色参数则分别为b*和H,同一传感器以光谱指数的拟合效果优于颜色参数,不同传感器以MSI200数据的拟合效果优于数码相机;利用独立试验资料检验所建模型的估测性能表明,差值指数对棉花冠层叶片氮素的预测能力优于比值指数和归一化差值指数,DI(R580, R680)和G–R所建模型的估测精度最高,分别为0.8131和0.7636。因此,利用数码相机和MSI200型成像光谱仪可以定量估测棉花冠层叶片氮素营养状况。  相似文献   

2.
基于光谱参数的棉花叶面积指数监测和敏感性分析   总被引:1,自引:1,他引:0  
研究棉花冠层光谱参数对不同叶面积指数的响应,建立棉花叶面积指数光谱参数最佳估测模型,并对所选光谱参数进行敏感性分析.利用高光谱仪测定不同时期不同叶面积指数条件下的棉花冠层光谱反射率.结果表明,694 nm和1099nm分别为可见光和近红外波段区域内与叶面积指数相关性最好的波段,并用于改进前人所建立的光谱参数;宽范围动态...  相似文献   

3.
棉花叶绿素密度和叶片氮积累量的高光谱监测研究   总被引:4,自引:0,他引:4  
利用非成像高光谱仪,获取棉花不同品种、不同密度冠层关键生育时期的反射光谱数据,应用光谱多元统计分析技术,研究表明,棉花冠层叶绿素密度(CH.D)和叶片氮积累量(LNA)分别在反射光谱762 nm和763 nm处的相关系数达最大值(RCH.D= 0.8845**和RLNA= 0.7870**,n = 47);而一阶微分光谱数据对CH.D、LNA最敏感的波段均发生在750 nm处(RCH.D= 0.9098**和RLNA = 0.9164**,n = 47);采用47个建模样本的一阶微分光谱750 nm处的数值与棉花冠层CH.D建立线性相关模型方程,估算47个检验样本的棉花冠层CH.D,再根据CH.D与LNA建立的线性相关方程估算检验样本的LNA,47个检验样本的实测LNA与估测LNA极显著线性相关(R = 0.8982**,n = 94),模型方程的估算精度达86.3%,实测值与估算值的RMSE = 1.0155,相对误差为0.1380。说明基于高光谱数据的棉花冠层叶绿素密度的遥感估测,可以间接用于棉花冠层叶片氮积累量的监测研究。  相似文献   

4.
 通过光量子传感器,获取了2个棉花品种不同种植密度冠层6个关键生育时期的光合有效辐射(PAR),分析了吸收光合有效辐射(APAR)和光合有效辐射截获量(FAPAR)与棉花冠层生长特征的关系。结果表明;棉花开花期和花铃期,为APAR与FAPAR高值期,盛铃期和盛铃末期下降,吐絮期为低值期;利用多元统计分析技术,分别建立了棉花APAR、FAPAR与棉花冠层叶面积指数、覆盖度、地上鲜生物量和地上净初级生产力的相关关系模型。采用APAR与覆盖度,FAPAR与叶面积指数相关性最高的模型方程,分别估算棉花覆盖度和叶面积指数,实测值与估测值之间呈极显著的线性相关关系,估算精度分别为99.1%和99.5%。  相似文献   

5.
叶绿素含量是田间诊断氮素营养供应状况指标之一,与氮代谢密切相关。【目的】为探讨播期和密度对迟直播棉花主茎不同叶位氮代谢与产量的影响。【方法】采用裂区试验设计,以播期(月-日)(S1,05-30;S2,06-14)为主区,密度(株·m-2)为副区(D1,7.5;D2,9.0;D3,10.5),在大田试验条件下研究了不同生育时期棉花主茎不同叶位叶绿素含量的动态变化。【结果】1)棉花叶绿素a、b、(a+b)含量盛花期初花期现蕾期,且随叶位由上而下先升高(倒3~5叶最高)后降低,随密度增加而降低,播期间(现蕾期、初花期、盛花期)S2显著高于S1(现蕾期叶绿素b无显著差异),播期、密度均不改变这些指标在叶位间的变化趋势,播期与密度交互作用存在差异(应作相应的统计分析);2)棉花叶绿素a/b现蕾期初花期(盛花期),不同叶位间现蕾期随叶位由上而下先升高(倒3~4叶最高)后降低,但初花期和盛花期变化平缓,播期、密度不影响叶位间的变化趋势;3)通过逐步回归分析法,得到单叶叶绿素含量(叶绿素(a+b)、叶绿素a、叶绿素b、叶绿素a/b)能够显著代表整株平均水平的叶位,即为棉花叶绿素含量典型叶,现蕾期为倒5叶,初花期为倒4叶,而盛花期随叶绿素指标不同而异。【结论】S1D2产量最高,叶绿素含量、a/b值比较合理。  相似文献   

6.
利用ASD地物光谱仪,获取北疆棉花冠层关键生育时期的高光谱数据,应用一阶微分光谱,衍生出基于光谱位置变量的分析方法,以红边积分面积(SDr)为自变量,冠层全氮(TN)含量为因变量,做相关分析,结果表明:红边积分面积变量与冠层TN含量呈显著的相关性,相关系数是0.7394(n=40),利用构建的相关模型可以较为精确地估测棉花两个品种新陆早6号与8号冠层叶片的全氮含量,均方差(RMSE)分别为0.3859和0.4272。研究认为面积变量具有预测棉花冠层全氮含量的应用潜力。  相似文献   

7.
基于棉花冠层光谱的土壤氮素监测研究   总被引:5,自引:1,他引:4  
通过连续2年小区氮肥试验,在棉花不同生育期采集冠层高光谱数据并同步测定土壤氮含量,分析棉花冠层高光谱参数与土壤氮含量间的关系,建立基于植株冠层光谱的土壤氮含量估算模型。结果表明:土壤全氮含量随着施氮水平的增加而增加,且差异显著;基于棉花不同时期冠层光谱构建的14种光谱参量与土壤氮含量间的相关性有显著差异。其中,利用冠层光谱参数P_Area1100、Depth980、Area672、PPR(550,540)建立的土壤氮含量监测模型分别在蕾期、花期、铃期、吐絮期4个关键生育期对土壤氮含量的预测均达到了较高的精度,能够很好地反映棉花土壤氮素营养状况。利用植株冠层光谱参数可以很好地监测土壤氮素营养,说明利用植株冠层光谱方法监测土壤氮含量是可行的。  相似文献   

8.
【目的】通过研究滴灌棉田地上部植株的氮营养指数,探究建立基于氮营养指数的高光谱指数模型的可行性,为高光谱遥感在农田氮营养快速、准确诊断中的应用提供理论依据。【方法】2年试验,以新疆主栽的5个棉花品种为研究对象,在不同施肥处理条件下,探究氮营养指数和17种光谱指数之间的相关性,建立氮素营养诊断模型并进行验证。【结果】不同品种棉花滴灌条件下氮营养指数之间差异显著,杂交棉能更快地接近氮素营养水平的最佳状态;基于高光谱的氮营养指数多元回归模型中R~2最高的为鲁棉研24,达到0.8的高水平;经2年数据验证,鲁棉研24号建立的模型精度最高,R~2=0.868,均方根误差为0.059。【结论】建立基于氮营养指数的高光谱监测模型能够很好地监测植株氮素养分状况,大田模型精度R~2能达到0.5以上,本试验结果能够为今后农业养分诊断提供理论依据。  相似文献   

9.
单作套作大豆叶片氮素积累与光谱特征   总被引:1,自引:0,他引:1  
谌俊旭  黄山  范元芳  王锐  刘沁林  杨文钰  杨峰 《作物学报》2017,43(12):1835-1844
种植模式和氮肥水平直接影响作物的生长和氮素的吸收,无损、即时监测大豆叶片氮素水平对大豆生产中的氮肥精确管理十分重要。本研究设置4个氮肥水平,分析单作套作下大豆在不同生育时期叶片氮素动态和光谱特征,明确对叶片氮素敏感的光谱特征参数,构建单作套作大豆通用的叶片氮素积累量估测模型。结果表明,随大豆生育时期的推进,单作套作种植模式下的大豆冠层叶片氮素积累量均呈现单峰变化趋势,最大值出现在N3处理下的结荚期,两种模式两年最大值平均分别为8.70 g m~(–2)和8.38 g m~(–2);不同生育时期和种植模式的大豆冠层原始反射光谱的变化规律与冠层叶片氮素变化规律均为先增加后降低,原始反射光谱在700~1000 nm波段的反射率以结荚期为拐点先增大后减小,最大反射率达到60%~70%左右;通过对单作套作大豆冠层光谱一阶导数变换,红边幅值呈现先增加后降低的趋势,同时红边位置随叶片氮积累量的增加和减小出现"红移"与"蓝移"现象。经波段自由组合和回归分析表明,以DSI(771、755)构建的线性(y=–1.249+3.209x,R~2=0.847)和乘幂(y=–1.470x~(1.676),R~2=0.872)模型能较精确地估测不同生育时期大豆冠层叶片氮素状况。  相似文献   

10.
棉花高光谱及其红边特征(I)   总被引:3,自引:0,他引:3  
通过大田和室内试验,测定了2个品种的棉花冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量。结果表明:随发育期推移,棉花冠层光谱反射率在可见光范围降低,在近红外区域增高;叶片背面光谱反射率略高于正面,透射率小于反射率;叶面积指数、鲜叶重和干叶重与冠层反射光谱变量ρ800 ρ550、ρ800 ρ680、ρ680 ρ570之间存在显著相关;叶片叶绿素和类胡萝卜素浓度与其反射光谱变量ρ680 ρ570、ρ673 ρ640、ρ680 ρ550、PSSRa、PSNDa、RCh之间也呈显著相关。  相似文献   

11.
基于高光谱数据提取棉花冠层特征信息的研究   总被引:5,自引:4,他引:1  
 采用ASD Field Spec Pro VNIR 2500型高光谱仪获取了不同生育时期棉花冠层的高光谱遥感数据,通过光谱分析技术研究了棉花冠层结构与其光谱数据之间的关系。结果表明,不同品种、不同密度、不同配置方式及不同生长状况间棉花的冠层光谱存在着较明显的差异,棉花冠层光谱反射率与其叶绿素含量、叶面积和生物量及生长发育阶段、健康状况和物候现象等因素密切相关。可见,运用高光谱遥感技术快速、有效、非接触、非破坏性地获取棉花冠层信息,对解释、预测和设计理想棉花群体意义重大,同时为新疆精准种植棉花和科学调控水肥提供了科学依据。  相似文献   

12.
棉花高光谱及其红边特征(Ⅰ)   总被引:6,自引:5,他引:6  
通过大田和室内试验,测定了2个品种的棉花冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量.结果表明随发育期推移,棉花冠层光谱反射率在可见光范围降低,在近红外区域增高;叶片背面光谱反射率略高于正面,透射率小于反射率;叶面积指数、鲜叶重和干叶重与冠层反射光谱变量ρ800/ρ550、ρ800/ρ680、ρ680/ρ570之间存在显著相关;叶片叶绿素和类胡萝卜素浓度与其反射光谱变量ρ680/ρ570、ρ673/ρ640、ρ680/ρ550、PSSRa、PSNDa、Rch之间也呈显著相关.  相似文献   

13.
为揭示不同施氮量对滴灌条件下高产春大豆不同冠层光合特性的影响规律,在大田条件下,研究4种施氮量(0、75、150、225 kg/hm 2)对高产春大豆植株形态特征及不同冠层叶片叶绿素含量、光合参数的影响。结果表明:增施氮肥显著提高大豆植株中上部节间长度、叶柄长度和叶形指数;提高大豆不同冠层叶片叶绿素含量,施氮处理使植株后期中上部叶片叶绿素含量的下降幅度较N0处理减缓1.31%~4.44%;提高不同生育时期不同冠层叶片的净光合速率(Pn),减缓了中后期不同冠层净光合速率的下降幅度;施氮增加产量,以N150产量较高,为4889.62 kg/hm 2,氮肥农学利用效率3.58 kg/kg。  相似文献   

14.
基于吸收、透射和反射光谱预测水稻叶绿素含量研究   总被引:1,自引:0,他引:1  
选择基于吸收率和透射率的叶绿素含量定量反演波段组合,构建叶绿素含量光谱估测模型寻找基于吸收、透射和反射光谱预测叶绿素含量的波段。以3个水稻品种临稻11,圣稻13和阳光200为材料,进行田间实验。比较水稻叶片吸收、反射及透射光谱曲线和一阶导数光谱曲线,发现440、480、630nm和681nm为叶绿素吸收峰的实际发生波段位置,其中630nm波段处的叶片光谱吸收率(A)、透射率(T)和反射率(R)之间相关性最好。比较三者之间的相关性,吸收率与透射率的相关性最强。630nm波段处的叶片光谱吸收率、透射率和反射率与叶绿素含量之间的相关性均达到极显著水平。回归分析表明基于440、480nm和681nm3个波段光谱吸收率线性模型,440、480nm和630nm3个波段光谱透射率线性模型估测叶绿素a含量,480、630nm和681nm3个波段光谱透射率线性模型估测叶绿素b含量,与单独使用630nm光谱变量估测叶绿素含量比较,在4个生育期估测精度均有显著提高,其中以叶绿素a和叶绿素总量的估测效果最好。  相似文献   

15.
棉花植株水分含量的高光谱监测模型研究   总被引:5,自引:2,他引:3  
精确灌溉对无损、快速的水分监测技术有迫切需求。研究棉花冠层高光谱参数与水分的定量关系并建立水分估测模型,以实现棉花水分及时、准确监测。通过2年试验,测定棉花冠层高光谱及植株水分,根据光谱参数与植株含水量的相关关系,建立了植株含水量监测模型。结果表明:棉株含水量与叶片含水量在一定范围内随灌溉量增减而增减,并能区分棉花干旱程度;棉株及叶片含水量与冠层460~514 nm、605~698 nm、1451~1576 nm和1960~2457 nm反射率极显著负相关,与727~1345 nm反射率极显著正相关,且棉株的相关性好于叶片含水量。所选作物水分指数、归一化差值水分指数1、归一化差值水分指数2、水分胁迫指数1、水分胁迫指数2、水分波段指数、水分指数与归一化差值植被指数之比均与棉株及叶片含水量极显著相关;构建了棉株含水量和叶片含水量的最佳监测模型;所建模型精度能满足大田生产对棉花水分监测的要求。  相似文献   

16.
棉花高光谱及其红边特征(Ⅱ)   总被引:6,自引:4,他引:6  
通过大田和室内试验,测定了2个棉花品种的冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量。结果表明:棉花冠层光谱红边具有“双峰”和“红边平台”现象,且红边位置λ_(red)位于695~720nm之间,红边幅值Dλ_(red)和红边面积S_(red)有“红移”和“蓝移”现象;叶面积指数、鲜叶重和干叶重与冠层光谱红边参数λ_(red)、Dλ(red)、S_(red)之间存在显著相关,叶片叶绿素和类胡萝卜素含量与其反射光谱的λ_(red)、Dλ(red)、S_(red)也有显著相关。  相似文献   

17.
本文在棉花蚜虫危害主要生育时期测试不同严重度的蚜虫危害单叶光谱,分析并比较了不同时期、不同严重度棉蚜危害单叶光谱反射率特征,确定了其敏感波段,并建立了相应的估测模型。结果表明:棉花蚜虫单叶光谱特征明显,不同时期蚜虫单叶光谱反射率在可见光区均表现出先升后降的特征,近红外波段则表现出相同的趋势。434~727 nm可作为棉叶蚜虫的敏感波段,648 nm可作为棉叶蚜虫的最佳波段。基于敏感波段建立的棉蚜叶片遥感估测模型均达到显著相关水平,其中波段组合1 589-648/1 589+648建立的估算模型估算精度最高,均方根误差最小,RMSE为1.198,可作为棉叶蚜虫严重度的最佳识别模型。该研究为遥感监测棉花蚜虫光谱提供了理论依据及参考。  相似文献   

18.
 用ASD FieldSpec光谱仪实测棉花冠层不同生育时期的高光谱数据,同期获取棉花叶面积指数(LAI)和地上干物质积累量(Above-ground Dry Matter Accumulation,ADMA)。分析棉花冠层反射光谱与棉花LAI、地上部干物质积累量(ADMA)的相关关系,分析结果表明,反射光谱数据与棉花LAI、ADMA的相关系数的最高值分别发生在783 nm(r=0.6394**)和766 nm处(r=0.6287**);对反射光谱数据进行统计分析,建立了基于比值植被指数(RVI)和归一化植被指数(NDVI)的5种函数形式的棉花LAI、ADMA估测模型。经检验,基于RVI的估测模型具有较高的精度;对一阶微分光谱数据与棉花LAI和ADMA的逐步回归相关分析表明,敏感波段分别发生在736 nm(r=0.6769**)和742 nm处(r=0.6847**)。由736 nm、742 nm波段处的微分数值建立的LAI和ADMA线性回归估测模型,R值均达到了1%极显著的检验水平,说明一阶微分光谱敏感波段的数值,对棉花LAI和ADMA具有一定的估算能力。  相似文献   

19.
【目的】建立基于叶绿素荧光参数的棉花叶片氮素营养监测模型,为棉花高效施氮及植株生长状况的无损监测提供方法。【方法】在水肥一体化滴灌条件下,以新陆早58号为试验材料,设置4个施氮水平,测定了棉花生长关键时期顶2(从顶部数起)至顶5叶的叶绿素荧光参数和氮素含量,分析了棉花叶片氮素含量与荧光参数的关系。【结果】(1)棉花出苗70 d后,叶片氮素含量以及光系统II(PSII)潜在光化学活性(Fv/F0)、PSII潜在最大光化学效率(Fv/Fm)、PSII实际光化学效率(ΦPSII)、PSII最大光化学效率(Fv'/Fm')均随着棉花生长呈逐渐下降趋势。(2)不同氮素处理下,各叶片氮素含量以及叶绿素荧光参数Fv/F0、Fv/Fm、ΦPSII和Fv'/Fm'均随施氮量的增加而上升,其中N2 (240 kg·hm-2)处理下各荧光参数值最大。(3)叶片氮含量与Fv、Fv/F0、Fv/Fm、ΦPSII都呈现极显著正相关关系,与荧光参数ΦPSII、Fv'/Fm'间呈现较好的指数函数关系,与荧光参数Fv、Fv/Fm、Fv/F0呈现良好的线性函数关系。顶5叶可变荧光(Fv)与叶片氮素含量建立的关系模型(y=0.0022x+1.6243)的模拟效果最好,决定系数达到0.928,相关系数达到0.963,呈极显著正相关。【结论】适量施氮(240 kg·hm-2)能够提高PSII的活性及PSII反应中心开放部分的比例,进而改善棉花叶片光合能力。顶5叶氮素含量与叶绿素荧光参数Fv构建的模型精确度和拟合效果较其他荧光参数好,因此可以选用荧光参数Fv来监测棉花叶片氮素含量,进而监测植株的氮素营养状况。  相似文献   

20.
棉花功能叶片色素含量与高光谱参数的相关性研究   总被引:2,自引:0,他引:2  
叶片色素状况是评价植株光合能力、监测生长状况和预测产量潜力的重要指标,高光谱遥感技术为快速无损监测作物叶片色素提供了有效手段.本研究以4个棉花品种在3个施氮水平下的2年田间试验为基础,通过测定棉花(Gossypium hirsutum)功能叶片的高光谱反射率及对应的色素(叶绿素a、叶绿素b、叶绿素a b、类胡萝卜素)含量,定量分析了叶片高光谱参数与色素含量之间的相关关系.结果表明,与棉花功能叶片各色素指标相关性比较好的高光谱波段主要分布在500~700 nm;由敏感波段构建的光谱指数与各色素指标的相关性均在0.50以上;且红边最小值(Lo)可以作为共同的高光谱指数来估测不同棉花品种不同氮素水平下功能叶片的叶绿素总量(组合品种的R2为0.67).因此,通过高光谱参数来估算棉花功能叶片色素含量是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号