首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
不同氮水平下橡胶树氮素贮藏及翌年分配利用特性   总被引:2,自引:0,他引:2  
以2年生幼龄橡胶树为试材,采用落叶期换土移栽法,利用 15N同位素示踪技术,研究了少量施氮(N28)、适量施氮(N56)和过量施氮(N84)3个氮素水平下幼树的生长差异及氮吸收、利用和分配特性。结果表明:适量施氮肥利于树体生长。以N28处理为对照,N56和N84处理均通过促进根系生长进而促进地上部生长,且N56处理对地上部生长的促进作用较N84更为显著。N28、N56和N84处理橡胶树当年氮肥利用率分别为47.55%、46.83%、39.09%,在第2年春季第一蓬叶稳定期后,各处理氮肥利用率分别为44.49%、43.79%、38.17%。橡胶树氮素的主要贮藏部位为主干和根系,其 15N分配率为59.58%左右,主干木质部的 15N分配率最高,N28、N56和N84处理分别为24.65%、28.69%和25.50%;3个处理地上部枝干中的 15N分配率为76.85%(N28)、78.24%(N56)和75.51%(N84)。经过春季的重新再利用,第1年吸收贮藏的氮素由枝干和根系向新生器官(新梢木质部、新梢皮部、叶片及叶柄)大量运转,满足其生长发育的需要;N28、N56和N84处理新生器官中的Ndff%较高,分别为9.60%~11.31%、18.39%~21.43%和31.67%~34.04%,而主干木质部中的Ndff%较低,分别为3.86%、7.90%和13.77%。贮藏氮在橡胶树春季器官的生长发育中起到重要作用,3个处理新生器官中的 15N分配率为50.60%(N28)、53.98%(N56)和53.28%(N84)。适量施氮水平下 15N在地上部枝干中的贮藏比例较高,翌年新生器官中的分配率也高,有利于橡胶树氮素的季节性循环利用及生长发育的需要。  相似文献   

2.
针对我国甘蔗生产中氮肥用量高和氮肥利用率低的问题,为提高氮肥利用率,本研究以‘桂糖42号’为试验材料,研究对比5种施氮量(N150:150 kg/hm2、N225:225 kg/hm2、N300:300 kg/hm2、N375:375 kg/hm2、N450:450 kg/hm2)和2种施氮次数(R1:3次施入,30%氮肥作基肥、30%作分蘖肥和40%作攻茎肥;R2:2次施入,30%氮肥作基肥和70%作攻茎肥)下宿根蔗生长、产量、含糖量以及氮素利用。结果表明:(1)蔗茎产量受施氮量影响显著,随施氮量增加,2种施氮次数的蔗茎产量均呈现递增趋势。相同施氮量下,不同施氮次数的蔗茎产量差异不显著,R1N375、R1N450、R2N375和R2N450处理甘蔗产量较高,分别为106.4、112.2、106.4和109.1 t/hm2。(2)随施氮量增加,蔗糖分先增加后减少。N375和N450下,R1的蔗糖分显著高于R2。随施氮量增加,R1的产糖量呈先增加后无显著变化的趋势,R2的产糖量呈先增加后减少的趋势。N375和N450下,R1的产糖量显著高于R2,R1N375和R1N450处理甘蔗含糖量较高,分别为14.95和14.58 t/hm2。(3)R1和R2的当季氮肥利用率分别为22%~36%和20%~32%。因此,当施氮量为375 kg/hm2,以30%基肥、30%分蘖肥和40%攻茎肥是蔗叶还田下宿根蔗的最优施氮模式。  相似文献   

3.
通过田间试验,研究了控释氮肥对茶园土壤无机氮含量、茶叶产量、品质成分、氮素利用效率和茶叶中氮磷等主要矿质元素吸收的影响,比较了不同施肥方式对经济效益的影响。结果表明,不同氮肥处理间土壤无机氮含量无显著差异,但控释肥处理土壤中无机氮变化幅度较小,而且比较稳定。与普通氮肥相比,控释氮肥单施或与普通氮肥配施,茶叶产量分别提高7.5%和15.2%。施控释氮肥对茶叶游离氨基酸总量、茶多酚含量、酚氨比值不会产生明显的影响。控释氮肥能促进茶树对氮、磷等主要矿质元素的吸收,提高茶树新梢氮素利用率,其中新梢氮素利用效率(NUE),控释氮肥和普通氮肥配施比普通氮肥高5.38个百分点,比单施控释氮肥高2.39个百分点,新梢氮素偏生产率(PNE),控释氮肥和普通氮肥配施比普通氮肥处理高1.16βkg·kg-1,比单施控释氮肥高0.57βkg·kg-1。与普通氮肥相比,单施控释氮肥每年每公顷增加纯收入0.93万元,控释氮肥和普通氮肥配施增加纯收入2.01万元。本研究结果表明,控释氮肥与普通氮肥配施增产、增效明显。  相似文献   

4.
为探讨田间不同生产方式对茶园产量、茶叶品质及茶树对氮肥吸收利用的影响,采用微区15N示踪技术,研究了不同采摘标准(一芽一叶和一芽三叶)和氮肥施用水平(200、450 kg·hm-2)下茶树春季新梢产量、品质成分和15N氮素吸收利用等变化。结果表明,新梢产量主要受采摘标准影响,一芽三叶的产量是一芽一叶的1.8~2.1倍,氮肥用量对春季新梢产量影响不显著;采摘标准对氨基酸含量特别是对茶氨酸等品质成分的影响大于施氮水平,以N2水平(N 450 kg·hm-2)下采摘一芽一叶的含量最高;成熟叶含氮量从初冬到春茶结束呈下降趋势,说明叶片内氮素在春茶期间发生再利用,但其肥料氮占全氮的比例(Ndff)在增加,可能是氮素吸收和再利用的共同结果;供氮水平对新梢Ndff的影响大于采摘标准,而新梢采摘的氮携带量主要受产量影响,低氮条件下新梢15N回收率最高。本研究表明,采摘标准和施氮量对茶园产量、茶叶品质及茶树对15N氮素的吸收分配产生影响,但两个氮肥水平都能基本满足不同采摘标准下茶树对氮素的需求。  相似文献   

5.
针对籽用工业大麻种植区存在的灌水施氮不合理问题,在大田条件下设置不同水平灌水量和施氮量,探讨作物生长、SPAD值(叶绿素含量)、叶片光合性能、产量及其构成因素等的变化,揭示麻籽产量对水氮互作的响应机制等,为确定适宜的水氮施用量提供理论依据。采用2因素4水平随机区组试验设计,灌溉水平设0(W0)、60(W1)、120(W2)、180(W3)mm,施氮量设0(N0)、225(N1)、450(N2)、675(N3)kg/hm2。结果表明:灌水(W1、W2、W3)和施氮(N1、N2、N3)均可显著提高工业大麻株高、茎粗和地上部干物质量数值。SPAD值在不同灌水水平下均表现为N0123;在不同氮肥水平下表现为W0123。灌水和施氮都能在一定程度上显著提高工业大麻叶片光合性能。W3和W2水平麻籽产量显著高于W0;N3和N2水平麻籽产量显著高于N0;W2N2产量最高,比W2N0和W0N0分别高11.25%和22.01%。通径分析表明,不同水氮处理导致分枝高、茎粗和分枝数等的改变进而影响产量。旺长期和开花期各灌水60 mm,配合播前施氮肥450 kg/hm2,是籽用工业大麻最佳水氮供应模式,可起到节本增产的效果。  相似文献   

6.
施用生物质炭对酸性茶园土壤氨挥发的影响   总被引:2,自引:0,他引:2  
氨挥发是土壤氮素损失的主要因素之一。通过田间试验,研究了施用生物质炭对酸性茶园土壤理化性质及氨挥发的影响,以期为评价生物质炭在茶园土壤中的应用提供科学数据。试验设不施氮肥(对照CK)、单施氮肥(B0N1,225 kg·hm-2)、施8 t·hm-2生物质炭基础上增施氮肥(B1N1)、施16 t·hm-2生物质炭基础上增施氮肥(B2N1)4个处理,施氮量春季追肥、秋季追肥和冬季基肥比例为3︰3︰4,进行了为期1年的观测。结果表明,与B0N1处理相比,B1N1和B2N1处理显著提高了土壤p H值和有机碳含量(P0.05),显著降低了土壤容重(P0.05),全氮量变化不显著(P0.05);与B0N1处理相比,B1N1和B2N1处理土壤铵态氮平均含量降低了5.34%~12.59%,硝态氮平均含量增加了11.02%~36.54%,促进硝化作用。酸性茶园土壤氨挥发量为13.01~40.95 kg·hm-2,氨挥发损失率为7.29%~12.42%,冬季基肥期氨挥发损失量最大;施氮显著增加土壤氨挥发量(P0.05),增施生物质炭则显著降低了氨挥发量(P0.05),降幅为26.25%~28.21%。土壤铵态氮浓度是影响氨挥发的最主要因素,施用生物质炭降低了土壤铵态氮浓度,从而抑制了氨挥发。  相似文献   

7.
秸秆还田配施氮肥对麦田氮素平衡和籽粒产量的影响   总被引:1,自引:0,他引:1  
为明确秸秆还田配施不同水平氮肥下麦田的氮素平衡状况,在夏玉米秸秆全部还田的基础上设置了不同的氮肥处理,测定了小麦植株全N含量、土壤硝态氮含量、氮肥氨挥发量和籽粒产量,分析了麦田不同土层硝态氮含量和积累量的变化趋势以及施氮量对氮素利用效率和麦田氮素平衡的影响。结果表明,小麦植株氮含量、植株氮素总积累量、籽粒产量均随施氮量的增加而显著增加;施加氮肥使氮素养分利用率、氮肥偏生产力显著降低。与播种时期土壤硝态氮含量相比,成熟期硝态氮含量降低,且施氮处理下土壤硝态氮含量、硝态氮积累量高于不施氮处理;硝态氮积累量主要分布在麦田土壤表层,与施氮量成正相关关系。施氮量为0、160、220、280kg·hm~(-2)时,硝态氮淋失量分别为5.04、13.10、17.10、37.26kg·hm~(-2)。氮肥的氨挥发速率在施肥后第一天达到最高,随后逐渐降低,遇到降雨或灌溉迅速降低至不施氮处理的氨挥发水平,氮肥氨挥发量与施氮量及时间存在正相关关系。160、220、280kg·hm~(-2)施氮量处理下,氮肥氨挥发量分别为0.65、0.77、1.01kg·hm~(-2)。从麦田氮素平衡来看,不施氮肥处理耗竭土壤氮素资源;施氮量为160kg·hm~(-2)时,有消耗土壤氮的风险;施氮量为220kg·hm~(-2)时,氮素投入与氮素输出保持平衡;施氮量为280kg·hm~(-2)时,有大量氮素损失到环境中的风险。为有效控制氮素淋溶和氨挥发损失,兼顾产量和节约生产成本,该区推荐施氮量为220kg·hm~(-2)。  相似文献   

8.
本研究以热带菜地土壤为对象,通过室内培养试验探讨生物炭与硝化抑制剂联合施用下土壤无机氮含量和强度及N2O排放的变化规律,旨在明确施用生物炭和硝化抑制剂对热区土壤硝化过程的调控作用及对N2O的减排效应。本试验设置4个处理:单施氮肥(N),氮肥配施生物炭(N+Bc),氮肥配施硝化抑制剂(N+Ni)以及氮肥同时配施生物炭和硝化抑制剂(N+Bc+Ni)。结果表明:培养期间,生物炭施用下土壤NO3--N强度显著提高15.8%,表明添加生物炭能够显著促进土壤硝化过程;硝化抑制剂添加下土壤NH4+-N强度显著提高33.4%,表明硝化抑制剂的施用显著减缓硝化过程;此外,硝化抑制剂能够削弱由生物炭添加引起的激发硝化过程的效应,表明生物炭和硝化抑制剂对硝化过程影响存在交互效应。施用生物炭或硝化抑制剂都能降低NO2--N强度,其中硝化抑制剂作用更加显著;此外,生物炭或硝化抑制剂单独施用能够降低菜地土壤15.1%~68.3%的N2O排放量,二者联合施用在一定程度上能够发挥更强的减排作用。综合来看,生物炭与硝化抑制剂联合施用有望在热带菜地土壤中发挥固碳和减排的双重功效。  相似文献   

9.
【目的】探明秸秆还田和氮肥管理对麦/油后直播杂交稻氮素积累、转运、氮肥利用效率及籽粒产量的影响。【方法】选用优质三系杂交稻宜香优2115,采用二因素裂区设计,麦、油茬田同步开展试验,处理完全一致。主区为麦/油秸秆全量翻埋还田(M1)和秸秆不还田(对照,M0),副区设4个氮肥管理,即不施氮对照(N0)、m基肥m分蘖肥m促花肥m保花肥比例分别为1∶0∶0∶0(N1)、3∶3∶2∶2(N2)、2∶2∶3∶3(N3),测定了直播杂交稻主要生育时期各器官的氮素积累量及籽粒产量。【结果】结果表明,两种轮作方式下,氮肥管理对直播杂交稻主要生育时期的氮素积累、齐穗后茎鞘、叶片的氮素转运及稻株氮素利用效率均存在显著或极显著的调控效应。秸秆还田显著提高麦/油茬杂交稻中后期的氮素积累量、茎鞘和叶片的氮素转运量以及氮肥利用效率,其中,氮肥农学利用率、氮肥偏生产力和氮肥表观利用率较秸秆不还田分别提高了34.96%/28.76%、2.52%/2.61%和31.91%/22.30%。同时,油菜秸秆还田下直播杂交稻各生育时期氮素积累和产量较麦秆还田表现更好,籽粒产量提高481 kg/hm2(5.22%)。M1N2处理、M0N3处理下,直播杂交稻各阶段的氮素积累速率明显加大,促进结实期茎鞘和叶片的氮素向穗部转运,成熟期稻株氮素积累量优势明显且有较高的氮素利用效率(麦/油茬稻氮肥农学利用率、偏生产力和表观利用率分别达17.87 kg∙kg-1/17.85 kg∙kg-1、67.27 kg∙kg-1/71.28 kg∙kg-1、74.93%/75.05%),最终实现高产。【结论】在麦/油-稻轮作下秸秆全量还田,配合N2氮肥管理,可有效提高直播杂交稻氮素吸收、利用效率,增加籽粒产量,尤以油菜秸杆还田的效果更好。  相似文献   

10.
为了解氮肥和生物质炭配施对北疆灌区春小麦生长、产量及品质的影响,采用随机区组试验设计,以春小麦品种新春37号为供试材料,设置3个氮肥水平[不施氮肥(N0:0 kg·hm-2)、常规施氮(N1:300 kg·hm-2)、减量施氮(N2:255 kg·hm-2)]和4个生物质炭水平[不施生物质炭(B0:0 kg·hm-2)、低量生物质炭(B1:10×103 kg·hm-2)、中量生物质炭(B2:20×103 kg·hm-2)、高量生物质炭(B3:30×103 kg·hm-2)],分析了不同处理下春小麦干物质积累与转运特性、籽粒产量及品质指标的差异。结果表明,生物质炭与氮肥配施可增加春小麦单株干物质积累量,提高花前同化物转运量、转运效率和对籽粒产量的贡献率,促进籽粒灌浆和产量形成,改善加工、营养品质。对小麦生长、品质及产量指标进行综合分析,减量施氮配施中量生物质炭(N2B2)...  相似文献   

11.
生物炭与氮肥施用对双季稻田温室气体排放的影响   总被引:1,自引:0,他引:1  
以我国南方双季稻田为研究对象,旨在探究生物炭与氮肥施用对稻田温室气体排放的影响.试验共设置5个处理,分别为不施氮肥不施生物炭(N0B0)、单施40 t/hm2生物炭(N0B2)、单施氮肥(N1B0)、氮肥配施20 t/hm2生物炭(N1B1)、氮肥配施40 t/hm2生物炭(N1B2).采用静态暗箱-气象色谱法连续监测...  相似文献   

12.
【目的】明确饲料蛋白含量对稻-黄颡鱼共作模式下N2O和NH3挥发特征及黄颡鱼生长的影响,有利于稻-黄颡鱼综合种养的高效、绿色发展。【方法】采用盆栽模拟试验,以常规单养黄颡鱼模式为对照,系统研究了不同饲料蛋白含量对稻-黄颡鱼共作模式下N2O和NH3的排放特征、水体和底泥的氮含量以及黄颡鱼生长的影响。【结果】在相同蛋白含量下,稻-黄颡鱼共作模式的N2O和NH3挥发分别比单养黄颡鱼模式降低18.3%和76.20%,水体总氮和无机氮含量降低41.30%和48.85%,黄颡鱼蛋白累积量增加20.00%,氮利用率增加171.50%。在稻-黄颡鱼共作模式下,提高饲料蛋白含量会显著增加N2O排放量和水体残留氮含量,但对NH3挥发无显著影响;黄颡鱼特定生长率和蛋白累积量与饲料蛋白含量呈二次曲线关系。饲料氮利用效率随饲料蛋白含量增加呈线性降低趋势。【结论】综合考虑黄颡鱼生长和N2O排放以及养殖水体氮残留等因素,确定稻-黄颡鱼共作模式饲料蛋白含量不宜超过43.04%。  相似文献   

13.
氨挥发和氮淋洗是氮肥损失的重要途径,导致严重的环境污染。有关橡胶林氮肥穴施后的氨挥发和氮淋洗损失问题的研究鲜见报道。本研究设置0 kg/hm2(对照)、100 kg/hm2(低氮)、230 kg/hm2(中氮)、400 kg/hm2(高氮)的施氮水平,分别采用通气法和渗漏盘法研究橡胶林尿素穴施后的氨挥发和氮淋洗损失特征。结果表明,旱季氨挥发损失过程大致在14~20 d内完成,雨季基本在7~10 d完成;氨挥发峰值在旱季较雨季延迟,旱季大概施肥后6~13 d达到峰值,而雨季1~3 d即达到峰值;与对照相比,低氮、中氮和高氮处理的氨挥发损失大致为9.32~21.54 kg/hm2。氮淋洗损失主要发生在雨季(5—11月),且以硝态氮淋洗为主;橡胶林氮肥穴施条件下的氮淋洗损失约为2.36~9.00 kg/hm2;随着施氮量的增加,氨挥发和氮淋洗损失均呈增加趋势。综上,橡胶林氮肥穴施后的氨挥发和氮淋洗损失并不高,其施氮量不宜超过230 kg/hm2。  相似文献   

14.
Responses of wheat grown on a heavy clay soil in the Goulburn-Murray Irrigation Region of south-eastern Australia to a factorial combination of three irrigation treatments and nitrogen and gypsum application were investigated.Irrigation treatments included a rainfed control (treatment RF) and irrigation on either a weekly (treatment Iw) or fortnightly (treatmnt IF) basis beginning in spring and maintained until physiological maturity. Nitrogen was applied at 0 and 150 kg N ha−1 (treatments N0 and N150, respectively) and gypsum at 0 and 5 t ha−1. Nitrogen and gypsum treatments were applied at sowing.

Yield increased from a mean of 4 t ha−1 treatment RF to 6.6 t ha−1 in treatments IF and IW, largely because of promotive effects of irrigation on kernel weight (increase from 31 mg to 42 mg kernel−1 and kernel spikelet−1 (1.4 as compared with 1.7). Seasonal conditions and the relative fertility of the site were sufficient to maximise spike number and spikelet spike−1. Nitrogen increased kernel spikelet−1 but effects on yield were not significant because of a decrease in kernel weight. Effects of gypsum on yield were not significant.

Water-use efficiency of both rainfed and irrigated treatments was ca. 1.25 g grain kg−1 H2O. However, transpirational water-use efficiency, calculated after allowing 110 mm water for soil evaporation, fell from 2 g kg−1 in treatment RF to 1.7 and 1.5 g kg−1 in treatments IF and IW, respectively. The decrease was ascribed, in part, to lodging and soil evaporative losses may have been in excess of 110 mm with more frequent irrigation. Effects of N on water use could not be distinguished, again because of the initial fertility of the site, which supported rapid growth and resulted in complete canopy closure.

Nitrogen and irrigation treatments had independent effects on the concentration of N in the grain (%NG) which increased by a mean of 0.6% with N treatment despite a decrease in N harvest index (HIN) from 0.77 to .70. Irrigation decreased %NG by approximately 0.5%. Approximately 90 kg pN ha−1 was found in the grain of treatments RFN0, IWN0, IwN0 and RFN150 and differences in %NG in these treatments attributed to a ‘dilution’ effect mediated by the increase in yield effected by irrigation. The grain accounted for approximately 115 kg N ha−1 in treatments IFN150 and IWN150, countering the inverse relationship between %Ng and yield despite the increase in HIN index caused by N application.  相似文献   


15.
研究了不同氮用量对稻虾共作水稻产量与田面水水质的影响,以为稻虾共作实现精确施肥提供理论依据。试验共设5个氮肥用量处理,分别设置氮0、60、120、180和240 kg/hm2,依次以CK、N60、N120、N180、N240表示,氮肥均按基肥:分蘖肥7∶3施肥。结果表明,施肥能维持土壤较高的无机氮含量并能促进水稻干物质积累,施肥处理提高水稻产量8%~42%,其中N120产量最高,比CK增产42%;施氮后3 d内田面水中氨态氮含量迅速增加,随着时间的推迟氨态氮随之降低,在14 d后降到最低且趋于稳定,其中施氮后5 d内各处理的氨态氮浓度差异显著,施氮越多其值越大;田面水中亚硝态氮浓度在前5 d先升高后降低再升高,其中第3 d各施肥处理差异较显著,第7 d后其浓度处理间差异不显著;不同施氮量显著影响了田面水的pH,各处理在施肥后14 d内的pH波动在6.57~8.22之间,但14 d以后各处理差异不显著。适宜的施氮量促进水稻增产的同时也减少了田间表面水氨态氮和...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号