首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The denaturation, aggregation, and rheological properties of chicken breast muscle myosin, beta-lactoglobulin (beta-LG), and mixed myosin/beta-LG solutions were studied in 0.6 M NaCl, 0.05 mM sodium phosphate buffer, pH 7.0, during heating. The endotherm of a mixture of myosin and beta-LG was identical to that expected if the endotherm of each protein was overlaid on the same axis. The maximum aggregation rate (AR(max)) increased, and the temperature at the AR(max) (T(max)) and initial aggregation temperature (T(o)) decreased as the concentration of both proteins was increased. The aggregation profile of <0.5% myosin was altered by the presence of 0.25% beta-LG. Addition of 0.5-3.0% beta-LG decreased storage moduli of 1% myosin between 55 and 75 degrees C, but increased storage moduli (G') when heated to 90 degrees C and after cooling. beta-LG had no effect on the gel point of > or =1.0% myosin, but enhanced gel strength when heated to 90 degrees C and after cooling. After cooling, the G' of 1% myosin/2%beta-LG gels was about 1.7 times greater than that of gels prepared from 2% myosin/1% beta-LG.  相似文献   

2.
Thermal denaturation, rheological, and microstructural properties of gels prepared from native beta-lactoglobulin (beta-LG) and preheated or heat-denatured beta-LG (HDLG) aggregates were compared. The HDLG was prepared by heating solutions of 4% beta-LG in deionized water, pH 7.0, at 80 degrees C for 30 min and then diluted to the desired concentration in 0.6 M NaCl and 0.05 M phosphate buffer at pH 6.0, 6.5, and 7.0. When reheated to 71 degrees C, HDLG formed a gel at a concentration of 2% protein. At pH 7.0, 3% HDLG gelled at 52.5 degrees C and had a storage modulus (G') of 2200 Pa after cooling. beta-LG (3%) in 0.6 M NaCl and 0.05 M phosphate buffer, pH 7.0, did not gel when heated to 71 degrees C. The gel point of 3% HDLG decreased by 10.5 degrees C and the G' did not change when the pH was decreased to 6.0. The HDLG gel microstructure was composed of strands and clumps of small globular aggregates in contrast to beta-LG gels, which contained a particulate network of compacted globules. The HDLG formed a gel at a lower concentration and lower temperature than beta-LG in the high-salt buffer, suggesting an application in meat systems or other food products prepared with salt and processed at temperatures of < or =71 degrees C.  相似文献   

3.
The three-dimensional structure, digestibility, and immunological properties of bovine beta-lactoglobulin (beta-lg) are modified by heat treatments used in processing of liquid milk products. Because it is not known if such treatments also modify the intestinal transport properties of beta-lg, the transport of native and heat-denatured bovine beta-lg was investigated in experimental cell models using Caco-2 cells and M cells. Transport of beta-lg labeled with a fluorescent marker was followed with fluorometric measurements, electrophoretic analyses, and fluorescence microscopy. The data show that both cell types transported native beta-lg more efficiently than they did heat-denatured beta-lg. In addition, M cells transported native beta-lg more than Caco-2 cells. Transport of native and heat-denatured beta-lg was transcellular. The electrophoretic data also suggest that heat-denatured beta-lg may have degraded more than native beta-lg during the transport.  相似文献   

4.
The structure of aggregates and gels formed by heat-denatured whey protein isolate (WPI) has been studied at pH 7 and different ionic strengths using light scattering and turbidimetry. The results were compared with those obtained for pure beta-lactoglobulin (beta-Lg). WPI aggregates were found to have the same self-similar structure as pure beta-Lg aggregates. WPI formed gels above a critical concentration that varied from close to 100 g/L in the absence of added salt to about 10 g/L at 0.2 M NaCl. At low ionic strength (<0.05 M NaCl) homogeneous transparent gels were formed, while at higher ionic strength the gels became turbid but had the same self-similar structure as reported earlier for pure beta-Lg. The length scale characterizing the heterogeneity of the gels increased exponentially with increasing NaCl concentration for both WPI and pure beta-Lg, but the increase was steeper for the former.  相似文献   

5.
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 degrees C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 degrees C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 degrees C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 degrees C, unlike actin, which completely denatured only above 70 degrees C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 degrees C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 degrees C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.  相似文献   

6.
Biochemical changes of myosin in chicken myofibrils exposed to nonenzymatic, hydroxyl radical generation systems (HRGS) were investigated by means of cross-linking reaction, ATPase activity, salt solubility, and 40% saturated ammonium sulfate (AS) extractability. HRGS treatment of myofibrils caused cross-linking of myosin heavy chains (MHC) via disulfide bonding, an increase in Ca-ATPase activity, and a decrease in K-ATPase activity, suggesting that thiol groups of myosin including those at the active site were modified. The specific changes depended on the concentrations of H(2)O(2) in HRGS as well as the weight ratio of H(2)O(2) to myofibrils. On the other hand, the decrease in salt solubility or AS extractability of myosin in HRGS-treated samples proceeded slowly when compared with the cross-linking reaction of MHC, indicating that considerable amounts of myosin biopolymers remained hydrophilic in the ionic solutions. The results demonstrated that initial cross-linking of MHC occurred inside the myosin molecule, and this was followed by progressive aggregation of myosin molecules through intermolecular cross-linking. Oxidation under the current experimental condition decreased the gel-forming ability of myofibrillar proteins, which coincided with the progress of the intra- and intermolecular cross-linking reactions as well as with ATPase activity changes.  相似文献   

7.
8.
A large number of proteins are glycosylated, either in vivo or as a result of industrial processing. Even though the effect of glycosylation on the aggregation of proteins has been studied extensively in the past, some reports show that the aggregation process is accelerated, whereas others found that the process is inhibited by glycosylation. This paper investigates the reasons behind these controversial results as well as the potential mechanism of the effect of glucosylation on aggregation using bovine beta-lactoglobulin as a model. Glucosylation was found to inhibit denaturant-induced aggregation, whereas heat-induced aggregation was accelerated. It was also found that the kinetic partitioning from an unfolded state was driven toward refolding for glucosylated protein, whereas aggregation was the preferred route for the nonglucosylated protein.  相似文献   

9.
The kinetics of beta-lactoglobulin (beta-LG) denaturation in pressure-treated reconstituted skim milk samples over a wide pressurization range (100-600 MPa) and at various temperatures (10-40 degrees C) was studied. Denaturation was extremely dependent on the pressure and duration of treatment. At 100 MPa, no denaturation was observed regardless of the temperature or the holding time. At higher pressures, the level of denaturation increased with an increasing holding time at a constant pressure or with increasing pressure at a constant holding time. At 200 MPa, there was only a small effect of changing the temperature at pressurization. However, at higher pressures, increasing the temperature from 10 to 40 degrees C markedly increased the rate of denaturation. The two major genetic variants of beta-LG (A and B) behaved similarly to pressure treatment, although the B variant appeared to denature slightly faster than the A variant at low pressures (< or =400 MPa). The denaturation could be described as a second-order process for both beta-LG variants. There was a marked change in pressure dependence at about 300 MPa, which resulted in markedly different activation volumes in the two pressure ranges. Evaluation of the kinetic and thermodynamic parameters suggested that there may have been a transition from an aggregation-limited reaction to an unfolding-limited reaction as the pressure was increased.  相似文献   

10.
The specific effects of heat treatment and/or addition of low/high-methylated pectin (LMP/HMP) on the allergenicity of beta-lactoglobulin (beta-Lg) and its hydrolysis products were investigated through a two-step in vitro digestion approach. beta-Lg was first hydrolyzed by pepsin and then by a trypsin/chymotrypsin (T/C) mixture done in a dialysis bag with a molecular weight cutoff of 1000. The protein digestion was followed by SDS-PAGE electrophoresis performed on each digestion product, and their in vitro allergenicity was analyzed by immunoblotting. Such procedure was applied on beta-Lg samples mixed with the two kinds of pectin before or after heating (80 degrees C, 25 min) to determine the respective impact of heat treatment and pectin addition. Heat denaturation improved significantly the susceptibility of beta-Lg against the pepsin and the T/C. This effect, which was coupled to a reduction in immunoreactivity of the digested beta-Lg, appeared to be distinctively modulated by LMP and HMP. Through nonspecific interaction with the beta-Lg, pectin could reduce the accessibility of cleavage sites and/or epitope sequences. This mechanism of action is discussed in relation to the intra- and intermolecular interactions between beta-Lg and pectin initiated under the experimental conditions.  相似文献   

11.
The effect of heat-denatured whey protein isolate (dWPI)/whey protein isolate (WPI) ratio (0-0.6), microfluidization pressure (0-1000 bar), and number of passes (1-10) on the uniaxial shear stress at 10% (sigma(10)) and 80% (sigma(80)) relative deformation of dWPI/WPI heat-induced gels (14% total protein, w/w) was studied. No correlation between the average diameter of aggregates and the dWPI/WPI ratio, microfluidization pressure, or number of passes was found. However, increasing the microfluidization pressure or the number of passes resulted in a narrower size distribution of aggregates. Increasing the dWPI/WPI ratio and the number of passes resulted in a decrease and an increase of gel hardness, respectively. The results were interpreted in terms of more random aggregation/gelation of proteins in the presence of aggregates that could result in localized heterogeneities into gels and more dissipation of the deformation energy during compression. The positive effect of the number of passes on the gel hardness was also considered to be due to a more homogeneous aggregation/gelation of proteins in the presence of smaller aggregates.  相似文献   

12.
Plasticizer effect on oxygen permeability (OP) of beta-lactoglobulin (beta-Lg) films was studied. Propylene glycol (PG), glycerol (Gly), sorbitol (Sor), sucrose (Suc), and polyethylene glycol at MW 200 and 400 (PEG 200 and PEG 400, respectively) were studied due to their differences in composition, shape, and size. Suc-plasticized beta-Lg films gave the best oxygen barrier (OP < 0.05 cm3 x microm/m2 x day x kPa). Gly- and PG-plasticized films had similar OP values, and both had higher OP than Sor-plasticized films. PEG 200- and PEG 400-plasticized films were the poorest oxygen barriers. Empirical equations including plasticizer efficiencies for OP were employed to elucidate the relationships between OP of plasticized beta-Lg films and plasticizer type and content. Plasticizer efficiency ratios between mechanical and OP properties of beta-Lg films show the relative efficiency of plasticizers in modifying mechanical and OP properties. A large ratio is desirable.  相似文献   

13.
beta-Lactoglobulin A, a genetic variant of one of the main whey proteins, was irradiated at 295 nm for 24 h. After irradiation, 18% of the protein was denatured (determined by reverse-phase chromatography). The fluorescence spectrum of the irradiated protein was red-shifted compared to that of the native protein, indicating a change in protein folding. Sulfhydryl groups, which are buried in native beta-lactoglobulin, were exposed following irradiation and became available for quantification using the Ellman assay. The quantity of exposed sulfhydryls increased, but the number of total sulfhydryl groups decreased. Gel permeation chromatography showed that some protein aggregation occurred during irradiation. Fourier transform infrared (FTIR) spectroscopy of irradiated beta-lactoglobulin revealed changes in the secondary structure, comparable to that of early events during heat-induced denaturation. There was evidence for some photo-oxidation of tryptophan.  相似文献   

14.
Hydrolysis of beta-lactoglobulin (in an equimolar mixture of the A and B variant) by trypsin in neutral aqueous solution [pH 7.7 at 25 degrees C, ionic strength 0.08 (NaCl)] was followed by capillary electrophoresis and thermodynamic parameters derived from a Michaelis-Menten analysis of rate data obtained at 10, 20, 30, and 40 degrees C for disappearance of beta-lactoglobulin. Enthalpy of substrate binding to the enzyme and the energy of activation for the catalytic process were found to have the values, DeltaH(bind) = -28 +/- 4 kJ mol(-)(1) and E(a) = 51 +/- 18 kJ mol(-)(1), respectively. Thus, beta-lactoglobulin shows an enthalpy of activation for free substrate reacting with free enzyme of about 21 kJ mol(-)(1), corresponding to a transition state stabilization of 60 kJ mol(-)(1) when compared to acid-catalyzed hydrolysis. The catalytic efficiency of trypsin in hydrolysis of beta-lactoglobulin is increased significantly by temperature; however, this effect is partly counteracted by a weaker substrate binding resulting in an increase by only 25%/10 degrees C in overall catalytic efficiency.  相似文献   

15.
The dielectric behavior of native and heat-denatured ovalbumins (OVAs) from three avian species in aqueous solution was examined over a frequency range of 100 kHz to 20 GHz, using the time domain reflectometry (TDR) method. For the native OVA solutions, three kinds of relaxation processes were observed at around 10 MHz, 100 MHz, and 20 GHz, respectively; these could be assigned to the overall rotation of protein molecules, the reorientations of the bound water, and the free water molecules, respectively. For the heat-denatured samples, three relaxation processes were also observed. However, the relaxation process at approximately 100 MHz originated via a different mechanism other than the reorientation of bound water, namely, the micro-Brownian motion of peptide chains of heat-denatured protein. From the observed relaxation process at approximately 100 MHz, the relaxation strength of heat-denatured OVA solution for duck was higher than that of OVA solutions for hen and guinea fowl and showed the pH dependency from pH 7.0 to 8.0 for OVAs obtained from all three species. Furthermore, the results demonstrated that the relaxation strength was closely related to surface hydrophobicity of protein molecules and gel rheological properties. It was suggested that the difference in the surface hydrophobicity of protein influenced the dielectric behavior of water around denatured protein, whereas the dielectric behavior of denatured protein could be an indication of the gel rheological properties. Such studies can aid in the understanding of the different network structures of OVA gels from three avian species.  相似文献   

16.
Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin (beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions ( a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to approximately 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.  相似文献   

17.
Casein fractions have been shown to act as molecular chaperones and inhibit aggregation of whey proteins in dilute solutions (< or =1% w/v). We evaluated if this approach would stabilize protein solutions at higher concentration and thermal processing temperatures desired for beverage applications. Mixtures of beta-lactoglobulin (BLG) (6% w/v) with either beta-casein (BCN) (0.01-2% w/v) or alpha s-casein (ACN) (2% w/v) were adjusted to pH 6.0 and heated (70-90 degrees C) for 20 min, cooled, and then analyzed to determine the degree of aggregation. Aggregation was determined by solution turbidity as optical density (OD) at 400 or 600 nm. The addition of 0.05% (w/v) BCN or greater caused a drop in turbidity for solutions heated at 70-90 degrees C. In contrast, inhibition was observed in BLG-ACN mixtures at 70 degrees C but not at > or =75 degrees C. Moreover, prolonged heating (90 min) of BLG with 2% (w/v) BCN (pH 6.0) at 90 degrees C produced a clear solution while BLG-ACN solutions formed translucent gels after heating for 15 min. The weight-averaged molar mass and root-mean-square (rms) radius of soluble aggregates were determined by size exclusion chromatography in conjunction with multiangle laser light scattering (SEC-MALS). SEC-MALS confirmed the turbidity results by showing that the BLG-BCN mixture (8% w/v protein) produced aggregates with lower molar mass and smaller rms radius (majority 20-40 nm). These results showed that BCN is a feasible component to stabilize higher concentrations of whey proteins in beverages.  相似文献   

18.
The aim of this study was to determine if peptides could interact with beta-lactoglobulin (beta-LG) and what the physicochemical conditions promoting their interaction with the protein are. The binding of negatively charged (beta-LG 125-135 and 130-135), positively charged (beta-LG 69-83 and 146-149), and hydrophobic (alphaS1-CN 23-34 and beta-LG 102-105, both bioactive peptides) peptides to bovine beta-LG was determined using an ultrafiltration method under different physicochemical conditions: pH 3.0, 6.8, and 8.0; buffers of 0.05 and 0.1 M; 4, 25, and 40 degrees C; beta-LG/peptide ratios of 1:5 and 1:10. At pH 3.0, none of the peptides interacted with beta-LG at any temperature, buffer molarity, or beta-LG/peptide ratio probably due to electrostatic repulsions between the highly protonated species. At pH 6.8 and 8.0, charged peptides beta-LG 130-135, 69-83, and 146-149 bound to beta-LG under some physicochemical conditions, possibly by nonspecific binding. However, both hydrophobic peptides probably bind to the inner cavity (beta-barrel) of beta-LG, provoking the release of materials absorbing at 214 nm. Given the known biological activities of the hydrophobic peptides used in this study (opioid and ACE-inhibitory activities), their binding to beta-LG may be relevant to a better understanding of the physiological function of the protein.  相似文献   

19.
It is of nutritional significance to fortify processed dairy products (e.g., cheese, yogurt, and ice cream) with vitamin D3; however, the inherent complexity of these foods may influence the stability and bioavailability of this nutrient. In the present study, the interactions of vitamin D3 with beta-lactoglobulin A and beta-casein were investigated under various environmental conditions (i.e., pH and ionic strength) using fluorescence and circular dichroism spectroscopic techniques. The results indicated that vitamin D3 was bound to both beta-lactoglobulin A and beta-casein depending on the solution conditions. The apparent dissociation constants ranged from 0.02 to 0.29 microM for beta-lactoglobulin A, whereas the beta-casein apparent dissociation constants ranged from 0.06 to 0.26 microM. The apparent mole ratios were also comparable, i.e., 0.51-2.04 and 1.16-2.05 mol of vitamin D3 were bound per mole of beta-lactoglobulin A and beta-casein, respectively. It was concluded that these interactions may strongly influence vitamin D3 stability and, hence, bioavailability in processed dairy products.  相似文献   

20.
This paper deals with the influence of different levels of three pectins, low-methylated pectin (LMP), high-methylated pectin (HMP), and low-methylated and amidated pectin (LMA), on the in vitro gastric hydrolysis of beta-lactoglobulin (beta-lg). Proteolysis by pepsin consisted of a 2-h progressive reduction of pH. A turbidity measurement of beta-lg-pectin mixtures was carried out during the proteolysis. The influence of pectins on pepsin enzymatic activity was also evaluated. beta-Lg was resistant to peptic digestion. The presence of each of the three pectins at a concentration of 50 wt % increased the N release at all pH values considered, despite a significant inhibition of the pepsin enzymatic activity with the pectins. The turbidity of beta-lg solutions during proteolysis was reduced by the addition of pectins, because of the formation of electrostatic complexes between this protein and pectins. The increase of N release could be a false positive result due to the difficulty of precipitating protein by trichloroacetic acid because of the formation of electrostatic complexes demonstrated by the decrease of turbidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号