首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
不同施肥模式对土壤氮循环功能微生物的影响   总被引:2,自引:1,他引:2  
[目的]微生物在土壤氮循环过程中发挥着重要作用.通过研究农田土壤氮循环过程中不同功能微生物群落基因丰度对施肥模式的响应及其关键影响因素,探讨不同施肥模式调控下氮素转化的微生物学机制,为改善农业生产中氮素的管理策略提供理论依据.[方法]田间试验始于2011年,试验地点位于江苏省常州市溧阳市南渡镇,供试土壤为白土型水稻土,...  相似文献   

2.
土壤微生物多样性的科学内涵及其生态服务功能   总被引:39,自引:2,他引:39  
林先贵  胡君利 《土壤学报》2008,45(5):892-900
土壤微生物多样性是指土壤生态系统中所有的微生物种类、它们拥有的基因以及这些微生物与环境之间相互作用的多样化程度,当前研究主要集中在物种多样性、遗传多样性、结构多样性及功能多样性等4个方面。土壤微生物多样性作为全球性研究迄今仅有10余年时间,但已呈现对象广、内容多、水平宽、方法新等特点,特别是分子生物学技术在很大程度上决定并体现了其研究水平和发展进程。然而,如何进一步改进土壤微生物的培养技能、加强土壤宏基因组学分析与应用、耦合土壤微生物多样性与生态功能、揭示土壤微域结构的影响机制是土壤微生物多样性研究的4个关键科学问题。当然,土壤微生物多样性的生态系统服务功能是其根本价值所在,主要包括有机物分解、物质循环和生态安全调控等3个方面。今后,土壤微生物多样性研究应紧紧围绕其与土壤生物过程、生态服务功能三者之间的联系,着重建立土壤微生物多样性的研究指标和方法体系,进而阐明人类生产活动影响土壤微生物多样性及其生态服务功能的土壤生物过程。  相似文献   

3.
土壤微生物DNA木聚糖酶基因多样性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用国产硅胶Gk254(60型)代替进口Glass bead的改良方法抽提土壤微生物DNA,然后设计了一对扩增木聚糖酶基因片段的新简并引物,对抽提的土壤微生物DNA进行PCR扩增。扩增片段连接pMD18T载体,转化大肠杆菌,重组片段通过酶切进行RFLP分析后,测序分析得到10个木聚糖酶基因片段。对所得片段翻译的氨基酸序列进行BLAST分析表明有8个片段与来自放线菌的木聚糖酶具有较高的同源性,2个与假单胞菌的木聚糖酶具有较高的同源性。所得10个木聚糖酶片段的氨基酸序列同源性比较显示,第27个氨基酸均为天冬酰胺(N),暗示这些来自土壤微生物DNA的基因片段编码耐碱的木聚糖酶。通过构建系统进化树,发现扩增的木聚糖酶片段之间的相似性均在70%以上。  相似文献   

4.
随着人口增长对粮食需求的不断提高,人类对自然生态系统扰动频繁,生态覆被/土地利用变化伴随着土壤活性氮库、氮形态组分及氮素内循环过程的改变,直接影响生态系统的持续与稳定,进而引起全球气候变暖,生物多样性减少等诸多生态环境问题。生态覆被/土地利用变化是全球生态系统变化的重要内容。本综述探讨了活性氮的基本概念及其引发的环境效应,国内外自然生态系统中森林与草地间转换、自然生态系统开垦为农田、弃耕撂荒或退耕还林还草、城市化发展等生态覆被/土地利用变化对土壤氮库消长、氮矿化产物形态变化以及影响氮循环的关键土壤微生物影响等,并探讨了制约氮循环的土壤微生物研究进展。指出农业开垦或农田弃耕撂荒会导致土壤全氮大幅度下降,同时引起土壤硝态氮(NO3--N)增加,造成环境活性氮增加的风险;退耕还林修复生态覆被过程中氮库完全恢复需要漫长的时间;运用现代微生物分子生态学的前沿技术是研究土壤氮循环对生态覆被/土地利用变化响应机理的关键。本综述为自然生态系统的保护与开发利用、退化生态系统的修复与重建以及人工生态系统的科学规划等提供了理论依据。  相似文献   

5.
氨基糖是土壤微生物细胞壁的组成部分,具有较高的稳定性和微生物异源性,作为微生物标识物在土壤有机质积累、微生物群落动态变化以及碳氮循环研究中多有应用.本文综述了氨基糖的种类、来源及其组分对土壤中有机质积累的影响,介绍了目前常用的氨基糖分析测定方法、应用技术,举例说明了以氨基糖为标识开展土壤、环境和生态学方面研究取得的主要...  相似文献   

6.
土壤微生物功能群及其研究进展   总被引:3,自引:1,他引:3  
功能群研究最早应用于植物生态学,后应用到微生物生态学中。微生物功能群指在物质流中具有特定生物学功能的微生物集合体,这种分类与生物分类学原则无关,只是指它的生物学功能相同或相近,如固氮微生物功能群、溶磷微生物功能群、氨化微生物功能群及纤维素降解微生物功能群等。国内外有关微生物功能群的研究报道主要涉及到草地、农田及森林等生态系统;研究微生物功能群的方法有应用选择性培养基进行分离培养,也有在新鲜土壤中接种特定底物并连续记录底物的利用情况,从而评价土壤原位具有特殊代谢功能的微生物生物量或利用分子生物学技术进行研究。微生物功能群的研究在工业、农业、环境治理、医学及基因工程方面均有重要的现实意义。笔者认为将有更多的学者将目光投向微生物功能群的研究。  相似文献   

7.
在温室盆栽条件下,采用Biolog微平板法和氯仿熏蒸浸提法,研究了玉米施用等养分量的无机肥、有机无机复混肥和生物复混肥后土壤微生物群落功能多样性及土壤微生物量的变化。结果表明:生物复混肥处理的土壤微生物平均颜色变化率(AWCD)、微生物群落Shannon指数(H)和微生物群落丰富度指数(S)均最高;施用生物复混肥可明显提高土壤微生物对碳源的利用率,尤其是多酚化合物类和糖类;不同处理土壤微生物碳源利用特征有一定差异,生物复混肥在第1主成分上的得分值为正值,其他各处理在第1主成分上的得分值基本上为负值,起分异作用的主要碳源是糖类和羧酸类。在玉米生长期间各处理土壤微生物量大致呈先升高后逐渐平稳的趋势,且土壤微生物量碳、氮、磷的含量均以生物复混肥处理最高,最高值分别为333.21mg.kg 1、53.02 mg.kg 1和22.20 mg.kg 1。研究表明,生物复混肥的施用比等养分量的有机无机复混肥处理能显著提高土壤微生物群落碳源利用率、微生物群落丰富度和功能多样性,显著增加土壤微生物量碳、氮、磷的含量,有利于维持良好的土壤微生态环境。  相似文献   

8.
土壤微生物多样性研究方法的进展   总被引:25,自引:4,他引:25  
焦晓丹  吴凤芝 《土壤通报》2004,35(6):789-792
对土壤微生物的4类研究方法即:传统微生物培养法、微生物标记物法、BIOLOGGN微平板法和微生物分子生物技术方法及其应用特点进行了简要的评述和分析,旨在通过比较寻求能够揭示土壤微生物群落结构的最佳方法。分子生物技术方法与传统研究方法等相结合将是大力推动土壤微生物研究的有效方式。  相似文献   

9.
土壤微生物作为碳氮循环过程的主要驱动者与作物生产和生态环境安全关系密切。目前,仅有少数基于单一氮循环过程的研究报导了功能基因的空间分布特征,缺乏关于氮循环关键过程微生物分布特征的耦联分析。本研究采用实时荧光定量PCR技术,对东北黑土农田土壤氮循环关键过程的固氮、氨氧化和反硝化过程功能基因丰度特征及对土壤因子的响应进行关联分析。研究发现,在低pH(4.5?5.0)土壤中,不同氮循环基因丰度均显著低于其他pH土壤样本。种植大豆的土壤nifH基因丰度显著高于种植玉米的土壤样本(分别高于60%和83%)。AOA amoA基因丰度显著高于AOB amoA基因丰度,AOA amoA与AOB amoA基因丰度的比值为3.1到91.0。氮循环功能基因丰度与土壤pH和TC之间存在显著的正相关关系(P < 0.01)。非度量多维尺度分析(NMDS)结果显示主要表征黑土区氮循环基因组成的NMDS1与土壤pH和TC显著正相关。方差分解分析(VPA)和随机森林分析(RF)结果显示土壤pH和TC是氮循环微生物基因丰度空间分布的最主要驱动因子。本研究发现除了土壤因子外,地理距离对农田土壤氮循环关键过程微生物分布也产生重要影响,为认识土壤微生物参与的农田生态系统的生物地球化学循环过程提供理论基础。  相似文献   

10.
在温室盆栽条件下,采用Biolog微平板技术,研究了玉米施用等养分量的无机肥、有机无机复混肥、生物复混肥后土壤微生物群落功能多样性及土壤酶活性的动态变化。结果表明,生物复混肥处理的微生物群落平均颜色变化率(AWCD)、微生物群落Shannon指数(H)、丰富度指数(S)和Shannon均匀度指数(E)均为最高;微生物群落主成分分析表明,不同施肥处理土壤微生物群落碳源利用特征有一定差异,PC1将生物复混肥与其他处理明显区分,生物复混肥处理分布在PC1的正方向,其他处理分布在PC1的负方向;起分异作用的主要碳源有糖类、羧酸类和氨基酸类;土壤蔗糖酶、脲酶活性均以生物复混肥处理最高,分别为72.74 mg glucose·g-1·(24 h)-1和1.15 mg NH3-N·g-1·(3 h)-1。研究表明,生物复混肥的施用比等养分量的有机无机复混肥处理能显著提高土壤微生物群落碳源利用率、微生物群落的丰富度和功能多样性,增强土壤蔗糖酶和脲酶活性。  相似文献   

11.
Amino sugars represent a major constituent of microbial cell walls and hydrolyzed soil organic matter. Despite their potential importance in soil nitrogen cycling, comparatively little is known about their dynamics in soil. The aim of this study was therefore to quantify the behaviour of glucosamine in two contrasting grassland soil profiles. Our results show that both free amino sugars and amino acids represented only a small proportion of dissolved organic N and C pool in soil. Based upon our findings we hypothesize that the low concentrations of free amino sugars found in soils is due to rapid removal from the soil solution rather than slow rates of production. Further, we showed that glucosamine removal from solution was a predominantly biotic process and that its half-life in soil solution ranged from 1 to 3 h. The rates of turnover were similar to those of glucose at low substrate concentrations, however, at higher glucosamine concentrations its microbial use was much less than for glucose. We hypothesized that this was due to the lack of expression of a low affinity transport systems in the microbial community. Glucosamine was only weakly sorbed to the soil's solid phase (Kd=6.4±1.0) and our results suggest that this did not limit its bioavailability in soil. Here we showed that glucosamine addition to soil resulted in rapid N mineralization and subsequent NO3 production. In contrast to some previous reports, our results suggest that free amino sugars turn over rapidly in soil and provide a suitable substrate for both microbial respiration and new biomass formation.  相似文献   

12.
The variability in the net ecosystem exchange of carbon (NEE) is a major source of uncertainty in quantifying global carbon budget and atmospheric CO2. Soil respiration, which is a large component of NEE, could be strongly influential to NEE variability. Vegetation type, landscape position, and site history can influence soil properties and therefore drive the microbial and root production of soil CO2. This study measured soil respiration and soil chemical, biological and physical properties on various types of temperate forest stands in Northern Wisconsin (USA), which included ash elm, aspen, northern hardwood, red pine forest types, clear-cuts, and wetland edges. Soil respiration at each of the 19 locations was measured six times during 1 year from early June to mid-November. These data were combined with two additional data sets from the same landscape that represent two smaller spatial scales. Large spatial variation of soil respiration occurred within and among each forest type, which appeared to be from differences in soil moisture, root mass and the ratio of soil carbon to soil nitrogen (C:N). A soil climate driven model was developed that contained quadratic functions for root mass and the ratio of soil carbon to soil nitrogen. The data from the large range of forest types and site conditions indicated that the range of root mass and C:N on the landscape was also large, and that trends between C:N, root mass, and soil respiration were not linear as previously reported, but rather curvilinear. It should be noted this function appeared to level off and decline at C:N larger than 25, approximately the value where microbial nitrogen immobilization limits free soil nitrogen. Weak but significant relationships between soil water and soil C:N, and between soil C:N and root mass were observed indicating an interrelatedness of (1) topographically induced hydrologic patterns and soil chemistry, and (2) soil chemistry and root production. Future models of soil respiration should address multiple spatial and temporal factors as well as their co-dependence.  相似文献   

13.
土壤复垦是矿区生态环境恢复和耕地总量平衡及质量提升的根本要求。本研究依托山西襄垣采煤塌陷区复垦定位试验基地,采用Biolog-ECO方法和荧光定量PCR技术,研究了不施肥(CK)、单施化肥(CF)、单施有机肥(M)和有机无机培肥(MCF)4种培肥措施下复垦4年和8年土壤微生物碳代谢功能多样性及氮代谢功能基因丰度的变化特征。结果表明,随复垦年限增加,单施有机肥较其他处理可显著提高复垦土壤微生物的总碳源利用能力;不同处理复垦土壤微生物碳源相对利用率总体表现为氨基酸类>糖类>聚合物类>羧酸类>双亲化合物类>胺类,其中单施有机肥更大程度上提高了羧酸类、氨基酸类和胺类碳源的利用率;复垦年限和培肥措施没有改变复垦土壤微生物优势度指数,但有机无机配施较其他处理可显著提高香浓指数(H′)和Pielou均匀度指数;不同处理复垦土壤氮转化功能基因丰度总体表现为amoA(AOA)> amoA(AOB)>nisS、nirK> nifH,5种功能基因丰度均为以有机无机培肥处理最高,且随复垦时间增加而增加;复垦土壤有机质含量与nirS、nirK、nifH基因丰度以及AWCD值存在显著相关性,相关系数在0.707~0.807,同时5种氮转化功能基因丰度均与玉米产量存在显著或极显著的相关性,相关系数在0.824~0.949。综上所述,单施有机肥可提高土壤有机质含量,进而增强了复垦土壤碳代谢强度,有机无机培肥则更有利于复垦土壤碳氮代谢功能多样性的提升,并促进作物产量形成。  相似文献   

14.
Shifts in oxic and anoxic conditions in soil are most frequently caused by water table fluctuations, heavy rain, snowmelt or flooding, with potentially significant impacts on microbial processes and the ability of soils to convert mineral nitrogen to nitrogen gases efficiently. The impact of oxic/anoxic cycles on nitrogen transformation rates was therefore explored in the upper layer (0-30 cm) of partially degraded peat soil. We hypothesized that high denitrification potential would be conserved due to the high organic matter content of this soil. Mineral nitrogen was applied to approximately 1-cm deep layers of homogenized soil in microcosms, with no external source of readily degradable carbon. Microcosms were subjected to three cycles, each consisting of an oxic phase of 8-11 days and an anoxic phase of 21-28 days. Approximately 2% of the ammonium load was lost through ammonia volatilization during oxic phases and the remainder was nitrified. The accumulated nitrate decreased soil pH from 8.0 to 6.8 before its transformation through denitrification. Nitrification and denitrification rates during the three oxic/anoxic cycles (approximately three months) were 2.9-3.2 kg N ha−1 d−1 and 1.0-2.3 kg N ha−1 d−1, respectively. Extrapolation of these values to 30-cm deep soil layers gave rates that were sufficient for complete transformation of at least 1700 kg N ha−1 of ammonium to nitrogen gases, which is ten-fold greater than the annual nitrogen application of 170 kg N ha−1 permitted by the European directive. Denitrification rates decreased linearly during the three cycles (from 36 ± 2 to 16 ± 1 μg N g−1 d−1 dry soil), projecting cessation of denitrification activity and CO2 production during the fifth cycle. Storage of peat soil at 4 °C most probably allowed slow degradation of organic matter that was completely oxidized to CO2 after the soil was exposed to higher temperature (28 °C). Storage of soil for one year did not affect nitrification rate, but reduced denitrification rate, unless soil was amended with a readily degradable carbon source. The data suggest that, despite the high carbon content of this soil, it cannot sustain transformations of high N loads to nitrogen gases for prolonged periods without amendment with readily available carbon.  相似文献   

15.
长期有机养分循环利用对红壤稻田土壤供氮能力的影响   总被引:2,自引:1,他引:2  
通过15年的田间定位试验结合盆栽试验,研究了长期有机养分循环利用和不同化肥配施对红壤稻田土壤供氮能力的影响。结果表明,土壤有机碳、全氮、微生物生物量氮(MB-N)和土壤氮的矿化量与生物吸氮量有极显著的正相关关系,是良好的土壤供氮能力指标。长期有机养分循环利用或配合化肥施用能显著提高土壤有机碳、全氮含量和氮的矿化量,提高幅度分别为20.1%4~0.9%、0.460~.60.g/kg和55.0%(6周);明显提高土壤MB-N含量,提高幅度平均为70.3%。长期纯化肥处理对土壤碳、氮库的积累和氮的矿化量的提高作用甚微。盆栽试验表明,长期施用氮肥和氮、磷、钾肥土壤供氮量提高量极小,与长期不施肥相比提高幅度分别为2.1%和6.2%,而有机养分循环利用能显著提高土壤供氮量,提高幅度为33.7%8~9.0%。随着有机养分循环利用和NPK肥配合程度的提高,土壤供氮量提高幅度呈上升的趋势。  相似文献   

16.
Three soil types-Calcaric Phaeozem, Eutric Cambisol and Dystric Lithosol-in large container pots were experimentally contaminated with heavy metals at four different levels (light pollution: 300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd; medium pollution: twofold concentrations; heavy pollution: threefold concentrations; uncontaminated control). We investigated the prognostic potential of 16 soil microbial properties (microbial biomass, respiration, N-mineralization, 13 soil enzymes involved in cycling of C, N, P and S) with regard to their ability to differentiate the four contamination levels. Microbial biomass and enzyme activities decreased with increasing heavy metal pollution, but the amount of decrease differed among the enzymes. Enzymes involved in the C-cycling were least affected, whereas vartous enzyme activities related to the cycling of N, P and S showed a considerable decrease in activity. In particular, arylsulfatase and phosphatase activities were dramatically affected. Their activity decreased to a level of a few percent of their activities in the corresponding unpolluted controls. The data suggest that aside from the loss of rare biochemical capabilities-such as the growth of organisms at the expense of aromatics (Reber 1992)-heavy metal contaminated soils lose very common biochemical propertities which are necessary for the functioning of the ecosystem. Cluster analysis as well as discriminant analysis underline the similarity of the enzyme activity pattern among the controls and among the polluted soils. The trend toward a significant functional diversity loss becomes obvious already at the lowest pollution level. This implies that concentrations of heavy metals in soils near the current EC limits will most probably lead to a considerable reduction in decomposition and nutrient cycling rates. We conclude that heavy metal pollution severely decreases the functional diversity of the soil microbial community and impairs specific pathways of nutrient cycling.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

17.
Proteins represent the dominant input of organic N into most ecosystems and they also constitute the largest store of N in soil organic matter. The extracellular protease mediated breakdown of proteins to amino acids therefore represents a key step regulating N cycling in soil. In this study we investigated the influence of a range of environmental factors on the rate of protein mineralization in a grazed grassland and fallow agricultural soil. The protein turnover rates were directly compared to the rates of amino acid mineralization under the same conditions. Uniformly 14C-labelled soluble protein and amino acids were added to soil and the rate of 14CO2 evolution determined over 30 d. Our results indicate that the primary phase of protein mineralization was approximately 20 ± 3 fold slower that the rate of amino acid mineralization. The addition of large amounts of inorganic NO3 and NH4+ to the soil did not repress the rate of protein mineralization suggesting that available N does not directly affect protease activity in the short term. Whilst protein mineralization was strongly temperature sensitive, the presence of plants and the addition of humic and tannic acids had relatively little influence on the rate of soluble protein degradation in this fertile grassland soil. Our results suggests that the extracellular protease mediated cleavage of proteins to amino acids rather than breakdown of amino acids to NH4+ represents the limiting step in soil N cycling.  相似文献   

18.
Abstract

Corn residue grazing can provide a valuable and cost effective means of feeding cattle and is a common practice in most corn producing states. Mechanical means of residue removal (baling) is also often practiced as a means of harvesting cattle feed. However, there are concerns about the effects of management practices that remove crop residue on soil processes such as compaction, aggregation, and N cycling. To study these concerns, an experiment with four treatments including control, light grazing, heavy grazing, and baling was carried out for 5?years at the University of Nebraska-Lincoln Water Resources Field Laboratory near Brule, NE. Soil penetration resistance was measured after 3, 4, and 5?years of residue removal. Wind erodible fraction, mean weight diameter of dry aggregates, and soil total N were measured after 5?years. Corn yields were determined throughout the study. Results indicate that light grazing showed little or no difference from the no residue removal treatment, but heavy grazing and baled treatments often had higher penetration resistance, indicating that high rates of residue removal may increase risks of soil compaction. However, compaction did not appear to be cumulative over time. No significant differences were observed in wind erodible fraction and dry aggregate mean weight diameter. However, there were trends that suggest heavy grazing and baling may, in the long term, reduce dry aggregate stability, increasing wind erosion potential. Results also show that in the surface 0–2.5?cm grazing animals may increase soil total N and that baling residue may decrease soil N content. There was no impact on corn yields throughout the study. Overall, corn residue grazing and baling appear to have little or no adverse effects on soil compaction, aggregation, or nitrogen cycling after 5?years.  相似文献   

19.
Some microbial nitrogen (N) cycling processes continue under low soil moisture levels in drought-adapted ecosystems. These processes are of particular importance in winter cropping systems, where N availability during autumn sowing informs fertilizer practices and impacts crop productivity. We evaluated the organic and inorganic N-cycling communities in a key cropping soil (Vertosol), using a controlled-environment incubation study that was designed to model the autumn break in south Australian grain growing regions. Soils from wheat, lucerne, and green manure (disced-in vetch) rotations of the Sustainable Cropping Rotations in Mediterranean Environments trial (Victoria, Australia) were collected during the summer when soil moisture was low. Microbial community structure and functional capacity were measured both before and after wetting (21, 49, and 77 days post-wetting) using terminal restriction fragment length polymorphism measures of bacterial and fungal communities, and quantitative PCR of nitrogen cycling genes. Quantified genes included those associated with organic matter decomposition (laccase, cellobiohydrolase), mineralization of N from organic matter (peptidases) and nitrification (bacterial and archaeal ammonia monooxygenase and nitrite oxidoreductase). In general, the N cycling functional capacity decreased with soil wetting, and there was an apparent shift from organic-N cycling dominance to autotrophic mineral-N cycling dominance. Soil nitrate levels were best predicted by laccase and neutral peptidase genes under drought conditions, but by neutral peptidase and bacterial ammonia monooxygenase genes under moist conditions. Rotation history affected both the structural and functional resilience of the soil microbial communities to changing soil moisture. Discing in green manure (vetch) residues promoted a resilient microbial community, with a high organic-N cycling capacity in dry soils. Although this was a small-scale microcosm study, our results suggest that management strategies could be developed to control microbial organic-N processing during the summer fallow period and thus improve crop-available N levels at sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号