首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Litterfall, decomposition, and N release in 5-year-old and 8-year-old plantations of Casuarina equisetifolia (Forst.) in the dry tropical region of the Vindhyan plateau were studied during 1989–1990. Maximum litterfall occurred in May. The total litterfall ranged from 7.2 to 9.9t ha-1 year-1 in the 5-year-old stand and from 11.3 to 12.7t ha-1 year-1 in the 8-year-old stand over the 2-year period. Photosynthetic branchlets contributed 87–95% to the total litter. The relative decomposition rates of litter components of the ash-free mass were highest in the rainy months (4.7 to 9.9mg g-1 day-1) followed by winter (2.8 to 3.6 mg g-1 day-1) and lowest in the summer months (1.7 to 3.0 mg g-1 day-1). Similar patterns were observed for N release. The annual decay constant was highest for cone litter and lowest for photosynthetic branchlets. During decomposition, the photosynthetic branchlets showed N immobilization in November and April, the twig litter in March, and the roots in January and February. N release per unit area (g m-2) was maximum from the photosynthetic branchlets (5.3–6.3) followed by cones (4.4) > roots (3.4) > twigs (2.6–3.2). The combination of the litter C:N ratio, moisture, and temperature with the relative decomposition rate in a multiple regression analysis explained 66–84% of the variability in mass loss and 58–66% of the variability in N release.  相似文献   

2.
Summary Lumbricus festivus and L. castaneus consume dung. In the field, below cow pats, their gut loads were about 0.15 and 0.14 g dry weight g-1 ash-free dry weight of worm, respectively, but in free soil the loads were higher, about 0.21 and 0.19 g g-1 ash-free dry weight of worm. The gut contents of dung were lighter than the total ingested material, at about 0.10 and 0.07 g dry weight g-1 ash-free dry weight of worm, respectively. Field experiments showed that the retention time of dung ranged from >9 to 15 h for L. festivus, and from >3 to 6 h for L. castaneus. The experiments also indicated that L. festivus exploited 20- and 36-day-old dung in different ways, since the gut load was lower in those worms consuming 20-day-old dung than in those consuming 36- to 40-day-old dung. On the basis of these results the calculated consumption rate for L. festivus is 0.08 g dung day-1 g live weight of worm-1, and for L. castaneus 0.15 g dung day-1, with retention times assumed to be at maximum, 15 h, for L. festivus and 6 h for L. castaneus. These calculations indicate that our field population of worms (75 g m-2) consumes 10–15 t dung ha-1 180 days-1, corresponding to the amount of dung produced by 2–3 dairy cows.  相似文献   

3.
The earthworm population in a winter cereal field in Ireland was studied over a 3-year-period and its effects on soil and N turnover were assessed. The mean annual population density was 346–471 individuals m-2 and the mean biomass was 56.9–61.2 g m-2. Twelve species were recorded, the most abundant being Allolobophora chlorotica followed by Aporrectodea caliginosa, and 242 mg at 5°C to 713 mg at 10°C in the case of juvenile Lumbricus terrestris. Gut contents (dry mass of soil) comprised 6.7–15.5% of the A. caliginosa live mass, and 9.7–14.7% of the Lumbricus terrestris mass. Annual soil egestion by the field population was estimated as 18–22 kg m-2. Tissue production ranged from 81.7 to 218.5 g m-2, while N turnover resulting from mortality was calculated as 1.5–3.9 g m-2 depending on the year and the method of calculation. Earthworms were estimated to contribute an additional 3.4–4.1 g mineral N to the soil through excretion, mucus production, and soil ingestion. Independent estimates of N output via mucus and excretion derived from 15N laboratory studies with Lumbricus terrestris were 2.9–3.6 g m-2 year-1.  相似文献   

4.
Summary In an experiment performed under greenhouse conditions, four cultivars of Phaseolus vulgaris L. (Venezuela-350; Aroana; Moruna; Carioca) were inoculated with three Rhizobium leguminosarum biovar phaseoli strains (C-05; C-40 = CIAT 255; C-89 = CIAT 55) and were fertilized with an N-free mineral nutrient solution. The plants were harvested 25, 40, and 55 days after emergence and the following paramenters were evaluated: Nitrogenase activity of nodulated roots, H2 evolution by the nodules; relative efficiency of nitrogenase; respiration rates of nodulated roots and detached nodules; dry weight and total N of stems, leaves, pods, roots, and nodules. Generally the bean cultivar, Rhizobium strain, had an effect and there was an interaction effect with both symbiotic partners, on all parameters. On average, nodules represented 23% of total root respiration but the best symbiotic combinations showed lower ratios of C respired to N fixed. The maximum N-assimilation rate (between 40 and 55 days after emergence) of 11.93 mg N plant–1 day–1 occurred with the symbiotic combination of Carioca × C-05, while the poorest rate of 0.55 mg N plant–1 day–1 was recorded with Venezuela-350 × C-89. The best symbiotic combinations always showed the highest relative nitrogenase efficiency, but the differences in N2-fixation rates cannot be explained solely in terms of conservation of energy by recycling of H2. This requires further investigation.  相似文献   

5.
The aim of this study was to investigate temporal and spatial patterns of denitrification enzyme activity (DEA) and nitrous oxide (N2O) fluxes in three adjacent riparian sites (mixed vegetation, forest and grass). The highest DEA was found in the surface (0–30 cm) soil and varied between 0.7±0.1 mg N kg–1 day–1 at 5°C and 5.9±0.4 mg N kg–1 day–1 at 15°C. There was no significant difference (P >0.05) between the DEA in the uppermost (0–30 cm and 60–90 cm) soil depths under different vegetation covers. In the two deepest (120–150 cm and 180–210 cm) soil depths the DEA varied between 0.0±0.0 mg N kg–1 day–1 at 5°C and 4.4±0.9 mg N kg–1 day–1 at 15°C and was clearly associated with the accumulation of buried organic carbon (OC). Two threshold values of OC were observed before DEA started to increase significantly, namely 5 and 25 g OC kg–1 soil at 10–15°C and 5°C, respectively. In the three riparian sites N2O fluxes varied between a net N2O uptake of –0.6±0.4 mg N2O-N m–2 day–1 and a net N2O emission of 2.5±0.3 mg N2O-N m–2 day–1. The observed N2O emission did not lead to an important pollution swapping (from water pollution to greenhouse gas emission). Especially in the mixed vegetation and forest riparian site highest N2O fluxes were observed upslope of the riparian site. The N2O fluxes showed no clear temporal trend.  相似文献   

6.
Biosolids, mainly from textile industries and the rest from households, were vermicomposted with Eisenia fetida, cow manure and oat straw for 2 months at three different moisture contents (60%, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida. The vermicompost with the best stability and maturity and a weight loss of 18% was obtained with 1,800 g biosolid, no straw and 800 g manure at 70% water content. This vermicompost had the following properties: pH 7.9; organic C content of 163 g kg–1; an electrolytic conductivity of 11 mS cm–1; a humic-to-fulvic acid ratio of 0.5 (HA/FA); total N content of 9 g kg–1; water soluble C (Cw) less than 0.5%; cation exchange capacity of 41 cmolc kg–1; a respiration rate of 188 mg CO2-C kg–1 compost-C day–1; a NO3/CO2 ratio greater than 8; and a NH4+/NO3 ratio lower than 0.16. The vermicompost gave a germination index for cress (Lepidium sativum) of 80% after 2 months while the earthworm production increased 1.2-fold and volatile solids decreased five times. In addition, the vermicompost contained less than 3 CFU g–1Salmonella spp., no fecal coliforms and Shigella spp. and no eggs of helminths. Concentration of sodium was 152 mg kg–1 dry compost, while concentrations of chromium, copper, zinc and lead were below the limits established by the USEPA.  相似文献   

7.
Summary Lumbricus terrestris L. juveniles confined in nylon mesh bags grew at mean rates of 6–12 mg ind–1 day–1 in reclaimed peat grassland soil, while the growth rates of Aporrectodea caliginosa (Sav.) juveniles were 1.5–2.1 mg ind–1 day–1. Earthworm population densities exceeding 700 m2 had become established within 1 year adjacent to sods transplanted from an old pasture, while microplots enclosed in nylon mesh cages had mean population densities of 318–408 earthworms m–2 and biomass of 89–111 g m–2 3–4 1/2 years after inoculation. Herbage yields were 25% greater in the 2nd year and 49% greater in the 3rd year in earthworm-inoculated microplots which received an annual application of cattle slurry compared with similarly fertilized, non-inoculated cages.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

8.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   

9.
Rhizosphere soil microbial index of tree species in a coal mining ecosystem   总被引:1,自引:0,他引:1  
Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Among the tree species studied, Aegle marmelos recorded the highest value for MBC (590 mg kg−1), urease (190.5 μg NH4+-N g−1 h−1), catalase (513 μg H2O2 g−1 h−1), dehydrogenase (92.3 μg TPF g−1 h−1), phenol oxidase (0.057 μM g−1 h−1) and BSR/AMBC (0.498 mg CO2-C mg biomass−1 day−1); Tamarindus indica for mineralizable N (69.5 mg kg−1); Morus alba for catalase (513 μg H2O2 g−1 h−1) and phenol oxidase (0.058 μM g−1 h−1); Tectona grandis for peroxidase (0.276 μM g−1 h−1), AMBC/MBC (99.4%), and BSR/MBC (0.108 mg CO2-C mg biomass−1 day−1); Ficus religiosa for AMBC (128.4 mg kg−1) and BSR (12.85 mg CO2-C kg−1 day−1); Eugenia jambolana for MBC/SOC (8.03%); Butea monosoperma for AMBC/SOC (1.32%) and Azadirachta indica for BSR/AMBC (0.1134 mg CO2-C mg biomass−1 day−1). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0–1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T. indica (0.488), Morus alba (0.415), F. religiosa (0.291), Eucalyptus sp. (0.232) and T. grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.  相似文献   

10.
The effect of different residual bulking agents (paper, cardboard, grass clippings, pine needles, sawdust and food wastes) in mixtures with sewage sludge (1:1 dry weight) on the growth and reproduction of Eisenia andrei, Bouché 1972 was studied in smallscale laboratory experiments with batches of sixty earthworms. The maximum weight achieved and the highest growth rate were attained in the mixture with food waste (755±18 mg and 18.6±0.6 mg day−1 respectively) whereas the smallest size and the lowest growth rate was achieved in the mixture of sewage sludge with sawdust (572±18 mg and 11±0.7 mg day−1 respectively). The earthworms showed much higher reproductive rates in the paper and cardboard mixtures (2.82±0.39 and 3.19±0.30 cocoons earthworm−1 week−1 respectively) compared to the control with sewage sludge alone (0.05±0.01 cocoons earthworm−1 week−1).  相似文献   

11.
We studied the effects of aggregates of different sizes on the soil microbial biomass. The distribution of aggregate size classes (<2, 2–4, 4–10, >10 mm) in the upper mineral soil horizon (Ah layer) was very different in three sites (upper, intermediate, lower) in a beechwood (Fagus sylvatica) on a basalt hill (Germany). Aggregates of different sizes (<2, 2–4, 4–10 mm) contained different amounts of C and N but the C:N ratios were similar. C and N contents were generally higher in smaller aggregates. The maximum initial respiratory response by microorganisms in intact aggregates and in aggregates passed through a 1-mm sieve declined with the aggregate size, but the difference was more pronounced in intact aggregates. Disruption of aggregates generally increased this response, particularly in 4- to 10-mm aggregates in the lower site. Basal respiration differed strongly among sites, but was similar in each of the aggregate size classes. Aggregate size did not significantly affect the specific respiration (g O2 g–1 microbial C h–1) nor the microbial: organic C ratio, but these parameters differed among sites. Microbial growth was increased strongly by passing the soil through a 1-mm sieve in each of the aggregate materials. The growth of microorganisms in disrupted aggregates was similar, and the effect of aggregate disruption depended on the growth of microorganisms in intact aggregates.  相似文献   

12.
Summary Potential P and C mineralization rates were determined in a 12-week laboratory incubation study on subarctic forest and agricultural soil samples with and without N fertilizer added. There was no significant difference in net inorganic P produced between N fertilized and unfertilized soils. The forest soil surface horizons had the highest net inorganic P mineralized, 32 mg P kg-1 soil for the Oie and 17 mg P kg-1 soil for the Oa. In the cropped soils net inorganic P immobilization started after 4 weeks and lasted through 12 weeks of incubation. Cumulative CO2–C evolution rates differed significantly among soils, and between fertilizer treatments, with the N-fertilized soils evolving lower rates of CO2–C than the unfertilized soils. Soils from the surface horizons in the forest evolved the highest rates of CO2–C (127.6 and 89.4 mg g-1 soil for the Oie and Oa horizons, respectively) followed by the cleared uncropped soil (42.8 mg g-1 soil C), and the cropped soils (25.4 and 29.0 mg g-1 soil C). In vitro soil respiration rates, or potential soil organic matter decomposition rates, decreased with increasing time after clearing and in accord with the degree of disturbance. Only soils with high potential C mineralization rates and high organic P to total P ratios, mineralized P by the end of the study. Mineralizable P appeared to be associated with readily mineralizable organic C.  相似文献   

13.
In a sandy soil containing 15N-labeled active (soluble and easily degradable) and non-labelled passive (recalcitrant) fractions of soil organic matter, the rate of net N mineralization (solubilization) was determined during a 55-day incubation at 25°C, 63% water-holding capacity and different levels of soil extracellular-enzyme activities. The active fraction of soil N was labelled by preincubation (at 5°C and 74% water-holding capacity for 6 months) of soil amended with 15N-labeled plant material. Increases in the activity of extracellular-enzymes in soil were induced by the addition of glucose and KH2PO4 at the beginning of the incubation. The results show that the contents of total soluble N (NO 3 –N+NH 4 + –N + soluble organic N) were significantly higher in glucose-amended soil compared to the unamended soil. The increases in soluble N in soil amended with 1 and 2 mg glucose g-1 dry soil corresponded to a mean rate of net solubilization of 7.9±1.4 and 18.8±0.7 nmol N g-1 dry soil day-1, respectively. The mean rate of net N solubilization (3.6±1.0 nmol N g-1 dry soil day-1) in unamended soil was significantly lower than those of glucose amended soils. The content of 15N in total soluble N in soil amended with 2 mg glucose, for example, was diluted from 3.11±0.08 atom% before the incubation to 2.77±0.03 atom% after 55 days. This indicates that 89% of soluble-N accumulated in soil by the end of the incubation originated from the active fraction of soil N and the rest, estimated at 11%, originated from the passive fraction. The activities of soluble and total proteases as well as the rate of N solubilization in the soil increased with the application of glucose. The activity of these extracellular enzymes was highly correlated with the rates of net N solubilization. Thus, increases in extracellular-enzyme activities in glucose-amended soils had a priming effect on the solubilization of 15N-labeled active and non-labeled passive fractions of soil organic N. It seems that the activity of extracellular-enzymes expressed in terms of total and soluble protease activities could be a rate-limiting factor in the processes of soil organic N solubilization.  相似文献   

14.
Summary The earthworms Lumbricus rubellus (Hoffmeister) and Dendrobaena octaedra (Savigny) were studied in the laboratory to determine their effects on decomposition and nutrient cycling in coniferous forest soil. CO2 evolution was monitored, and pH, PO 4 3– –P, NH 4 + –N, NO 3 –N, total N, and total C in the leaching waters were measured. After three destructive samplings, numbers of animals, mass loss, pH, and KCl-extractable nutrients were analysed.The earthworms clearly enhanced the mass loss of the substrate, especially that of litter. L. rubellus stimulated microbial respiration by 15–18%, whereas D. octaedra stimulated it only slightly. The worms significantly raised the pH of the leaching waters and the humus; L. rubellus raised the value by 0.2–0.6 pH units and D. octaedra by 0.1–0.4 units. Both worms increased N mineralization. Although the biomass of both worms decreased during the experiment, the N released from decomposing tissues did not explain the increase in N leached in the presence of earthworms. The worms influenced the level of PO 4 3– –P only slightly.  相似文献   

15.
Summary Mature (flowering) tobacco (Nicotiana tabacum cv. PBD6, Nicotiana rustica cv. Brasilia) and maize (Zea mays cv. INRA 260) plants were grown in an acid sandy-clay soil, enriched to 5.4 mg Cd kg–1 dry weight soil with cadmium nitrate. The plants were grown in containers in the open air. No visible symptoms of Cd toxicity developed on plant shoots over the 2-month growing period. Dry-matter yields showed that while the Nicotiana spp. were unaffected by the Cd application the yield of Z. mays decreased by 21%. Cd accumulation and distribution in leaves, stems and roots were examined. In the control treatment (0.44 mg Cd kg–1 dry weight soil), plant Cd levels ranged from 0.4 to 6.8 mg kg–1 dry weight depending on plant species and plant parts. Soil Cd enrichment invariably increased the Cd concentrations in plant parts, which varied from 10.1 to 164 mg kg–1 dry weight. The maximum Cd concentrations occurred in the leaves of N. tabacum. In N. rustica 75% of the total Cd taken up by the plant was transported to the leaves, and 81% for N. tabacum irrespective of the Cd level in the soil. In contrast, the Cd concentrations in maize roots were almost five times higher than those in the leaves. More than 50% of the total Cd taken up by maize was retained in the roots at both soil Cd levels. The Cd level in N. tabacum leaves was 1.5 and 2 times higher at the low and high Cd soil level, respectively, than that in N. rustica leaves, but no significant difference was found in root Cd concentrations between the two Nicotiana spp.Cd bioavailability was calculated as the ratio of the Cd level in the control plants to that in the soil or as the ratio of the additional Cd taken up from cadmium nitrate to the amount of Cd applied. The results showed that the plant species used can be ranked in a decreasing order as follows: N. tabacum > N. rustica > Z. mays.  相似文献   

16.
Agricultural factors affecting methane oxidation in arable soil   总被引:9,自引:0,他引:9  
CH4 oxidation activity in a sandy soil (Ardoyen) and agricultural practices affecting this oxidation were studied under laboratory conditions. CH4 oxidation in the soil proved to be a biological process. The instantaneous rate of CH4 consumption was in the order of 800 mol CH4 kg–1 day–1 (13 mg CH4 kg–1 day–1) provided the soil was treated with ca. 4.0 mmol CH4 kg–1 soil. Upon repeated supplies of a higher dose of CH4, the oxidation was accelerated to a rate of at least 198 mg CH4 kg–1 day–1. Addition of the plant-growth promoting rhizopseudomonad strains Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15 significantly decreased the CH4 oxidation by 20 to 30% during a 5-day incubation. However, with further incubation this suppression was no longer detectable. Growing maize plants prevented the suppression of CH4 oxidation. The numbers of methanotrophic bacteria and fungi increased significantly after the addition of CH4, but there were no significant shifts in the population of total bacteria and fluorescent pseudomonads. Drying and rewetting of soil for at least 1 day significantly reduced the activity of the indigenous methanotrophs. Upon rewetting, their activity was regained after a lag phase of about 3 days. The herbicide dichlorophenoxy acetic acid (2,4-D) had a strong negative effect on CH4 oxidation. The application of 5 ppm increased the time for CH4 removal; at concentrations above 25 ppm 2,4-D CH4–oxidizing activity was completely hampered. After 3 days of delay, only the treatments with below 25 ppm 2,4-D showed recovery of CH4–oxidizing activity. This finding suggests that it can be important to include a CH4–removal bioassay in ecotoxicology studies of the side effects of pesticides. Changes in the native soil pH also affected the CH4–oxidizing capacity. Permanent inhibition occurred when the soil pH was altered by 2 pH units, and partial inhibition by 1 pH unit change. A rather narrow pH range (5.9–7.7) appeared to allow CH4 oxidation. Soils pre-incubated with NH 4 + had a lower CH4–removal capacity. Moreover, the nitrification inhibitor 2-chloro-6-trichloromethyl pyridine (nitrapyrin) strongly inhibited CH4 oxidation. Probably methanotrophs rather than nitrifying microorganisms are mainly responsible for CH4 removal in the soil studied. It appears that the causal methanotrophs are remarkably sensitive to soil environmental disturbances.  相似文献   

17.
Understanding cover crop influences on N availability is important for developing N management strategies in conservation tillage systems. Two cover crops, cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.), were evaluated for effects on N availability to cotton (Gossypium hirsutum L.) in a Typic Kanhapludult soil at Watkinsville, Ga. Seed cotton yields following clover and rye were 882 kg ha–1 and 1,205 kg ha–1, respectively, in 1997 and were 1,561 kg ha–1 and 2,352 kg ha–1, respectively, in 1998. In 1997, cotton biomass, leaf area index, and N were greater on some dates following crimson clover than following rye but not in 1998. During 1997, net soil N mineralized increased with time in both systems, but a similar response was not observed in 1998. Net soil N mineralization rates following crimson clover and rye averaged, respectively, 0.58 kg and 0.34 kg N ha–1 day–1 in 1997 and 0.58 kg and 0.23 kg N ha–1 day–1 in 1998. Total soil N mineralized during the cotton growing season ranged from 60 kg ha–1 to 80 kg ha–1 following crimson clover and from 30 kg ha–1 to 50 kg ha–1 following rye. Soil N mineralization correlated positively with heat units and cumulative heat units. Net soil N mineralization rates were 0.023 kg ha–1 heat unit–1 once net mineralization began. Soil heat units appeared to be a useful tool for evaluating N mineralization potential. Nearly 40% of the rye and 60% of the clover biomass decomposed during the 6 weeks prior to cotton planting, with nearly 35 kg N ha–1 mineralized from clover.  相似文献   

18.
The cell content of 12 bacterial phospholipid fatty acids (PLFA) was determined in bacteria extracted from soil by homogenization/centrifugation. The bacteria were enumerated using acridine orange direct counts. An average of 1.40×10-17 mol bacterial PLFA cell-1 was found in bacteria extracted from 15 soils covering a wide range of pH and organic matter contents. With this factor, the bacterial biomass based on PLFA analyses of whole soil samples was calculated as 1.0–4.8 mg bacterial C g-1 soil C. The corresponding range based on microscopical counts was 0.3–3.0 mg bacterial C g-1 soil C. The recovery of bacteria from the soils using homogenization/centrifugation was 2.6–16% (mean 8.7%) measured by PLFA analysis, and 12–61% (mean 26%) measured as microscopical counts. The soil content of the PLFA 18:26 was correlated with the ergosterol content (r=0.92), which supports the use of this PLFA as an indicator of fungal biomass. The ratio 18:26 to bacterial PLFA is therefore suggested as an index of the fungal:bacterial biomass ratio in soil. An advantage with the method based on PLFA analyses is that the same technique and even the same sample is used to determine both fungi and bacteria. The fungal:bacterial biomass ratio calculated in this way was positively correlated with the organic matter content of the soils (r=0.94).  相似文献   

19.
Summary Root and stem nodulation, nitrogen fixation (acetylene-reducing activity), growth and N accumulation bySesbania rostrata as affected by season and inoculation were studied in a pot experiment. The effects ofS. rostrata as a green manure on succeeding wet-season and dry-season rice yields and total N balance were also studied.S. rostrata grown during the wet season showed better growth, nodulation, and greater acetylene-reducing activity than that grown during the dry season. Inoculation withAzorhizobium caulinodans ORS 571 StrSpc® (resistant to streptomycin and spectinomycin) on the stem alone or on both root and stem significantly increased N2 fixation by the plants. Soil and seed inoculation yielded active root nodules under flooded conditions. Plants that were not inoculated on the stem did not develop stem nodules. The nitrogenase activity of the root nodules was greater than that of the stem nodules in about 50-day-oldS. rostrata. S. rostrata incorporation, irrespective of inoculation, significantly increased the grain yield and N uptake of the succeeding wet season and dry season rice crops. The inoculated treatments produced a significantly greater N gain (873 mg N pot–1) than the noinoculation (712 mg N pot–1) treatment. About 80% of the N gained was transferred to the succeeding rice crops and about 20% remained in the soil. The soil N in the flooded fallow-rice treatment significantly declined (–140 mg N pot–1) but significantly increased in bothS. rostrata-rice treatments (159 and 151 mg N pot–1 in uninoculated and inoculated treatments respectively). The N-balance data gave extrapolated values of N2 fixed per hectare at about 303 kg N ha–1 per two crops forS. rostrata (uninoculated)-rice and 383 forS. rostrata (inoculated)-rice.  相似文献   

20.
Rhizosphere soil has a more diverse and active microbial community compared to nonvegetated soil. Consequently, the rhizosphere pyrene degrader population (PDP) and pyrene degradation may be enhanced compared to nonvegetated bulk soil (NVB). The objectives of this growth chamber study were to compare (1) Bermuda grass (Cynodon dactylon cv. Guymon) growth in pyrene-contaminated and noncontaminated soils and (2) pyrene degradation and PDP among NVB, Bermuda grass bulk (BB), and Bermuda grass rhizosphere soil (BR). Soils were amended with pyrene at 0 and 500 mg kg–1, seeded with Bermuda grass, and thinned to two plants per pot 14 days after planting (DAP). Pyrene degradation was evaluated over 63 days. The PDP was enumerated via a most probable number (MPN) procedure at 63 DAP. Bermuda grass root growth was more sensitive to pyrene contamination than shoot growth. Pyrene degradation followed first-order kinetics. Pyrene degradation was significantly greater in BR compared to BB and NVB with rate constants of 0.082, 0.050, and 0.052 day–1, respectively. The PDPs were 8.01, 7.30, and 6.83 log10 MPN g–1 dry soil for BR, BB, and NVB, respectively. The largest PDP was in soil with the most rapid pyrene degradation. These results indicate that Bermuda grass can grow in pyrene-contaminated soil and enhance pyrene degradation through a rhizosphere effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号