首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
The effect of ammonium nitrate broadcast as a soil or through irrigation, urea applied as a foliar spray, and monoammonium phosphate applied as a planting hole treatment on the incidence ofPhytophthora crown and root rot of apple trees was determined under orchard conditions in the Okanagan Valley of British Columbia, Canada. Results from the eight year study showed that ammonium nitrate applied as a single dose in spring at 240 g tree–1 year–1, as a split dose at 120 g tree–1 each in spring and early autumn, and in irrigation water (fertigation) at 7.5 g tree–1 wk–1 for 10 wk year–1 significantly increasedPhytophthora crown and root rot of Macspur on MM106 rootstock. There was no significant difference inP. cactorum infection between the unfertilized control and treatments with urea applied as a foliar spray at 1.0 kg 100 l–1 of water in spring and early autumn, and monoammonium phosphate applied as a planting hole treatment at 1 g l–1 of soil at planting time.  相似文献   

2.
Introduction     
The effect of soil water potential on wheat seedlings infected withPuccinia recondita was studied. The seedlings were grown in soil of which the initial water potential was –200 Jkg–1, –500 Jkg–1, or –800 Jkg–1. Uredospore production per seedling was retarded when the soil water potential was low, and soil water potential decreased more rapidly near the roots of diseased seedlings than it did near the roots of uninoculated seedlings.samenvatting Tarwekiemplanten werden geplaatst in plastic kolommen (een plant per kolom) gevuld met grond van bekende waterpotentiaal. Bij een deel der planten werd het eerste blad geïnoculeerd met bruine roest. De spruit boven het eerste blad werd regelmatig weggeknipt. Periodiek werden bepaald (veelal middels destructieve bemonstering) vers en droog gewicht van het eerste blad, roestsporenproduktie, en waterpotentiaal van de grond op drie niveau's in de kolommen. Voor de resultaten zie Fig. 1 t/m 4. Twee weken na inoculatie gaan zieke planten geleidelijk meer water verdampen dan onbehandelde planten (Fig. 1). Vers gewichten van zieke bladeren waren kleiner dan die van onbehandelde planten (Fig. 2). Het watergehalte van zieke bladeren werd lager dan dat van onbehandelde bladeren (Fig. 3). De uredosporenproduktie was bij hogere grondwaterpotentiaal groter dan bij lagere potentiaal (Fig. 4).  相似文献   

3.
A study was conducted in two greenhouses with a history of Fusarium crown and root rot (Fusarium oxysporum f.sp.radicis-lycopersici, Forl) and root-knot nematodes (Meloidogyne javanica andM. incognita). During the 2005–06 growing season, the effectiveness of soil disinfestation by solarization in combination with low doses of metham-sodium (500, 750, 1000 and 1250l ha−1) or dazomet (400 g ha−1), was tested against soilborne pathogens and nematodes in an attempt to find a suitable alternative to methyl bromide, which is soon to be phased out. Solarization alone was not effective in the greenhouse with a high incidence ofForl. In the greenhouse with a low level ofForl, all the treatments tested reduced disease incidence, and were therefore considered to be applicable for soil disinfestation. In addition, root-knot nematode density decreased with all the treatments tested in both of the greenhouses.  相似文献   

4.
The endoparasitic nematophagous fungusHirsutella rhossiliensis was tested for its ability to suppress root penetration and cyst formation by the potato cyst nematode speciesGlobodera pallida. Isolates ofH. rhossiliensis were obtained from infected potato cyst nematode juveniles from different starch potato fields in The Netherlands. The isolates showed no difference in spore adhesion to juveniles on agar plates (adhesion rate: ±90%). The most rapid growing isolate, CBS 108.94, was used for experiments. Vegetative mycelial colonies ofH. rhossiliensis CBS 108.94, grown in potato dextrose broth, were used as soil inoculum. During submerged cultivation the mycelial colonies produced phialides (spore-bearing cells) but no spores. Exposed to the air, however, spores were rapidly formed. The effect of different soil inoculum densities of mycelial colonies on root penetration byGlobodera pallida was examined in an experiment in 250-ml pots. Up to a mycelial colony concentration representing a potential spore density of 104 g–1 soil no suppression occurred. At approximated densities of 2.5×104 and 105 spores g–1 soil the numbers of juveniles which penetrated roots were reduced by 30% and 34%, respectively. The distribution of the inoculum could be improved by fragmentation of the mycelial colonies before soil inoculation. Using mycelial fragments, again no suppression of root penetration was observed up to a potential spore density of 104 g–1 soil, but at densities of 105 and 106 g–1 a suppression of 54% and 88%, respectively, was measured. In a greenhouse experiment, soil inoculation with mycelial colonies with a potential spore production of 2.5×105 g–1 soil resulted in a suppression of root penetration of 37% and 51% after 5 and 6 weeks, respectively, but the number of newly formed cysts after 18 weeks in soil was not different for control and inoculated pots. It is concluded thatH. rhossiliensis may be useful for the reduction of root damage caused by juveniles of potato cyst nematodes, but the usefulness for population control is doubtful.  相似文献   

5.
Coniothyrium minitans isolate Conio grew on both maizemeal-perlite and ground maizemeal-perlite, producing high numbers (1.6×107 conidiag–1 inoculum) of germinable conidia. Coniothyrium minitans isolate Conio applied as a preplanting soil incorporation of maizemeal-perlite inoculum at full application rate (0.6lm–2; 1011 colony forming units (cfu)m–2) significantly reduced Sclerotinia disease in a sequence of three lettuce crops grown in a glasshouse. No reduction in disease was achieved with any of the reduced rate treatments (108cfum–2) of a range of C. minitans isolates (Conio ground maizemeal-perlite at reduced rate, Conio and IVT1 spore suspensions derived from maizemeal-perlite, IVT1 spore suspension derived from oats and Contans® WG spore suspension). After harvest of the second and third crops, C. minitans maizemeal-perlite at full rate reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore suspension and reduced rate maizemeal-perlite inocula. Coniothyrium minitans was recovered from the soil throughout the trial, between 105 and 107cfucm–3 in maizemeal-perlite inoculum full rate treated plots and 101–104cfu cm–3 in all other inoculum treated plots.Pot bioassays were set up corresponding to the inoculum used in the glasshouse, with the addition of Conio ground maizemeal-perlite at a rate corresponding to the full rate maizemeal-perlite. Coniothyrium minitans maizemeal-perlite and ground maizemeal-perlite at full rate significantly decreased carpogenic germination, recovery and viability of sclerotia and increased infection of sclerotia by C. minitans in comparison with spore suspension treatments, reflecting results of the glasshouse trials. Additionally, reduced maizemeal-perlite treatment also decreased apothecial production, recovery and viability of sclerotia compared with the spore suspension treatment, despite being applied at similar rates. Simultaneous infection of sclerotia by several isolates of C. minitans was demonstrated. Inoculum level in terms of colony forming unitscm–3 of soil appears to be a key factor in both control of Sclerotinia disease and in reducing apothecial production by sclerotia.  相似文献   

6.
Experiments were conducted in laboratory bioreactors and in field plots to test effects of certain cultivated members of the grass family (Poaceae = Gramineae), including wheat (Triticum aestivum cv. Yolo), barley (Hordeum vulgare cv. UC337), oats (Avena sativa cv. Montezuma), triticale (X Triticosecale), and a sorghum-sudangrass hybrid (Sorghum bicolor x S. sudanense = “sudex”, cv. Green Grazer V) for soil disinfestation potential. Soilborne pest organisms tested for effects on survival and activity included the phytopathogens Sclerotium rolfsii, Pythium ultimum and Meloidogyne incognita, and a variety of weed taxa. Following soil amendment, bioreactors were incubated for 7 days at ambient (23°C) or elevated, but sublethal (38°C day/27°C night), soil heating regimens. Addition of each of the poaceous amendments to soil at 23°C resulted in inconsistently reduced tomato root galling (49–97%) by M. incognita, or reduced recovery of S. rolfsii and P. ultimum (0–100%) fungi in soil, after 7 days’ incubation (P ≤ 0.05). When the organisms were exposed to the poaceous soil amendments at the 38o/27o temperature regimen, nematode galling and recovery of active fungi were consistently and significantly reduced by 98–100%. These results demonstrated feasibility of soil disinfestation (“biofumigation”) by activity of poaceous amendments, further aided by combining plant residues with soil heating (e.g. solarization). Results from three field experiments with sudex cover crops, conducted throughout the growing season, demonstrated biocidal activity on a range of weedy plants, including Amaranthus retroflexus, Calandrinia ciliata, Cerastium arvense, Digitaria sanguinalis, Echinochloa crus-galli and Poa annua. Both shoots and roots of sudex provided allelopathic weed biomass reductions of 35–100%, and for at least 106 days after shredding. Deleterious activity of shredded residues incorporated in soil was less persistent. These properties in poaceous crops can be useful for soil disinfestation; however, harmful phytotoxicity to subsequent crops may also result. In order to take full advantage of these low-input measures for controlling soilborne diseases and pests, further understanding of their properties must be gained, and user guidelines developed.  相似文献   

7.
The survival of the bacterial pathogen, Xanthomonas campestris pv. campestris (Xcc), was studied in plant debris-infested soil with different matric potentials (0, –10, –30, –50, –100, –200, and –900kPa), and on the phylloplane of crops used for rotation with cabbage. Populations of cellulolytic and proteolytic microorganisms were studied in relation to soil matric potential and Xcc. The survival of Xcc was negatively correlated (r=–0.710; P=0.06) with soil matric potential and with the abundance of cellulolytic microorganisms (P=0.05). In saturated soil, Xcc survived for only 19–28 days, while at –900kPa there was no significant change in the bacterial population within this period. Survival of Xcc on the phylloplane of cabbage (Brassica oleracea var. capitata) (host) was similar to that on mustard and lettuce (48 days), whereas the pathogen was detected for only 9 days on rice. It appears that high matric potentials reduced populations of Xcc in soil, whereas epiphytic survival of this pathogen depended on the plant species.  相似文献   

8.
Better soil disinfestation methods, such as biological soil disinfestation (BSD), that are environmentally safe are increasingly been developed and used because of rising concerns related to environmental risks. We evaluated the efficacy of soil disinfestation using ethanol to control the fungus Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt of tomato. Survival of bud cells and chlamydospores declined markedly in soil saturated with diluted ethanol solution in the laboratory. In field trials, artificially added nonpathogenic Fusarium oxysporum and indigenous F. oxysporum were both strongly suppressed in soil saturated with 1% ethanol solution; a wheat bran treatment was not as effective. The artificially added fungus was not detected in three of four sites treated with ethanol but was detected in three of four sites amended with wheat bran. Using ethanol in pre-autoclaved soil was not suppressive; thus native microorganisms are essential for the suppression. This ethanol-mediated biological soil disinfestation (Et-BSD) temporarily increased the number of anaerobic bacteria, but the number of fungi and aerobic bacteria was stable. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) analysis revealed slight but apparent differences in bacterial community structures in the soil treated with Et-BSD compared with the structure in soils after other treatments such as water irrigation and in the control soil, which received neither organic amendment nor irrigation after 15 days. Et-BSD is a potentially effective and easy soil disinfestation method, and its impact on native, beneficial microorganisms is moderate.  相似文献   

9.
Pretreatment of soil with the herbicide acetochlor at 0.1–1g g–1 significantly decreased incidence of wilt due toFusarium oxysporum f. sp.melonis in melon seedlings. Glucose, fructose and sucrose increased in leaves of inoculated and uninoculated melon plants following acetochlor treatment. The increase in sugar levels in stems and roots was less pronounced. Light intensity affected sugar content and disease incidence. The percentage of diseased plants was significantly higher in untreated plants grown under 165E m–2 sec–1 compared to plants grown under 300E m–2 sec–1. Lowering light intensity resulted in reduction of levels of total sugars on the third and sixth day after inoculation. Acetochlor had little or no effect on growth rate or sporulation of the pathogen in culture. The colonization rate of diseased plant stems by the pathogen was similar in herbicide-treated and untreated plants, thus excluding the possibility that disease reduction by the herbicide is related to direct fungitoxicity.Contribution from the Agricultural Research Organization. No. 1560-E, 1995 series.  相似文献   

10.
The polymerase chain reaction (PCR) was used for the specific detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils. Primers were based on the nucleotide sequences of the internal transcribed space regions (ITS1 and ITS2) of 16 different species of Phytophthora. Two primer pairs, Pn5B–Pn6 and Pc2B–Pc7, were designed specifically to amplify DNA from P. nicotianae and P. citrophthora, respectively. Another primer pair (Ph2–ITS4) was designed to amplify DNA from many Phytophthora species. All primer pairs were assessed for specificity and absence of cross-reactivity, using DNA from 118 isolates of Phytophthora and 82 of other common soil fungi. In conventional PCR, with a 10-fold dilution series of template DNA, the limit of detection was of 1pgl–1 DNA for all the primer pairs (Ph2–ITS4, Pn5B–Pn6, and Pc2B–Pc7). In nested PCR, with primers Ph2–ITS4 in the first round, the detection limit was of 1fgl–1 for both the primer sets (Pn5B–Pn6 and Pc2B–Pc7). Simple, inexpensive and rapid procedures for direct extraction of DNA from soil and roots were developed. The method yielded DNA of a purity and quality suitable for PCR within 2–3h. DNA extracted from soil and roots was amplified by nested PCR utilizing primers Ph2–ITS4 in the first round. In the second round the primer pairs Pn5B–Pn6 and Pc2B–Pc7 were utilized to detect P. nicotianae and P. citrophthora, respectively. Comparison between the molecular method and pathogen isolation by means of a selective medium did not show any significant differences in sensitivity.  相似文献   

11.
White mould disease leads to production of sclerotia, which subsequently survive in soil and may be responsible for future epidemics. The effect of the mycoparasite Coniothyrium minitans in decreasing survival of sclerotia of Sclerotinia sclerotiorum was studied. Infection of sclerotia of S. sclerotiorum by C. minitans can be achieved by a single conidium. Under optimal conditions, 2 conidia per sclerotium produced 63% of the maximum infection (ca. 90%) of sclerotia produced by up to 1000 conidia. Similar results were observed on the infection of stem pieces infected by S. sclerotiorum. In field trials, application of conidial suspensions of C. minitans to a bean crop soon after white mould outbreak led to a higher percentage of sclerotial infection than later applications. Ninety per cent infection of sclerotia was obtained within 3 weeks of application by C. minitans suspensions in the range of 5 × 105 and 5 × 106 conidia ml–1 at 1000 l ha–1. The concentration of the conidial suspensions and the isolate used were of less importance. The result was marginally affected by the germinability of the conidia (75% against 61% infected sclerotia at 91% and 16% viability of isolate IVT1, respectively). Less apothecia of S. sclerotiorum developed in soil samples collected after 2 months from plots sprayed immediately after disease outbreak than from those treated 11–18 days later. It is concluded that a suspension of 106 conidia ml–1 in 1000 l ha–1 (= 1012 conidia ha–1) sprayed immediately after the first symptoms of disease are observed, results in > 90% infection of sclerotia of S. sclerotiorum. The infection of sclerotia, which prevents their carry-over, occurs within a broad range of inoculum quality.  相似文献   

12.
Coniothyrium minitans grew on all ten solid-substrates (barley, barley-rye-sunflower, bran-vermiculite, bran-sand, maizemed-perlite, millet, oats, peat-bran, rice and wheat) tested, producing high numbers of germinable pycnidiospores (1.9–9.3×108 g–1 air dry inocula). All solid substrate inocula survived better in the laboratory at 5 and 15 °C than at 30 °C for at least 64 weeks.In pot bioassays carried out in the glasshouse and field, soil incorporations of each inoculum almost completely inhibited carpogenic germination ofS. sclerotiorum. In the field bioassay, no sclerotia were recovered after 38 weeks fromC. minitans-treated pots compared to 56% from control pots. In the glasshouse bioassay, 9–30% of sclerotia were recovered after 20 weeks fromC. minitans-treated pots, but 88–100% of these were infected by the antagonist. The antagonist also spread to infect sclerotia in control pots.In larger scale glasshouse trials, single preplanting soil-incorporations of five inocula (barley-ryesunflower, maizemeal-perlite, peat-bran, rice and wheat) controlled Sclerotinia disease in a sequence of lettuce crops, with only small differences between the types of inocula tested. At harvest,C. minitans reduced sclerotial populations on the soil surface and over 74% of sclerotia recovered fromC. minitans-treated plots were infected by the antagonist.C. minitans survived in soil in all solid-substrate inocula-treated plots for at least 39 weeks at levels of 104–105 colony forming units cm–3 soil and spread to infect over 36% of sclerotia recovered from control plots.  相似文献   

13.
Verticillium dahliae antagonistic endorhizosphere bacteria were selected from root tips of tomato plants grown in solarized soils. Fifty-three out of the 435 selected bacterial isolates were found to be antagonistic against V. dahliae and several other soilborne pathogens in dual cultures. Significant biocontrol activity against V. dahliae in glasshouse trials was demonstrated in three of 18 evaluated antagonistic isolates, provisionally identified as Bacillus sp. Although fluorescent pseudomonads were also isolated from root tips of tomato plants, none of the tested isolates exercised any significant antagonistic activity against V. dahliae in dual cultures. So these isolates were not tested in glasshouse trials in this study. Finally, two of the most effective bacterial isolates, designated as K-165 and 5-127, were shown to be rhizosphere colonizers, very efficient in inhibiting mycelial growth of V. dahliae in dual cultures and successfully controlling Verticillium wilt of solanaceous hosts. In glasshouse experiments, root dipping or soil drenching of eggplants with bacterial suspension of 107cfu ml–1 resulted in reduced disease severity expressed as percentage of diseased leaves (40–70%) compared to the untreated controls under high V. dahliae inoculum level (40 microsclerotia g–1 soil). In heavily Verticillium infested potato fields, experiments with potato seeds dusted with a bacterial talc formulation (108cfu g–1 formulation), showed a significant reduction in symptom development expressed as percentage of diseased potato plants and a 25% increase in yield over the untreated controls. As for their effectiveness in increasing plant height, both bacterial isolates K-165 and 5-127 produced indolebutyric, indolepyruvic and indole propionic acids. Both antagonists are considered as plant growth promoting rhizobacteria bacteria since significantly increased the height of treated plants compared with the untreated controls. Chitinolytic activity test showed that both isolates were able to produce chitinase. Testing rhizospheric and endophytic activity of the antagonists it was shown that although the bacteria are rhizosphere inhabitants they also preferentially colonize the endorhizosphere of tomatoes and eggplants. Fatty acid analysis showed that isolate K-165 could belong to Paenibacillus alvei while 5-127 to Bacillus amiloliquefaciens.  相似文献   

14.
Experiments were conducted to determine the effectiveness and profitability of the Mi-resistance gene in tomato in suppressing populations of Meloidogyne javanica in a plastic-house with a natural infestation of the nematode. Experiments were also conducted to test for virulence and durability of the resistance. Monika (Mi-gene resistant) and Durinta (susceptible) tomato cultivars were cropped for three consecutive seasons in non-fumigated or in soil fumigated with methyl bromide at 75 g m–2 and at a cost of 2.44 euros m–2. Nematode densities were determined at the beginning and end of each crop. Yield was assessed in eight plants per plot weekly for 6 weeks. The Pf/Pi values were 0.28 and 21.6 after three crops of resistant or susceptible cultivars, respectively. Growth of resistant as opposed to susceptible tomato cultivars in non-fumigated soil increased profits by 30,000 euros ha–1. The resistant Monika in non-fumigated soil yielded similarly (P > 0.05) to the susceptible Durinta in methyl bromide fumigated soil but the resistant tomato provided a benefit of 8800 euros ha–1 over the susceptible one because of the cost of fumigation. Selection for virulence did not occur, although the nematode population subjected to the resistant cultivar for three consecutive seasons produced four times more eggs than the population on the susceptible one. Such a difference was also shown when the resistant cultivar was subjected to high continuous inoculum pressure for 14 weeks. The Mi-resistance gene can be an effective and economic alternative to methyl bromide in plastic-houses infested with root-knot nematodes, but should be used in an integrated management context to preserve its durability and prevent the selection of virulent populations due to variability in isolate reproduction and environmental conditions.  相似文献   

15.
A mulberry epiphytic Enterobacter cloacae MUL1 harbors plasmid pMUL1 encoding five drug-resistance genes. This plasmid was examined upon its conjugal transfer into epiphytic Erwinia herbicola on the phylloplane of mulberry and 12 species of weeds. The plasmid was transferred into Er. herbicola at a frequency of 10–5–10–3/recipient in mulberry and Lolium multiflorum LAM. 1–8 days after wound inoculation with 106–108/ml suspensions. In Chenopodium album L. and C. album L. var. centrorubrum, however, it was transferred only after wound inoculation with a 108/ml suspension, but not with 107/ml or 106/ml suspensions, owing to the weak epiphytic fitness of Ent. cloacae on these weeds. Transconjugants were also obtained for seven other species of weeds in the case of inoculation with a 108/ml suspension. In contrast, when bacterial suspensions were sprayed on mulberry leaves with or without fresh wounds, transconjugants were obtained only in wounded leaves, which were considered suitable for bacterial conjugation. These findings suggest that epiphytic bacteria, including Ent. cloacae and Er. herbicola, may be carriers of drug-resistance genes distributed among plant pathogenic bacteria in nature.  相似文献   

16.
Ascospores and conidia released into the air were recorded around plots on which garlic debris infected by Stemphylium vesicarium were fixed onto the soil surface. Symptoms in garlic trap plots located in the vicinity of infected debris, started in March and developed during April–May to reach disease incidence close to 100%, final disease severity values being lower in 1993 and 1995 than in 1994 and 1996. Whereas daily concentrations of ascospores were rather erratic, with 30% of captures between 0 and 6 h, conidia showed a daily periodicity with highest concentrations between 12 and 18 h, with a pronounced peak between 14 and 16 h, and lowest values at night. Ascospore release occurred mainly in February and March. It coincided with rainfall periods, 14 h with vapour pressure deficit 5 mb and solar radiation <145 W m–2 on the current day of the capture. In contrast, greatest captures of conidia started in late April and were prevalent in May, and were associated with rainfall in days previous to the capture in which rather high temperature occurred and solar radiation was 109–345 W m–2. Among the weather variables considered, rainfall appeared directly related to the aerial concentration of ascospores and conidia. The role of relative humidity seemed essential when rainfall did not occur. There was a relationship between conidia concentration in the air and number of hours with temperature in the range 12–21 °C. Ascospore production was not essential for infections to take place, since primary infection from conidia may occur and disease can develop from them readily.  相似文献   

17.
Mycelial growth on clarified V8 agar of the potato late blight pathogenPhytophthora infestans was inhibited when either aluminum chloride (AlCl3, 6 H2O) or aluminum sulfate (Al2(SO4)3, 18 H2O) was added to the culture medium at concentrations of 2.5–100 mg.l–1 Al3+. Toxicity of Al3+ varied among the fiveP. infestans isolates tested, but toxicity of sulfate and chloride salts was similar for a given isolate. Overall sporangial production was affected in all five isolates by both Al3+ forms. Al3+ also decreased sporangial germination at concentrations equal to or greater than 10 mg.l–1 in two isolates. These data support the hypothesis of aluminum toxicity as a major factor in soil suppressiveness toP. infestans.  相似文献   

18.
Spread of Phytophthora root and crown rot in three pot plant species was studied on ebb-and-flow benches where the nutrient solution was recirculated. The plant species and their respective pathogens were: Saintpaulia ionanthaP. nicotianae, Gerbera jamesoniiP. cryptogea, and Spathiphyllum wallissiiPhytophthora spp. Ebb-and-flow benches were infested with the pathogen using different methods: 18–25% of the plants on a bench were inoculated or potted in soil infested with the pathogen or the nutrient solution was infested by either zoospores or mycelium fragments. More than 80% of the inoculated Saintpaulia plants and 22% of plants potted in infested soil developed disease but no spread of the disease was observed. Infestation of the nutrient solution did not result in any diseased Saintpaulia plant. More than 70% of the Gerbera plants developed disease as a result of spread of the pathogen irrespective of the infestation method used. No significant spread of the disease was observed with inoculated Spathiphyllum plants nor from plants potted in infested soil. A few Spathiphyllum plants developed disease symptoms after infestation of the nutrient solution with zoospores. In one experiment, nearly all Spathiphyllum plants were diseased after infestation of the nutrient solution with mycelium fragments. The presence of an irrigation mat significantly reduced the spread of the Phytophthora disease in Gerbera and Spathiphyllum. The possibility of an irrigation mat acting as a filter for zoospores is discussed.  相似文献   

19.
Effects of benomyl on incidence of pathogens affecting the culm base of rye were studied in field trials and growth chamber experiments. Spraying of the crop with the fungicide at a high dosage (2.4 kg.ha–1) resulted in a tenfold increase of sharp eyespot caused byRhizoctonia cerealis and reduced foot rot symptoms caused by fusaria by 50%. In a field trial at a low dosage (0.24 kg.ha–1) a slight increase of sharp eyespot was observed. In one year, probably because of wet conditions during the infection period, sharp eyespot did not occur in either benomyl-treated or untreated plots, but eyespot caused byPseudocercosporella herpotrichoides was abundant. Its occurrence was reduced from 74% affected culm bases in untreated plots to 8% and 1% in plots that received 0.24 and 2.4 kg.ha–1 of the fungicide, respectively.In growth chambers seedlings were grown in two sandy soils inoculated withR. cerealis. The soil was kept dry at about 35% of the moisture holding capacity. In plots with benomyl (1 mg.kg–1; moisture content 11% of fresh weight), fewer seedlings emerged than in plots without the fungicide. This result was highly significant (P<0.01) for one soil but not for the other. The number of seedlings that remained free of disease symptoms was higher (P<0.01) in untreated than in fungicide-treated plots of both soils.Isolates of pathogens obtained from diseased culms were tested for their sensitivity to benomyl. Growth of all of them includingR. cerealis was inhibited, although not always completely suppressed, at 10 g.ml–1 on potato-dextrose agar. ED50 values of most isolates ofR. cerealis were between 2.2 and 3.1 g.ml–1. The fungus was slightly but consistently less sensitive thanF. culmorum. Mycelial growth ofF. nivale was appreciably more sensitive than that of the otherFusarium spp. from cereals.P. herpotrichoides andF. nivale were the most sensitive pathogens tested with ED50 values of <1 g.ml–1. Accordingly,F. nivale was absent on culms from treated plots. In a growth chamber experiment, seedlings were protected from infection by supplying the fungicide (1 mg.kg–1) to previously inoculated soil.In a laboratory assay the effect of benomyl on microbial antagonism toR. cerealis was estimated for rhizosphere soil. Enhanced incidence of sharp eyespot in treated crops was associated with adverese effects of the fungicide on microbial antagonism. There is presumptive evidence thatR. cerealis is suppressed by bacteria after wet periods during the vegetation period of the crop and by fungi after dry periods. Only fungal antagonism, which may be less effective, is affected by benomyl. The response to benomyl of the microflora in different soils varied. Reasons for this inconsistency are suggested.Samenvatting In veldproeven en in een klimaatkamer werd de invloed van benomyl op het optreden van voetziekten in rogge onderzocht. In veldjes die bespoten waren met een hoge dosis van het fungicide (in totaal 2.4 kg.ha–1) bleken tienmaal zoveel halmen met scherpe oogvlekken, veroorzaakt doorRhizoctonia cerealis, voor te komen dan in onbespoten veldjes. Daarentegen was voetrot veroorzaakt doorFusarium-soorten met 50% verminderd. In een volgende veldproef, waarbij een voor de praktijk geadviseerde dosis (0.24 kg.ha–1) was toegepast, werd een lichte toename van scherpe oogvlekken waargenomen.In een ander jaar trad scherpe oogvlekkenziekte in het geheel niet op, ook niet in met benomyl behandelde veldjes. De vochtige omstandigheden tijdens de infectieperiode zijn daarvan waarschijnlijk de oorzaak. Daarentegen werd de oogvlekkenziekte, welke doorPseudocercosporella herpotrichoides werd veroorzaakt, veel aangetroffen. In de onbehandelde veldjes waren 74% van de halmen aangetast tegen 8 en 1% in de veldjes die met het fungicide waren behandeld in doseringen van 0.24 en 2.4 kg.ha–1.De invloed van het fungicide op de aantasting van kiemplanten werd in klimaatkamerproeven onderzocht. Daartoe werden twee zandgronden metR. cerealis geënt. De grond werd droog gehouden (op 35% van het waterhoudend vermogen). In grond met fungicide (1 mg.kg–1) was de opkomst minder dan in grond zonder fungicide. Dit was zeer significant (P<0.01) voor één van de beide zandgronden, maar niet voor de andere. Het aantal gezonde kiemplanten was in beide gevallen duidelijk hoger (P<0.01) voor de onbehandelde grond.De isolaten van ziekteverwekkers uit aangetaste halmen werden op hun gevoeligheid voor het fungicide getoetst. Op aardappel-glucoseagar werden alle isolaten in hun groei geremd bij een benomyl-concentratie van 10 g.ml–1.R. cerealis was iets minder gevoelig danF. culmorum. Voor het overgrote deel van de isolaten vanR. cerealis lag de ED50 waarde tussen 2,2 en 3,1 g.ml–1. De myceliumgroei vanF. nivale werd meer geremd dan die van de andereFusarium-soorten.P. herpotrichoides enF. nivale waren met een ED50 waarde van <1 g.m.–1 de gevoeligste pathogenen die uit de halmvoeten werden geïsoleerd. Dat de populatie vanF. nivale in benomylhoudende grond wordt onderdrukt, blijkt uit (1) het feit dat de schimmel niet voorkwam op halmen uit behandelde veldjes en (2) de bescherming tegen infectie van kiemplanten als aan de besmette grond fungicide (1 mg.kg–1) was toegevoegd.In laboratoriumproeven werd de invloed van benomyl op het microbiële antagonisme in rhizosfeergrond tegenR. cerealis bepaald. Een toename in het optreden van scherpe oogvlekkenziekte in behandelde gewassen bleek gepaard te gaan met een remming van het antagonisme tegen de ziekteverwekker. Er zijn sterke aanwijzingen datR. cerealis na vochtige perioden tijdens de vegetatieperiode door bacteriën wordt onderdrukt en na droge perioden door schimmels. Het antagonisme van de laatste groep lijkt minder effectief te zijn en alleen dit antagonisme wordt door benomyl verlaagd. Tenslotte wordt een mogelijke oorzaak aangegeven voor de ongelijke respons op het fungicide van het microbieel antagonisme in verschillende gronden.  相似文献   

20.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号