首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water vapour sorption properties of Sitka spruce (Picea abies) have been investigated over a range of temperatures (14.2–43.8°C) using a dynamic vapour sorption apparatus. The sorption kinetics behaviour was evaluated using the parallel exponential kinetics model which has been found to give very accurate fits to the data in studies of foodstuffs or plant fibres, but has not been previously applied to sorption studies with wood. Both the adsorption and desorption kinetics curve can be deconvoluted into a fast and slow exponential process. Under conditions of adsorption, the fast process appears to be associated with the formation of monolayer water (determined using the Hailwood Horrobin model) up to a relative humidity of 20%. Under desorption, there is no clear differentiation between fast and slow processes. The area bounded by the sorption hysteresis loop reduced as the temperature at which the isotherm was measured increased, due to movement of the desorption curve only, with the adsorption curve remaining the same at all temperatures. This behaviour is consistent with sorption processes taking place on nanoporous glassy solids below the glass transition temperature. The heat of wetting was determined from the temperature dependence of the desorption isotherms by using the Clausius–Clapeyron equation, yielding results that are consistent with literature values. However, doubts are raised in this paper as to the applicability of using the Clausius–Clapeyron equation for analyses of this type.  相似文献   

2.
The dynamic water vapour sorption properties of Scots pine (Pinus sylvestris L.) wood samples were studied to investigate the modifying effects of glutaraldehyde. Pine sapwood was treated with solutions of glutaraldehyde and a catalyst (magnesium chloride) to obtain weight per cent gains of 0.5, 8.6, 15.5, and 21.0%, respectively. The sorption behaviour of untreated and treated wood was measured using a Dynamic Vapour Sorption apparatus. The results showed considerable reduction in equilibrium moisture content of wood and the corresponding equilibrium time at each target relative humidity (RH) due to glutaraldehyde treatment. The moisture adsorption and desorption rates of modified and unmodified wood were generally faster in the low RH range (up to approximate 20%) than in the high range. Modification primarily reduced the adsorption and desorption rates over the high RH range of 20–95%. Glutaraldehyde modification resulted in a reduction in sorption hysteresis due to the loss of elasticity of cell walls.  相似文献   

3.
Variability of the compression properties of cork   总被引:1,自引:0,他引:1  
The variability of the compression properties of cork was determined after field sampling covering the main production area in Portugal (10 sites) with samples taken from 20 trees per site at the time of cork stripping. In all cases, cork showed compressive stress–strain curves typical for cellular materials, which are characterized by an approximately “elastic” region up to a 5 % strain, followed by a large plateau up to 70 % strain caused by progressive buckling of cell walls, and a steep stress increase for higher strains corresponding to cell collapse. The radial direction of compression offered higher strength. The Young’s moduli averaged 10.4 and 9.2 MPa for radial and non-radial directions, respectively, spreading from 3.5 to 22.5 MPa for the non-radial and 4.2 to 21.5 MPa for the radial directions. The geographical location of cork production was the major factor of variability. Density, annual growth ring width and chemical composition influenced compression. Cork samples with higher density showed overall larger resistance to compression. The energy absorbed per unit volume to achieve the maximal deformation with full densification of cork is higher when the average annual ring width is smaller. Cork samples with relatively higher suberin content required less stress for deformation. The results encompass the natural variability of cork and are the most extensive to characterize cork. They allow a better insight into the differences that may explain the variation in cork properties and strengthen its use either in the known applications, i.e. as a sealant, or in novel applications.  相似文献   

4.
Quercus variabilis Blume, the Chinese cork oak, is an oak species with a thick cork outer bark. The cork is exploited at a limited scale in China and considered of lower quality than the commercial cork from Quercus suber. We studied an industrial cork granulate feedstock of Q. variabilis in relation to cellular structure and chemical composition and compared it to Q. suber cork under a material’s perspective. The cork of Q.variabilis has 1.1 % ash, 9.6 % extractives, 34.8 % suberin and 19.1 % lignin. The monosaccharide composition with shows a predominance of hemicelluloses: glucose 42.8 % of total neutral sugars, xylose 27.5 %, arabinose 15.4 %, galactose 9.0 %, mannose 4.0 %, rhamnose 1.2 %. The FT-IR spectrum shows the indicative peaks of suberin. The composition is overall similar to that of Q. suber cork. Q. variabilis cork has the typical cellular characteristics of bark cork tissues with a regular and radially aligned structure of cells without intercellular voids. Solid volume fraction was estimated at approximately 16 %. Compared with Q. suber, the Q. variabilis cork cells are smaller, the cell wall undulation and the overall row alignment less homogeneous, the cell surface is irregular and the solid volume proportion higher. The characteristics of Q. variabilis cork support its use as a cellular material for sealing, insulation and energy absorption, but the overall quality is lower than that of Q. suber cork. The negative impact of the higher density and structural lower uniformity at tissue and cell level should be evaluated for processing and product performance.  相似文献   

5.
Chronic decline and Sudden death are two syndromes of cork oak (Quercus suber) dieback. Mortality is associated with water stress, but underlying physiological mechanisms are poorly understood. Here, we investigated the physiological performance of declining trees during the summer drought. Leaf water potential, gas-exchange, fluorescence of photosystem II and leaf and root starch concentration were compared in healthy (asymptomatic) and declining trees. Low annual cork increment in declining trees indicated tree decline for several years. All trees showed similar water status in spring. In summer, declining trees showed lower predawn leaf water potential (?2.0 vs. ?0.8 MPa), but unexpectedly higher midday leaf water potential than healthy trees (?2.8 vs. ?3.3 MPa). The higher midday water potential was linked to by means of strongly reduced stomatal conductance and, consequently, transpiration. This study is pioneer showing that declining trees had high midday water potential. A tendency for lower sap flow driving force (the difference between predawn and midday water potential) in declining trees was also associated with reduced photosynthesis, suggesting that chronic dieback may be associated with low carbon uptake. However, starch in roots and leaves was very low and not correlated to the health status of trees. Declining trees showed lower water-use efficiency and non-photochemical quenching in summer, indicating less resistance to drought. Contrarily to chronic decline, one tree that underwent sudden death presented predawn leaf water potential below the cavitation threshold.  相似文献   

6.
7.
Summary Results from sorption measurements at 23 °C on Picea abies in the intervals 54 to 75% RH and 75 to 84% RH are reported. In the higher interval non-Fickian sorption is clearly seen.This work was supported by the Swedish Building Research Council  相似文献   

8.
9.
The effect of the removal of cork was studied in 11-years old cork oak trees (Quercus suber L.), growing in favorable conditions, in relation to phenology and radial growth during two years. Longevity of leaves was 14–15 months (1996, 1998) and 10 months (1997). Bud burst started in mid-February and leaf flushing in April, extending until June. Neither a distinct two-period flushing nor an autumn bud burst or leaf flushing were observed. Radial growth started in mid-April and continued until the end of November, with the maximum growth in June and July. In trees with the removal of cork, leaf abscission occurred a little earlier and new branches had on average 23% fewer new leaves. The radial growth of the trees and its general seasonal pattern were not affected by cork removal in the year of removal or in the year after. The only observation was a shift of the maximum radial growth rate from June to July for the trees where cork had been removed.  相似文献   

10.
Phenol-formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and nail joint properties were analyzed. The soaking time to reach the lower limit of nail-head pull-through (NHPT) of the PF board was 2 h at 100 °C, while it took 168 h at 70 °C. The soaking time to reach the lower limit of lateral nail resistance (LNR) of the PF board was 24 h at 100 °C, but it did not take 168 h at 70 °C to reach it. The lower limits of NHPT and LNR for the MDI board were higher than those for the PF board. For the PF board, there was a high correlation between modulus of rupture, internal bond strength and nail joint properties. Based on the results of water soaking and outdoor exposure, it was shown that thickness change has a significant effect on NHPT and LNR, and that the reduction in NHPT and LNR results from the collapse of bonding points owing to swelling of the board.  相似文献   

11.
The effects of short-term thermomechanical (STTM) densification temperature and pressure on the changes in surface roughness, wettability, mass loss (ML), thickness and density of alder, beech, birch, and pine wood veneer with low moisture content (~5%) were investigated. The anatomical structure of veneers was also observed. Veneer sheets were densified using pressure levels of 4, 8 and 12 MPa at three temperatures: 100°C, 150°C and 200°C for 4 min. The results were compared with those of the non-densified veneers. The obtained results show that STTM densification of veneers similarly to long-term densification of solid wood causes irreversible changes in their properties. The STTM-densified veneer surfaces became smoother and more hydrophobic, ML increased slightly while roughness and thickness values decreased significantly, the cell lumens collapsed and a certain amount of fractures in cell walls developed with increasing densification temperature and pressure. All of the investigated wood species showed higher density values after densification. It was found that an even STTM densification of veneers provides stable properties under normal atmosphere conditions; in particular, the thickness and contact angle values were stable for 24 hours after densification, which is an important consideration for industrial applications.  相似文献   

12.
软木是一种天然多孔性绿色材料,具有吸音减震、隔热保温、滞火阻燃、耐酸碱、不易老化、富有弹性、无毒无味等一系列优良特性。由于它所独具的各种特性,特别是软木的热学性能,使其在工业生产与人民日常生活中都有广泛的应用。本文通过热重分析仪来研究软木的热学性能,在实验温度从303~873K的范围内,对产自湖北和云南的2种软木的热解过程进行了分析。结果表明:软木热解过程分为4个阶段,热解过程与化学成分的热解过程相一致,513~693 K是试样热解的主要阶段。根据热分解速率方程,获得了软木的动力学参数——频率因子A和活化能E,最后得到软木的热解动力学方程。  相似文献   

13.
A comprehensive investigation into the effect of molecular size of the substituent group of softwood modified with linear chain carboxylic acid anhydrides, namely acetic, propionic, butyric, valeric, hexanoic, upon the sorption of water vapour has been performed. The sorption isotherms for untreated and chemically modified wood were analysed using the Hailwood–Horrobin model. The experimental analysis of the sorption isotherms showed that esterification affects the total, polymolecular and monomolecular sorption. The effect of molecular size of the substituent group on site accessibility was addressed by comparing the effect on water vapour sorption produced by adducts with differences in molecular size. Similar levels of cell-wall bulking were produced at different levels of hydroxyl substitution. Analysis of the sorption isotherms at comparable weight percentage gain revealed that the five anhydrides used show similar effectiveness in both total, polymolecular and monomolecular sorption, despite the substantial difference in the proportion of hydroxyl groups reacted. It is concluded that the reduction in total, polymolecular and monomolecular sorption produced by the linear chain anhydrides is primarily determined by the volume of adduct deposited in the cell wall (bulking) rather than by the number of hydroxyl groups that have been substituted. The validity of the Hailwood–Horrobin model is questioned.  相似文献   

14.
Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 μM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 μM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 μg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.  相似文献   

15.
深入研究竹材宏观压缩性能的影响因素。以散生竹毛竹,丛生竹慈竹、花竹、绿竹为研究对象,分别测试基本密度、维管束分布密度、纤维鞘组织比量、纤维形态及比例等关键特征数据,建立特征数据与竹材宏观压缩性能的关系并分析其对宏观压缩性能的影响。结果表明:1)散生竹毛竹,丛生竹慈竹、花竹、绿竹四种竹材维管束的分布密度、形态及组成差异较大,毛竹维管束的尺寸明显小于丛生竹,丛生竹均含游离纤维股且多为薄壁纤维;2)4种竹材宏观压缩应力—应变曲线相近,但力学性能存在明显差异;3)基本密度、维管束分布密度、厚壁纤维组织比量与竹材顺纹压缩性能正相关,且基本密度的相关性最高。基本密度是评价竹材顺纹抗压强度和压缩模量最可靠的物理因素。不同竹种维管束的分布密度主要影响竹材抗压强度,对压缩模量影响较小。维管束内厚壁纤维的组织比量也是影响竹材抗压强度和压缩模量的重要结构因素,厚壁纤维组织比量越大,压缩性能越好。  相似文献   

16.
The combined effect of drought and light on different physiological and biochemical traits was assessed in cork oak (Quercus suber L.) seedlings grown under two levels of light availability and submitted to a long-standing drought. Watering was withdrawn after germination and seedlings were allowed to dry to a water content of ca. 50% of field capacity. At this point, water-stressed seedlings were grown under moderate drought and two light regimes: high light (HL—50%) and low light (LL—2%). Soil water in control plants was kept close to field capacity (90–100%) for both light environments. Water-relations parameters derived from PV curves, gas exchange and water status at predawn (Ψpd) were evaluated at twice during the experiment. Nitrogen and chlorophyll contents were determined in the same leaves used for the gas exchange measurements. In addition, maximum rate of carboxylation (Vcmax) and electronic transport (Jmax) were derived from ACi curves in well-watered seedlings.

The variation on moisture availability during the experiment was the same under both light environments. In control plants, Ψpd was over −0.3 MPa at the two harvests, while stressed seedlings decreased to −0.9 MPa, with no differences between light treatments. Water stress decreased osmotic potentials at full (Ψπ100) and zero turgor (Ψπ0). The regressions between both potentials and Ψpd showed a higher intercept in shade grown seedlings. This fact will point out the higher osmoregulation capacity in sun seedlings whatever water availability.

Nitrogen investment on a per leaf mass (Nmass), chlorophyll content (Chlmass) and SLA tended to show a typical pattern of sun-shade acclimation. Thus, the three parameters increased with shade. Only for Nmass there was a significant effect of watering, since water stress increased Nmass.

LL plants showed a lower photosynthetic capacity in terms of maximum net photosynthesis at saturating light (Amax), which was related to a decrease in Vcmax and Jmax. Both parameters varied with specific leaf area (SLA) in a similar way. The low-light environment brought about a higher nitrogen investment in chlorophyll, while under high-light environment the investment was higher in carboxylation (Vcmax) and electronic transport (Fmax).

Stomatal conductance to water vapour (gwv) and Amax were lower in low-light seedlings independently of watering. In addition, there was a trend to keep higher intrinsic water use efficiency (IWUE) under high light environment. The increase of IWUE under water stress was higher in HL seedlings. This was as consequence of the steeper decline in gwv as Ψpd decreased. The decrease of Amax with Ψpd occurred in a similar way in LL and HL seedlings. Thus, the HL seedlings tended to sustain a higher ability to increase IWUE than LL seedlings when they were submitted to the same water stress.  相似文献   


17.
Strandboard panels were experimentally produced from moso bamboo (Phyllostachys pubescens) using various strand lengths and layer structures to evaluate the effects of manufacturing parameters on panel properties. The strandboard was fabricated in a laboratory using diphenylmethane diisocyanate (MDI) resin and laboratory-made strands of four lengths and four different structures. Strand alignment distributions and concentration parameter (k) values were greatly affected by strand length. A linear correlation was found between the value of k and the modulus of rupture (MOR), with correlation coefficients of 0.81 and 0.93 for unidirectional boards and three-layer boards, respectively. This correlation may be used to predict the strength properties of boards. Bending properties were significantly affected by both the strand length and the layer structure of the bamboo strandboard tested. Elasticity data from unidirectional boards and random boards can be used to predict the elastic properties of three-layer boards. The linear expansion (LE) of the random boards increased with decreasing strand length. The difficulty in mat forming and resin distribution for longer strands could cause deviation in modulus of elasticity (MOE) and LE, especially in strand lengths around 80 mm.  相似文献   

18.
Abstract

Two Malaysian hardwoods, acacia (Acacia mangium) and sesendok (Endospermum malaccense), that had been subjected to oleo-thermal modification were studied to determine their sorption isotherm behaviour using a dynamic vapour sorption apparatus. All the specimens were thermally modified using palm oil at three different temperatures (180, 200 and 220°C) and three different times (1, 2 and 3 h). The results showed that there was a reduction in equilibrium moisture content at each target relative humidity due to the heat treatment, but that the two wood species showed different behaviour in this respect. The adsorption isotherms were analysed using the Hailwood and Horrobin model, with excellent fits to the experimental data. The monolayer water and polylayer water were both reduced at a range of relative humidity values of the treated samples, although behaviour between the two wood species differed. Heat treatment resulted in an increase in hysteresis ratio, which was probably due to the increase in matrix stiffness of the cell walls.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号