首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship of injected Fe doses on blood hematology and pig growth performance during both preweaning and postweaning periods was studied. In Exp. 1, the effect of BW of 347 pigs injected with 200 mg of Fe (dextran) intramuscularly (i.m.) at birth on hemoglobin (Hb) and percent hematocrit (Hct) at weaning was assessed. As BW increased there was a decline (P < 0.01) in Hb and Hct. In Exp. 2, Fe injection doses and timing of injected Fe on blood hematology and pig growth were evaluated. Injections were as follows: 1) 200 mg of Fe at birth; 2) 300 mg of Fe at birth; or 3) 200 mg of Fe at birth + 100 mg of Fe at d 10. A total of 269 pigs were allotted within litter to 3 treatments. The 2 greater quantities of injected Fe (i.e., 300 or 200 + 100 mg of Fe) had similar but greater (P < 0.05) Hb and Hct values than pigs receiving 200 mg of Fe, but growth rates were similar at weaning. The effects of injecting 200 mg of Fe at birth and either saline or 100 mg of Fe at 10 d of age were investigated in Exp. 3. Weaned pigs of each group were fed diets with 0, 80, or 160 mg/kg of added Fe for 35 d as a 2 × 3 factorial arrangement with 12 replicates (n = 360 pigs) in a randomized complete block design (RCB). The innate Fe contents of diets averaged 200 mg/kg. The greater Fe injection group (200 + 100 mg) had greater (P < 0.01) Hb and Hct values through 14 d postweaning (P < 0.05) and greater (P < 0.01) Hct values through 21 d postweaning. As dietary Fe increased, Hb was greater only at d 14 (P < 0.05 4), whereas Hct increased linearly to d 35 (P < 0.01) postweaning. Dietary Fe resulted in linear increases (P < 0.01) in ADG from d 21 to 35 and d 0 to 35. In Exp. 4, 3 dietary Fe (80, 160, and 240 mg/kg of diet), 2 injected Fe treatments (200 or 300 mg of Fe) at birth, and birth BW (<1.5 or ≥1.5 kg) were evaluated as a 2 × 2 × 3 factorial arrangement of treatments in a RCB design with 6 replicates (n = 280 pigs). The 300 mg of Fe injection group had lighter BW in both birth BW groups, with a birth BW × injected Fe interaction (P < 0.01). This resulted in the lighter birth BW pigs receiving 200 mg of Fe having greater BW gains to 240 mg/kg of dietary Fe, whereas light birth BW pigs injected with 300 mg of Fe plateaued at 160 mg/kg of Fe. Pigs in the heavy birth BW group injected with 200 or 300 mg of Fe at birth responded similarly to dietary Fe postweaning. These results indicate that blood Hb and Hct were affected by pig BW at weaning, but the additional 100 mg of Fe i.m. at 10 d of age increased blood hematology and that Fe injected preweaning affected initial postweaning performance.  相似文献   

2.
Weanling pigs (n = 160) were used to evaluate dietary essential microminerals (Cu, Fe, Mn, Se, and Zn) on performance, tissue minerals, and liver and plasma enzymatic activities during a 35-d postweaning period. A randomized complete block design with 5 treatments and 8 replicates was used in this study. Organic microminerals were added to complex nursery diets at 0 (basal), 50, 100, or 150% of the requirements of microminerals listed by the 1998 NRC. A fifth treatment contained inorganic microminerals at 100% NRC and served as the positive control. Pigs were bled at intervals with hemoglobin (Hb), hematocrit (Hct), glutathione peroxidase, and ceruloplasmin activities determined. Six pigs at weaning and 1 pig per pen at d 35 were killed, and the liver, heart, loin, kidney, pancreas, and the frontal lobe of the brain were collected for micromineral analysis. The liver was frozen in liquid N for determination of enzymatic activities. The analyzed innate microminerals in the basal diet met the NRC requirement for Cu and Mn but not Fe, Se, and Zn. Performance was not affected from 0 to 10 d postweaning, but when microminerals were added to diets, ADG, ADFI, and G:F improved (P < 0.01) from 10 to 35 d and for the overall 35-d period. Pigs fed the basal diet exhibited parakeratosis-like skin lesions, whereas those fed the supplemental microminerals did not. This skin condition was corrected after a diet with the added microminerals was fed. When the basal diet was fed, Hb and Hct declined, but supplemental microminerals increased Hb and Hct values. Liver catalase activity increased (P < 0.01) when microminerals were fed. The Mn superoxide dismutase activity tended to decline quadratically (P = 0.06) when supplemental microminerals were fed above that of the basal diet. Liver plasma glutathione peroxidase activities were greater (P < 0.01) when dietary organic and inorganic micromineral were fed. Liver concentrations of microminerals increased linearly (P < 0.01) as dietary microminerals increased, indicating that the liver was the primary storage organ. Micromineral tissue concentrations were least in pigs fed the basal diet and increased (quadratic, P < 0.01) to the 50% level of organic microminerals in the various tissues collected. The results indicated that innate microminerals, Cu and Mn, from a complex nursery diet may meet the micromineral needs of the weaned pig, but the need for Fe, Se, or Zn was not met by the basal diet.  相似文献   

3.
Dietary trace mineral sources and levels were fed to developing gilts to evaluate their performance responses during the growth phase, but treatments were continued into the reproductive phase in which subsequent reproductive responses were evaluated. In Exp. 1, three groups of gilts (n = 216) were used in a 2 x 2 factorial in a randomized complete block design (6 replicates) with treatment diets initially fed at 30 kg of BW. The first factor was trace mineral source (organic or inorganic), whereas the second factor evaluated dietary levels. The NRC requirement was the first level evaluated, whereas the second level was formulated to average industry standards (IND). Organic trace minerals were mineral proteinates, whereas the inorganic minerals were provided in salt form. The results of Exp. 1 indicated that trace mineral source or level did not affect gilt growth or feed performance responses to 110 kg of BW. Experiment 2 continued with the same females but was a 2 x 3 factorial in a split-plot design using 3 groups of females over a 6-parity period and had a total of 375 farrowings. Factors in Exp. 2 were the same as in Exp. 1, except that 2 additional pens of gilts during their development had been fed the IND level trace mineral levels of both trace mineral sources. At breeding, the gilts from these 2 additional pens were continued on the same trace mineral source and level but fed greater dietary Ca and P levels (IND + Ca:P). Litters were standardized by 3 d postpartum within each farrowing. Sows fed organic trace minerals farrowed more (P < 0.05) total (12.2 vs. 11.3) and live pigs (11.3 vs. 10.6) compared with sows fed inorganic trace minerals. Sows fed the IND + Ca:P level tended to have fewer (P < 0.10) total pigs born for both trace mineral sources. Litter birth weights were heavier (P < 0.05) when sows were fed organic trace minerals, but individual piglet weights were similar. Nursing pig ADG tended to be greater (P < 0.10) when sows were fed organic trace minerals. Other sow reproductive traits (BW, feed intake, and rebreeding interval) were not affected by trace mineral source or level. Daily mineral intake increased by parity but declined when trace mineral intakes were expressed on an amount per kilogram of BW and declined during later lactations. These results suggest that feeding sows organic trace minerals may improve sow reproductive performance, but there were minimal effects on other reproductive measurements.  相似文献   

4.
Effect of vitamin E and selenium on iron utilization in neonatal pigs.   总被引:7,自引:0,他引:7  
Supplying adequate iron (Fe) to neonatal pigs to support normal growth and hematological and antioxidant status, while preventing iron toxicity, is a challenge for producers. Three experiments were conducted to determine the effect of frequency and route of Fe administration with or without vitamin E (E) and selenium (Se) on growth, Fe, and antioxidant status of neonatal pigs. In Exp. 1, 12 pigs from dams with reduced E status were fed a semipurified diet without added Fe from d 3 to d 14 of age. At d 6 of age, pigs received the following i.m. injections: 1) FE, 1 mL containing 200 mg of Fe (iron dextran); 2) FEE, treatment FE plus 1 mL containing 300 IU of vitamin E (d-alpha tocopherol); or 3) FESEE, 1.03 mL containing 200 mg of Fe (iron dextran), .15 mg of Se (sodium selenite), and 15 IU of vitamin E (d-alpha tocopherol). Pigs were weighed daily and blood was collected at 3, 7, and 14 d of age. From d 8 to 14, growth was depressed (P < .05) in pigs injected with FESEE. At 14 d of age, pigs injected with FE or FEE had increased (P < .05) hemoglobin (Hb) concentration. Ceruloplasmin activity (CP) was greater (P < .05) at d 7 of age than at d 3 or 14 regardless of treatment. In Exp. 2, 3-d-old pigs (n = 94) received the following: 1) FE, 200 mg Fe (iron dextran) i.m.; (2) FEE, treatment FE plus 300 IU vitamin E i.m.; 3) EFE, 300 IU vitamin E i.m. followed by 200 mg Fe (iron dextran) i.m. 24 h later; or 4) OFE, 100 mg Fe and 10 mg Cu orally. On d 21 of age, one-half of the pigs in each treatment received a second dose of their respective treatment. Blood samples (n = 60) were obtained on d 3 and 21 of age. Pigs injected with FE, FEE, or EFE had greater (P < .05) Hb at d 21 than pigs given OFE. Copper/zinc superoxide dismutase (Cu/ZnSOD) activity was greater (P < .05) at d 21 with OFE than with the other treatments. At 65 d of age, ADG did not differ among treatments. In Exp. 3, pigs (n = 150, in three farrowing groups) were injected with 200 mg of Fe (iron dextran) on d 1 or d 1 and 14. Blood samples were obtained on d 7 and 21 of age. Hemoglobin concentration on d 21 was improved equally by both treatments. Catalase and Cu/ZnSOD activities were increased (P < .05) on d 21 of the experiment compared with d 7 regardless of treatment. Growth was not affected by injection frequency. Results from these experiments indicate that one Fe injection (200 mg) for pigs from sows fed adequate vitamin E will result in adequate growth and hemoglobin concentration with today's improved genetics.  相似文献   

5.
Three commercial trials were conducted to evaluate the use of dexamethasone (Dex) and/ or isoflupredone (Predef) in improving preweaning growth performance of neonatal pigs. The objectives of the commercial trials were threefold: 1) to evaluate Predef in comparison with Dex; 2) to address the sexual dimorphic growth response observed in a previous commercial trial; and 3) to determine whether there is any benefit of providing Dex treatment to pigs being fed supplemental milk. In Exp. 1, 276 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included saline (Control), Dex (2 mg/kg BW i.m. injection of Dex), or Predef (2 mg/kg BW i.m. injection of Predef 2X) within 24 h after birth. A treatment effect was observed for BW at weaning (P < 0.001), with pigs injected with Predef being 0.51 kg lighter than Control and Dex-treated pigs. The lower BW of Predef-treated pigs at weaning were a result of a lower ADG (P < 0.001) during the preweaning period compared with Control and Dex pigs. In Exp. 2, 703 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included either an i.m. injection of saline (Control), Dexl (1 mg/kg BW of Dex), or Dex2 (2 mg/kg BW of Dex) within 24 h after birth. No treatment effects were observed for BW at weaning (P = 0.24) or ADG (P = 0.19). In Exp. 3, 342 pigs (Genetiporc) were assigned according to birth weight and sex to two treatments. Treatments included either an i.m. injection of saline or Dex (2 mg/kg BW) within 24 h after birth. All pigs were provided supplemental milk from the time of treatment until weaning age. No treatment effects were observed for BW at weaning (P = 0.13) or ADG (P = 0.11). The negative response to Predef was similar to the growth-suppressive effects observed by others using chronic glucocorticoid treatment. In contrast to our previous findings, Dex did not improve preweaning growth performance regardless of dose or supplemental milk.  相似文献   

6.
To investigate the effects of supplemental Se on the transfer of Se to nursing pigs when sows are fed diets containing a Se level above the NRC recommendation (0.15 ppm), sows were fed diets containing no supplemental Se or supplemental (0.3 ppm) Se from sodium selenite or Se yeast. A nonSe-fortified corn-soybean meal basal diet with a high endogenous Se content served as the negative control (0.20 to 0.23 ppm Se). Fifty-two sows were fed diets from 60 d prepartum until 14 d of lactation. Six sows per treatment were bled at 60 and 30 d prepartum, at farrowing, and at 14 d postpartum to measure serum Se concentrations. Colostrum was collected within 12 h postpartum, and milk was collected at 14 d of lactation. Blood was obtained from 3 pigs each from 12 litters per treatment at birth and at weaning (d 14), and pooled serum was analyzed for Se and immunoglobulin G concentrations and glutathione peroxidase activity. Regardless of treatment, serum Se in sows declined throughout gestation and gradually increased during lactation. Sows fed Se yeast tended (P < 0.06) to have greater serum Se at farrowing than sows fed unsupplemented diets. Colostrum and milk (d 14) Se concentrations increased (P < 0.01) when sows were fed Se from yeast but not from sodium selenite. At birth, serum Se was increased (P < 0.01) for pigs whose dams were fed Se yeast compared with pigs from sows fed the basal diet. At 14 d of age, there was no difference in serum Se concentration of pigs from dams fed any of the treatments. Pig serum immunoglobulin G concentrations and glutathione peroxidase-1 activity were unaffected by dietary Se source. Supplementation of gestating and lactating sow diets with Se (0.3 ppm) from an organic or inorganic source reduced the number of stillbirths per litter. However, only pigs born to sows fed organic Se (Se yeast) had greater serum Se at birth. Organic Se increased Se concentration of colostrum and 14-d milk to a greater degree than inorganic Se.  相似文献   

7.
An experiment was conducted to evaluate the effects of supplementing increasing concentrations of Fe to the diet of nursery pigs on growth performance and indices of hematological and mineral status. Pigs (n = 225; 6.5 kg; 19 +/- 3 d) were allotted randomly by BW, litter, and gender to one of five dietary treatments (five pigs per pen; nine pens per treatment). Basal diets for each phase (Phase 1: d 0 to 7; Phase 2: d 7 to 21; Phase 3: d 21 to 35) were formulated to contain minimal Fe concentration and then supplemented with 0, 25, 50, 100, and 150 mg Fe/kg of diet (as-fed basis) from ferrous sulfate. Three pigs per pen (n = 135) were chosen and bled throughout (d 0, 7, 21, and 35) to determine hemoglobin (Hb), hematocrit (Hct), transferrin (Tf), and plasma Fe (PFe). In addition, pigs (n = 5; 5.9 kg; 19 +/- 3 d) from the contemporary group were killed at d 0 to establish baseline (BL), and 30 pigs (six pigs/treatment) were killed at d 35 to determine whole-body and liver mineral concentrations. The improvements in growth performance during Phase 2 (ADG = linear, P = 0.04; ADFI = linear, P = 0.10; G:F = quadratic, P = 0.07) were of sufficient magnitude that dietary treatments tended to increase ADG (linear, P = 0.08), ADFI (quadratic, P = 0.09), and G:F (quadratic, P = 0.10) for the 35-d experiment. Hematological variables were not affected until d 21, at which time dietary Fe supplementation resulted in a linear increase (P = 0.03) in Hb, Hct, and PFe. This linear increase (P = 0.001) was maintained until d 35 of the experiment; however, dietary treatments resulted in a linear decrease (P = 0.01) in Tf on d 35. Whole-body Fe concentration increased (linear, P = 0.01) in pigs due to increasing dietary Fe concentrations. Moreover, pigs fed for 35 d had greater (P = 0.02) whole-body Fe, Zn, Mg, Mn, Ca, and P concentrations and lower (P = 0.001) whole-body Cu concentration than BL. Hepatic Fe concentration increased (linear, P = 0.001) in pigs due to dietary treatments; however, the hepatic Fe concentration of all pigs killed on d 35 was lower (P = 0.001) than the BL. Results suggest that Fe contributed by feed ingredients was not sufficient to maintain indices of Fe status. The decrease in Fe stores of the pigs was not severe enough to reduce growth performance. Even so, the lessening of a pig's Fe stores during this rapid growth period may result in the occurrence of anemia during the subsequent grower and finisher periods.  相似文献   

8.
9.
An experiment evaluated the effects of feeding either a basal non-Se-fortified diet, two Se sources (organic or inorganic) each providing 0.15 and 0.30 ppm Se, or their combination (each providing 0.15 ppm Se) on gilt growth and sow reproductive performance. The experiment was a 2 x 2 + 2 factorial conducted in a randomized complete block design in three replicates. One hundred twenty-six crossbred gilts were started on one of the six treatment diets at 27.6 kg BW. During the grower phase, animals were bled at 30-d intervals with three gilts killed per treatment at 115 kg BW for tissue Se analysis. Fifteen gilts per treatment were bred at 8 mo of age and were continued on their treatment diets for four parities. Sow serum collected within parity was analyzed for Se and glutathione peroxidase (GSH-Px) activity. Tissue Se was determined from five 0-d-old pigs per treatment from fourth-parity sows. Three sows per treatment were killed after the fourth parity for tissue Se analysis. Similar treatment performance responses occurred from 27 to 115 kg BW. Serum Se (P < 0.01) and GSH-Px activity (P < 0.05) increased for both Se sources to 0.30 ppm Se during the grower and reproductive periods. Serum Se and GSH-Px activity decreased from 70 to 110 d postcoitum in all treatment groups, but increased at weaning (P < 0.01) in the Se-fortified groups. The number of pigs born (total, live) increased (P < 0.05) with the 0.15 ppm Se level for both Se sources. Tissue and total body Se content of 0-d-old pigs increased with Se level (P < 0.01) and also when the organic Se source (P < 0.01) was fed to the sow. When sows were fed either Se source, pig serum Se (P < 0.01) and GSH-Px activity (P < 0.05) increased at weaning. Colostrum and milk Se concentrations increased (P < 0.01) with Se level for both Se sources, but were substantially greater (P < 0.01) when sows were fed organic Se. The combination of Se sources had sow milk and tissue Se values that were similar to those of sows milk and fed 0.15 ppm organic Se. The fourth-parity sows had greater tissue Se concentrations when organic Se level was increased (P < 0.01), more so than when sows were fed inorganic Se. These results suggest that both Se sources resulted in similar sow reproductive performances at 0.15 ppm Se, but sows fed the organic Se source had a greater transfer of Se to the neonate, colostrum, milk, weaned pig, and sow tissues than sows fed inorganic Se.  相似文献   

10.
Two hundred and sixteen weanling gilts (6.65+/-0.08 kg) were used to determine the effects of decreasing supplemental concentrations of Zn, Cu, Fe, and Mn, and trace mineral source (inorganic vs. chelated) on growth performance, mineral status, and fecal mineral concentrations from weaning through development. The study was conducted over three trials with 72 pigs in each trial. Gilts were blocked by weight and randomly assigned to either 1) control, 2) reduced inorganic, or 3) reduced chelated trace minerals. The control diet was supplemented with 25, 150, 180, and 60 mg/kg of Cu, Zn, Fe, and Mn (in sulfate forms), respectively, during the nursery phase and 15, 100, 100, and 40 mg/kg of supplemental Cu, Zn, Fe, and Mn, respectively, during the growing and gilt-developer phases. Reduced inorganic and reduced chelated treatments were supplemented during all phases with 5, 25, 25, and 10 mg/kg of Cu, Zn, Fe, and Mn, respectively. The reduced chelated treatment supplied 50% of the supplemental Cu, Zn, Fe, and Mn in the form of metal proteinates, with the remainder from sulfate forms. Performance by control pigs did not differ from pigs fed the reduced trace mineral treatments during the nursery and grower-development periods. Gain:feed was lower (P < 0.05) for pigs fed the reduced inorganic compared with those fed the reduced chelated treatment during the nursery period. Trace mineral source did not affect performance during the growing or gilt-developer phase. Plasma Zn concentration and alkaline phosphatase activity were higher (P < 0.01) in control pigs than in those receiving reduced trace minerals during the nursery and growing phases. Plasma Cu concentration and ceruloplasmin activity were generally not affected by treatment. Hemoglobin concentrations were lower (P < 0.05) for the reduced inorganic compared with the reduced chelated treatment in the nursery phase. Fecal concentrations of Cu, Zn, and Mn were lower (P < 0.05) in pigs fed reduced trace minerals than in controls during all production phases. Fecal Zn concentration during the nursery and fecal Cu concentrations during the growing and gilt-developer phases were lower (P < 0.05) in pigs fed the reduced chelated compared with the reduced inorganic treatment. Results indicate that reducing the concentrations of Zn, Cu, Mn, and Fe typically supplemented to pig diets will greatly decrease fecal mineral excretion without negatively affecting pig performance from weaning through development.  相似文献   

11.
An experiment evaluated the selenosis effects from feeding high dietary Se levels of organic or inorganic Se sources to growing gilts with the dietary treatments continued through a reproductive cycle. A total of 88 gilts were allotted at 25 kg BW to two replicates in a 2 x 4 factorial arrangement in a randomized complete block design. Inorganic Se (sodium selenite) or organic (Se-enriched yeast) Se were added to diets at 0.3, 3, 7, or 10 ppm Se. At 105 kg BW, four gilts per treatment were killed and livers collected for Se analysis. At 8 mo of age, three gilts from each treatment group were bred and fed their treatment diet, with subsequent reproductive performance and selenosis effects evaluated. Serum collected at various intervals in gilts, sows, and progeny measured glutathione peroxidase activity and Se concentrations. Sow colostrum and milk was analyzed for their Se concentrations. Three pigs per treatment were killed before colostrum consumption and at weaning (14 d) and tissue collected for Se analysis. Gilt gains (P < 0.01) and feed intakes (P < 0.05) declined during the grower period as dietary Se level increased for both Se sources. Serum and liver Se concentrations increased as dietary Se level increased and was higher when organic Se was fed (P < 0.01). Sows fed dietary Se levels at > 7 ppm had lower gestation weights (P < 0.05) and lower lactation feed intakes (P < 0.05). As Se level increased, sows fed organic Se had a lower number of live pigs born (P < 0.05) and weaned fewer pigs (P < 0.05) with lower litter gains (P < 0.05) than did sows fed inorganic Se. Colostrum and milk Se concentrations increased as dietary Se levels increased particularly when organic Se was fed (P < 0.01). Neonatal and weanling pig tissue Se and serum Se concentrations increased as dietary Se level increased and when organic Se was fed, resulting in interaction responses (P < 0.01). Pigs nursing sows fed > 7 ppm inorganic Se had hoof separation and alopecia, with the severity being greater when sows were fed the inorganic Se source. These results suggest that both the organic and inorganic Se sources were toxic when fed at 7 to 10 ppm for a prolonged period, but organic Se seemed to express the selenotic effects more on reproductive performance, whereas inorganic Se was more detrimental during lactation.  相似文献   

12.
Crossbred steer calves (n = 64) were used in a 2 × 2 factorial arrangement to evaluate two levels of organic trace minerals and two levels of inorganic trace minerals. Calves were fed 28 d on the ranch in two pens of eight head per treatment before a simulated transport stress. After being loaded, hauled 129 km, unloaded with an overnight stand without feed and water, and reloaded, they were shipped to the Colorado State University (CSU) research feedyard in Fort Collins and placed in 64 individual pens. Calves fed the organic low level and inorganic high level trace minerals gained better (P<0.05) the first 28 d than did calves fed the organic high level or inorganic low level trace minerals. Overall growth performance was not influenced by trace mineral types or levels. Longissimus area was greater (P<0.05) for calves fed the low level organic trace minerals compared with that for calves fed the low level inorganic trace minerals. Eosinophils (d 28) were higher (P<0.05) for calves fed the organic high level trace minerals compared with calves fed inorganic low level trace minerals. Infectious bovine rhinotracheitis (IBR) and parainfluenza (PI3) titers were not influenced by trace minerals. Red blood cells and packed cell volume were higher (P<0.05) for calves fed low level trace minerals regardless of trace mineral type. Liver Co was increased (P<0.05) at the 28-d sampling when inorganic trace minerals were fed. Liver Co was highest (P<0.05) at the 168- d sampling for calves fed low level inorganic trace minerals followed by calves fed organic high level trace minerals. Liver Fe was lower (P<0.05) in calves at the d-168 sampling when organic trace minerals were fed. Liver Zn was elevated (P<0.05) by d 28 by feeding the inorganic low level trace minerals, and by d-168, liver Zn was higher (P<0.05) for calves fed the low levels of trace minerals. Initial growth performance was maintained by either supplementing organic trace minerals or elevating dietary inorganic trace minerals when confronted with high dietary Fe, S, or Mo.  相似文献   

13.
Two experiments were conducted to determine the effects of dietary P and trace mineral source on immune response, mineral status, and performance in steers stressed by weaning and disease exposure. In Experiment 1, 24 Angus and 24 Simmental weaned steers were used. Treatments consisted of 1) inorganic trace minerals, 2) organic trace minerals, 3) 0.15% supplemental P + inorganic trace minerals, and 4) 0.15% supplemental P + organic trace minerals. Copper, Mn, and Zn were added to provide 10, 25, and 25 mg/kg DM, respectively. The organic treatments supplied 50% of the supplemental Cu and Mn, and 66% of the supplemental Zn from metal proteinates, with the remainder supplied by inorganic sulfate forms. Inorganic treatments supplied all of the supplemental Zn, Cu, and Mn from sulfate forms. The basal diet was a corn silage-soybean meal-based diet. On d 2 following weaning, steers received an intranasal inoculation of infectious bovine rhinotracheitis virus (IBRV). Rectal temperatures in response to IBRV inoculation were similar across treatments. On d 9, steers were injected with 10 ml of a 25% pig red blood cell (PRBC) suspension. Total Ig titers against PRBC concentrations were higher (P<0.05) in steers receiving no supplemental P on d 7 postinjection. However, IgG and IgM titers were unaffected by treatment. Cell-mediated immune response (CMI) to phytohemagglutinin (PHA), plasma Cu and Zn concentrations, and 38-d performance were unaffected by treatment. In Experiment 2, 35 Angus steers were fed diets containing either inorganic or organic trace minerals. Performance and percent morbidity were unaffected by treatment. Plasma Cu was higher for steers fed organic trace minerals. Results indicate that increasing dietary P or replacing inorganic trace minerals with organic forms had little effect on immunity or performance of steers stressed by weaning.  相似文献   

14.
Two experiments were conducted to evaluate the effects of Fe injection timing after birth on suckling and subsequent nursery and growing-finishing pig performance. The injectable Fe source used in both experiments was GleptoForte (Ceva Animal Health, LLC., Lenexa, KS). GleptoForte contains gleptoferron which is a Fe macromolecule complex. In Exp. 1, a total of 324 newborn pigs (DNA 241 × 600, initially 1.6 ± 0.04 kg body weight [BW]) within 27 litters were used. Two days after birth, all piglets were weighed, and six barrows and six gilts per litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided in a single injection on d 2, 4, 6, 8, or 10 of age. Pigs were weaned (~21 d of age) and allotted to nursery pens with all pigs in each pen having received the same Fe treatment. In Exp. 2, a total of 1,892 newborn pigs (PIC 359 × C40; initially 1.5 ± 0.02 kg BW) within 172 litters were used. One day after birth, piglets were weighed, and 11 pigs within each litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided on d 1, 3, 5, or 7 of age, or 200 mg on d 1 plus 200 mg on d 12 of age. Pigs were weaned (19 d of age) and placed in a commercial wean-to-finish facility in a total of 15 pens with equal representation of treatments in each pen. In both experiments, not providing an Fe injection after birth decreased (P < 0.05) preweaning average daily gain (ADG), weaning weight, and hemoglobin and hematocrit values compared with all other treatments. In Exp. 1, increasing the age that piglets received an Fe injection until 4 or 6 d after birth provided marginal evidence for an improvement (quadratic; P = 0.070) in preweaning ADG. For the nursery period, increasing the age that piglets received an Fe injection improved (quadratic; P = 0.013) d 80 BW, but there was no evidence of a difference (P > 0.10) in d 173 BW at the end of the grow-finish period. In Exp. 2, increasing the age that piglets received a 200 mg Fe injection showed no evidence of difference (P > 0.10) for subsequent nursery and growing-finishing ADG. In both experiments, hemoglobin and hematocrit values were decreased (linear; P < 0.05) at weaning with increasing age when pigs received an Fe injection. These experiments suggest that providing a 200 mg Fe injection within 7 d after farrowing is sufficient for optimizing preweaning and subsequent growth performance.  相似文献   

15.
通过在怀孕后期和哺乳期母猪日粮中添加不同水平的硫酸亚铁和复合有机铁,以及肌注铁与否来考察复合有机铁对母猪繁殖性能和仔猪生长性能的影响。结果表明,与无机铁相比,母猪饲粮中添加复合有机铁可提高母猪产活仔率和断奶仔猪存活率,提高仔猪10日龄、21日龄体重;综合铁源、铁水平以及肌注补铁的效应,添加120 mg/kg复合有机铁,同时仔猪均辅以肌注补铁,可显著提高仔猪肌注7日龄和断奶时体重(P<0.05)。  相似文献   

16.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

17.
An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.  相似文献   

18.
A cooperative regional research study using 194 sows, from which data were collected from 381 litters, was conducted at 3 research stations to determine the effects of added psyllium (a concentrated fiber source) or soybean hulls to gestation diets on reproductive performance of sows and preweaning performance of their pigs. Primiparous and multiparous sows were allotted to the 3 treatments of control (corn and soybean meal-based), 0.30% psyllium, or 20% soybean hulls. Sows fed the control and 0.30% psyllium diets were provided 1.82 kg/d, and sows fed the 20% soybean hulls diet were provided 2.0 kg/d to equalize ME, Lys, Ca, P, and vitamin and trace mineral intake. Treatments 1 to 3 had 130, 130, and 121 litters per treatment from 64, 64, and 63 sows, respectively. Gestating sows fed psyllium had a greater (P < 0.01 to 0.10) d 110 gestation, farrowing, weaning, and 17 d postpartum BW and gestation ADG compared with sows fed soybean hulls. Sows fed psyllium also had a greater (P < 0.10 and 0.08) d 110 gestation BW and gestation ADG than the control sows. Sows fed soybean hulls had a reduced (P < 0.06) farrowing BW compared with the control sows. Sows fed psyllium weaned lighter (P < 0.09) pigs than sows fed the control diet. Litter size was not affected (P > 0.10) by diet. Sows fed psyllium had a reduced (P < 0.03) feed intake compared with sows fed soybean hulls for d 5 to 7 postpartum, and sows fed the control diet were intermediate. Fecal scores (1 to 5 with 1 = dry and 5 = watery) were greater (P < 0.001) and DM content was less (P < 0.001 to 0.01) in the feces of sows fed soybean hulls compared with sows fed psyllium or the control diet on d 112 of gestation and d 4 postpartum. Fecal scores were greater (P < 0.10) and fecal DM content was less (P < 0.02) in sows fed psyllium compared with sows fed the control diet only on d 4 postpartum. In summary, sows fed soybean hulls during gestation had reduced BW compared with sows fed the control diets. In contrast, sows fed psyllium had an increased BW.  相似文献   

19.
The purpose of this trial was to determine whether an addition of folic acid to a commercial diet would affect serum Zn, Fe and Cu status in sows between weaning and 30 d of gestation. At weaning, 162 sows were assigned randomly to six groups and housed in individual cages fitted on a slatted floor. There were six treatments according to a 2 X 3 factorial arrangement: two levels of supplementary folic acid (0 and 5 mg/kg of diet) and three treatments to stimulate ovulation (none, flushing and pregnant mare serum gonadotropin [PMSG] i.m. injection). Control groups were fed a commercial-type diet, and folic acid-treated groups were fed the same diet supplemented with 5 mg/kg of pteroylglutamic acid. All sows were mated twice within 7 d after weaning. Of the 162 animals originally selected, 123 sows were pregnant and used in this trial. Serum folates, Zn, Cu and Fe were measured at weaning, mating and 30 d of gestation. Serum Cu, Zn and folates increased between weaning and mating, and then decreased to 30 d of gestation. Supplementing the commercial diet with folic acid elevated serum folates between weaning and d 30 of gestation (P less than .001). Folic acid supplementation also was associated with a higher level of serum Zn at 30 d of gestation. Supplemental folic acid had no effect on the pattern of serum Cu and Fe throughout the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A total of 124 Duroc and 99 Landrace primiparous and multiparous sows were assigned, within breed and contemporary group, to control (N) or 10% added fat (F) diets on d 105 of gestation based on parity and genetic line (control or selected for improved sow productivity), to determine the effects of genetic line and fat addition to the lactation diet on sow and litter performance. Weekly feed intake was not affected (P greater than .10) by genetic line for Duroc and Landrace sows but feed intake was reduced (P = .08) during wk 1 to 4 for Duroc sows and during wk 1 and 4 for Landrace sows (P less than .05) when they were fed diet F compared with diet N. Select (S)-line Duroc and Landrace sows lost more weight during lactation (P less than .01) than did control (C)-line sows. Select-line Landrace sows lost more backfat during lactation (P less than .05) than did C-line sows. Landrace sows lost less weight during lactation (P less than .05) when fed diet F than when fed diet N. The total number of pigs born, born alive, and alive at 21 d and at weaning were higher (P less than .01) for S-line Duroc sows, and litter size at 21 d and at weaning was higher (P less than .01) for S-line Landrace sows than for C-line litters within each breed. Pig survival from birth to weaning was increased (P = .07) for Duroc sows fed diet F but not for Landrace sows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号