首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   

2.
《Geoderma》2007,137(3-4):310-317
Dissolved organic matter (DOM) is one of the important factors affecting metal mobility and phytotoxicity in the soils receiving sewage sludge. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge on Cd and Zn sorption by three different soil types (calcareous clay loam, calcareous sandy loam and acidic sandy loam) of different physico-chemical properties through batch studies. The addition of DOM significantly reduced the Cd and Zn sorption capacity by a factor of 2.1–5.7 for Cd and 2.3–13.7 for Zn for these three soils as seen by their K values in the Freundlich equation compared to the control receiving no DOM, suggesting that DOM had a stronger inhibitory effect on Zn sorption than that of Cd. The reduction in metal sorption caused by DOM was very apparent in the pH range of 5 to 8, with a maximum inhibition on metal sorption occurring at pH 7–7.5 especially for Zn but the effect was minimal at lower pH. At a DOM concentration of < 200 mg C l 1, Cd and Zn sorption by all the three soils decreased with an increase in DOM concentration. At each given DOM concentration, the inhibition of metal sorption of the different soil types increased in the following order: acidic sandy loam < calcareous sandy loam < calcareous clay loam. DOM derived from sludge would significantly reduce metal sorption and increase its mobility through the formation of soluble DOM–metal complexes and poses risk of metal leaching and phytotoxicty in near-neutral and alkaline soils.  相似文献   

3.
Veterinary antimicrobial agents have been detected in a number of environmental samples, including agricultural soils. In this study, we investigated the persistence and sorption of the sulfonamides sulfamethazine (SMZ) and sulfachloropyridine (SCP) in soil and their potential effects on soil microorganisms. The sulfonamides dissipated more rapidly from the silt loam soil as compared to the sandy soil. Average half-lives of SMZ and SPC among the two soils were 18.6 and 21.3 days, respectively. The presence of liquid swine slurry (5% v/w) decreased sulfonamide persistence in the silt loam soil. The lower persistence of the antimicrobials in liquid swine slurry-amended soil was likely due to higher microbial activity, as compared to unamended soil, and/or to the greater bioavailability of the sulfonamides to degrading microorganisms, as estimated by sorption isotherms. Concentrations of SMZ and SPC up to 100 microg g-1 had no effect on antimicrobial degradation rates and soil microorganisms. These studies suggest that higher sulfonamide concentrations would be necessary to affect the main processes controlling their environmental fates in soil, but at the concentrations normally found in the environment, there would be little or no effects.  相似文献   

4.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

5.
Abstract

Zinc solubility in soils can be affected by both pH and pyrophosphate (PP), yet the reaction of PP is influenced by pH, thus there is a need to evaluate pH effect on Zn transformation in soils treated with PP. Samples of three autoclaved soils, a Dalhousie (DT) clay, a St. Bernard (ST) loam, and an Uplands (UT) sand were equilibrated first with PP (0.0 and 9.0 P mM), then with Zn (0.0, 0.5, 1.0 Zn mM) and followed by 0.03 M KC104 solutions at the initial pH of 4.5, 6.0, and 7.5 with constant ionic strength. The first equilibration was for PP sorption, the second for Zn sorption and PP desorption, and the third for Zn desorption and further PP desorption. And finally, Zn of selected samples were extracted with 0.5 M KNO3 (exchangeable Zn, ZnKNO3), 0.5 M NaOH (organic and Fe oxides associated Zn, ZnNaOH) solutions, and concentrated HNO3+H2O2 (residual Zn, ZnHNO3).

Increases in pH reduced PP sorption in the UT and the ST soils while high or low pH values tended to reduced it in the DT soil, indicating a competition between PP and OH ions for sorption sites. Zinc sorption was linearly related to solution pH, the slopes varied from 0.10 to 1.06, lower values were associated with PP addition, with low Zn rate, with finer textured soils, with high contents of Fe and Al materials, and with high pH buffer capacity. The values of Zn desorption and ZnKN03 were greater at low than high pH while the reverse was true for ZnNaOH. The pH effects on Zn sorption‐desorption and fraction distributions were less significant in soil with than without PP. The overall effect of high pH and the presence of the sorbed PP was the increased Zn specific sorption, compared to the pH or PP effect alone.  相似文献   

6.
The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.  相似文献   

7.
Pentachlorophenol (PCP) adsorption and desorption equilibrium was studied with two Menfro silt loam soils — upper horizon and lower horizon. For the adsorption studies the variables were: temperature (10 and 30 °C) and the amount of organic matter. The variables for the desorption studies were: temperature (10 and 30 °C), pH and the presence of an anionic and a cationic surfactant. The results from these studies confirmed the importance of soil organic matter for adsorption of PCP on the soils. The adsorption data at different temperatures indicated the physical nature of the adsorption process. The desorption data produced non-singularity and some PCP was irreversibly adsorbed onto the soil despite repeated washings. Increased pH increased the desorption of PCP from the soil. The anionic surfactant, sodium dodecylbenzene sulfonate (SDS) was able to desorb significant amounts of PCP from the soil at doses equal to critical micelle concentration (CMC). But, the nonionic surfactant, surfactant, Triton X-405 required a much higher dose (twice the CMC) to cause a significant desorption of PCP from the soil.  相似文献   

8.
The sorption of zinc (Zn) by two acid tropical soils, Mazowe clay loam (kaolinitic, coarse, Rhodic Kandiustalf) and Bulawayo clay loam (coarse, kaolinitic, Lithic Rodustalf), was studied over a wide range of Zn solution concentrations. Samples of the two soils used in the experiments were collected at both uncleared, uncultivated (virgin) sites and cultivated sites. The two virgin soils showed similar abilities to bind Zn. Mazowe soil (40 g organic matter kg?1) presented the highest affinity for Zn. Yet, Bulawayo soil (23.5 g organic matter kg?1) sorbed almost the same amount. Bulawayo soil had higher pH and Fe and Mn-oxide content than Mazowe soil. Once cultivated, the two soils behaved quite differently. After 50 years, Mazowe soil had lost 60% of its organic matter and effective cation exchange capacity (ECEC). In this soil, Zn sorption capacity had also been decreased by 60%. Clearing and 10 years under cultivation had affected neither the organic matter content nor the ECEC of Bulawayo soil. For this soil, Zn sorption was even higher in the cultivated soil, presumably due to an increase in the amount of Fe and Mn oxide from subsoiling. Zinc sorption was dependent upon pH, with retention dramatically increasing in the pH range 6–7. Sorption occurred at pH values below the point of zero charge (PZC), indicating that the sorption reaction can proceed even in the presence of electrostatic repulsion between the positively charged soil surface and the cation. In the two soils, the reversibility of the sorption reaction was very low. More than 90% of the sorbed Zn was apparently strongly bonded.  相似文献   

9.
Chromatographic methods were used in an attempt to identify the various species of cadmium in soil solution. Exclusion and reverse-phase chromatography using HPLC showed that cadmium existed in the form of low-molecular weight, highly polar species. Ion-exchange chromatography was used to divide soil solution cadmium into cationic, anionic and neutral species. Cadmium was found to be mainly in the form of inorganic cationic species, including the free ionic form, Cd2+, and some as neutral species, possibly organic as well as inorganic, especially in soils of higher pH. Anionic species were relatively unimportant. These results showed general agreement with those of other authors using computer models to predict cadmium speciation in soil solution.  相似文献   

10.
Pesticide sorption or binding to soil is traditionally characterized using batch slurry techniques. The objective of this study was to determine linuron sorption in field-moist or unsaturated soils. Experiments were performed using low-density (i.e., 0.25 g mL(-)(1)) supercritical carbon dioxide to remove linuron from the soil water phase, thus allowing calculation of sorption coefficients (K(d)) at low water contents. Both soil water content and temperature influenced sorption. K(d) values increased with increased water content, if less than saturated. K(d) values decreased with increased temperature. K(d) values for linuron sorption on silty clay and sandy loam soils at 12% water content and 40 degrees C were 3.9 and 7.0 mL g(-)(1), respectively. Isosteric heats of sorption (DeltaH(i)) were -41 and -35 kJ mol(-)(1) for the silty clay and sandy loam soils, respectively. The sorption coefficient obtained using the batch method was comparable (K(f) for sandy loam soil = 7. 9 microg(1)(-)(1/)(n)() mL(1/)(n)() g(-)(1)) to that obtained using the SFE technique. On the basis of these results, pesticide sorption as a function of water content must be known to more accurately predict pesticide transport through soils.  相似文献   

11.
Influence of organic matter and pH on bentazone sorption in soils   总被引:4,自引:0,他引:4  
Bentazone (3-isopropyl-1H-2,1,3-benzonthiadiazain-(4)3H-one 2,2-dioxide) is a postemergence herbicide which is used extensively worldwide, especially in China. The sorption of bentazone in various types of soils and extracted humic acids was investigated using a batch equilibration technique. Significant linearity was observed in sorption isotherms in five different types of soil, with distribution coefficients (K(d)) that varied between 0.140 and 0.321 mL g(-1). The distribution coefficient was determined to be a function of organic matter and pH in the soil. A model based on distribution coefficients was developed to predict bentazone sorption in soils. The organic matter-normalized partition coefficients for the neutral and anionic forms of bentazone were 370.3 and 2.40 mL g(-1), respectively. Hence, more attention should be given to the potential leaching problem when bentazone is applied in soils containing low organic matter and high pH.  相似文献   

12.
Sorption of Cd at low concentrations onto two Danish soils (loamy sand, sandy loam) was examined in terms of kinetics and governing factors. From an environmental point of view soil sorption of Cd is a fast process: More than 95% of the sorption takes place within 10 min, equilibrium is reached in 1 hr, and exposures up to 67 wk did not reveal any long term changes in Cd sorption capacities. The soils have very high affinity for Cd at pH = 6.00 (10?3 M CaCl2) exhibiting distribution coefficients in the order of 200 to 250 (soil Cd concentration/solute Cd concentration). However, the sorption isotherms describing the distribution of Cd between soil and solute are slightly curvelinear. In the pH-interval 4 to 7.7, the sorption capacity of the soil approximately increases 3 times for a pH increase of one unit. Increasing the Ca concentration from 10?3 to 10?2 M reduces the sorption capacity of the sandy loam to one third.  相似文献   

13.
农药在土壤中的吸附和淋溶特性是评价其环境行为的重要指标,特别是决定了其在土壤中的迁移性。本文分别利用振荡平衡法和柱淋溶法研究了2,4-二氯苯氧基乙酸(2,4-D)在不同土壤中的吸附和淋溶特性及其影响因素。结果表明,2,4-D在3种供试土壤上的吸附特性能较好地用线性吸附等温线拟合,吸附常数心在0.95-1.54L·kg^-1之间,很难被土壤吸附。影响2,4-D在土壤中吸附的因素主要是土壤pH值,其次是有机质含量。土壤pH值增高,离子态的2,4-D量增加,吸附减弱;2,4-D在土壤中具有较强的淋溶性,影响其淋溶性能的主要因素是土壤pH值,pH值越高,淋溶性能越强。  相似文献   

14.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

15.
应用OECD106批平衡方法,研究了毒死蜱的有毒代谢物3,5,6-TCP在6种典型土壤中的吸附-解吸行为。结果表明:Elovich方程、双常数方程和抛物线扩散方程能较好地拟合3,5,6-TCP在第四纪红土、黑土、黄壤和褐土中的吸附动力学过程,而对紫色土和潮沙土的拟合度较低(拟合相关系数小于0.85);应用Freundlich方程和线性方程拟合第四纪红土、黑土、黄壤和褐土的经验常数nfads均小于1(非线性吸附),而紫色土和潮沙土的nfads值则接近于1(线性吸附);3,5,6-TCP在6种土壤中解吸的滞后系数H值均大于1,即解吸速率大于吸附速率。6种土壤对3,5,6-TCP的吸附常数Kfads从1.37-6.74μg1-n·fmLn·fg^-1,吸附系数Kd值从0.50-1.30mL·g^-1,其中第四纪红土和黑土对其吸持力较强(Kd〉1),因而更应注意环境安全;其他4种土壤的Kd值则均小于1,淋溶风险较大。  相似文献   

16.
Retention of the cationic herbicides paraquat (PQ), diquat (DQ), and difenzoquat (DFQ) in two vineyard soils with a different management history and retention capacity was examined. The influence of copper on the ability of the soils to retain the herbicides was determined by comparing the results of adsorption and desorption tests on untreated and Cu-enriched soil samples, and also on soils that were previously treated with EDTA to extract native copper. The three herbicides were strongly adsorbed by both soils. Soil 1 exhibited linear adsorption isotherms for PQ and DFQ with partition coefficients, KD, of 1.28 x 103 and 1.37 x 103 L kg-1, respectively, and a Freundlich-type isotherm for DQ with a linearized partition coefficient, KD*, of 1.01 x 103 L kg-1. On the other hand, soil 2 exhibited curved isotherms and smaller KD* values (viz. 106, 418, and 28 L kg-1 for PQ, DQ, and DFQ, respectively). Using EDTA to extract copper from the soils released new sites for the herbicides to bind. The three herbicides exhibited strong hysteresis in the adsorption-desorption process. Extracting copper decreased the percent desorption of PQ and DQ; on the other hand, it decreased the affinity of DFQ for the resulting vacant adsorption sites. Similarly, competitive adsorption tests with copper and the herbicides revealed that the metal was only capable of displacing DFQ from adsorption sites. The behavior of this herbicide in the soils was consistent with a specific adsorption model. The disparate behavior of the two soils toward the herbicides was a result of the adsorption sites in soil 1 being less extensively occupied than those of soil 2 in the adsorption tests. The effect of copper on the adsorption of DFQ in the two soils was acceptably reproduced by an adsorption model involving Coulombic and specific sorption with competition from the metal.  相似文献   

17.
The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P < 0.001) with OC for the rice soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three pesticides studied. The impact of land use on the nature of soil OC will be further investigated by NMR analysis.  相似文献   

18.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   

19.
Sorption behavior of prochloraz in different soils.   总被引:6,自引:0,他引:6  
The sorption behavior of the imidazole fungicide prochloraz [PCZ; N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide] was studied in batch experiments with different soils. The soil organic matter content was found to control the amount sorbed by different soils. K(d) values ranged from 56 +/- 0 to 552 +/- 10 (mean = 221 +/- 5) and K(OC) values from 7273 +/- 0 to 16250 +/- 1300 (mean = 11829 +/- 303). As calculated from a linear regression of K(d) versus %OC, K(OC) was 12900 +/- 1300. Additionally, the pH value of the soil had considerable influence on the sorption of the weakly basic PCZ (pK(a) = 3.8), giving rise to stronger sorption at lower pH. K(d) values determined on pH-modified soils confirmed the pH dependency. Sorption isotherms on two soils were recorded, initial concentrations ranging from 0.09 to 5.71 mg L(-)(1). The Freundlich isotherm was fitted to the values measured. The Freundlich exponents calculated were significantly smaller than unity, indicating nonlinear sorption. Sorption experiments with two metabolites of PCZ (PCZ-formylurea and PCZ-urea) revealed K(d) values one-fourth to one-third those for PCZ on two soils.  相似文献   

20.
Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake, and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. The objective of this study was to characterize sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides incubated in soils at different soil moisture potentials. The chemicals were incubated in clay loam and loamy sand soils for up to 12 wks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile, and sorption coefficients were calculated. Sufficient sulfonylaminocarbonyltriazolinone herbicides remained (>40% of that applied) during incubation to allow calculation of sorption coefficients. Aging significantly increased sorption as indicated by increased sorption coefficients. For instance, for sulfonylaminocarbonyltriazolinone remaining after a 12-wk incubation at -33 kPa, K(d) increased by a factor of 4.5 in the clay loam soils and by 6.6 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on sorption K(d) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues in soil, particularly in the case of prediction of herbicide transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicides would be over-predicted if freshly treated soil K(d) values were used to predict transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号