首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Summary Salt effects on seed germination and seedling emergence of several crops are evaluated to understand poor plant stands occurring in furrow-irrigated fields in saline areas. The test crops were carrot (Daucus carota L. cv. Imperator 58), chile pepper (Capsicum annuum L. cv. New Mexico 6-4), tomato (Lycopersicon esculentum M. cv. Rutgers), and guayule (Parthenium argentatum G. cv. 593). Seed germination was measured in petri-dishes containing saline solutions (0.8 to 32 dSm–1 with a Na to Ca + Mg ratio of about 2 : 1); and seedling emergence in potted fine loamy sand subirrigated in a greenhouse with saline waters (0.8 to 7.6 dSm–1 with SAR < 16). Seedling emergence through a thin layer of salted-loamy sand (having EC e up to 46 dSm–1) placed on emerging seedlings was also evaluated. Germination of tomato and carrot seeds began to decline at solution salinities of 12 and 18 dSm–1, respectively, and was virtually zero at 23 dSm–1, Chile pepper and guayule germinated well at 23 dSm–1, Tomato had the highest emergence, and guayule the lowest, showing less than 20% when subirrigated at 2.2 dSm–1, Seedling emergence which increased in the order of guayule, carrot, chile pepper and tomatoes did not quantitatively correlate with seed germination. However, it did correlate with the emergence through the thin layer of the salted-sand placed over emerging seedlings except in tomato. Salinity of the saturation extract of the surface 5 mm soil increased to 21 and 31 dSm–1, in 7 days when subirrigated with water of 4.3 and 6.4 dSm–1, respectively. Poor seedling emergence of guayule, carrots and, to some extent, chile pepper appeared to be caused by hypocotyl mortality associated with the salts accumulated at the soil surface, but not by reduced seed germination. The control of surface accumulated salts should be the target of management for improved emergence of these crops.Contribution from Texas Agric. Exp. Station. This project was supported in part by a grant from Binational Agricultural Research and Development (BARD) fund, the Expanded Research fund and the Latex Grant, USDA  相似文献   

2.
Summary Dilution of saline groundwater (2.5 dS m–1) for irrigation is a common practice in the Shepparton Region of Northern Victoria. There is little information describing the leaching rates and hence longterm soil salinity levels that will result from such practices. There is also little information to suggest the effect of irrigating with saline water on groundwater recharge.Leaching rates under perennial pastures grown on a Paleustalf were estimated using three methods based on the mass conservation of chloride. Five treatments were irrigated with water ranging from 0.22 dS m–1 to 4.84 dS m–1. Leaching rates were greater the higher the salinity of the irrigation water (Table 3). Increased leaching resulted from both increased electrolyte levels in the water and decreased water uptake by plants.A model based on non-steady state solute movement usefully predicted the approach of steady-state conditions in the root zone several years earlier than simple observation of the solute data allowed (Table 5).  相似文献   

3.
The effect of irrigation with water at salinity concentrations of 2.6 and 5.2 dS m–1 on the growth of pure swards of six cultivars of white clover (Trifolium repens L.) was examined over three irrigation seasons at Tatura, Victoria, Australia. After two irrigation seasons, soil EC e levels increased to 6 dS m–1 at 0–60 cm depth in the higher salinity treatment resulting in highly significant (p < 0.001) reductions in shoot dry matter production, flowering densities and petiole and stolon densities. These saline conditions also increased (p <0.001) concentrations of Cl and Na in the shoots and reduced (p < 0.001) leaf water potentials and canopy photosynthetic efficiency rates especially at high temperatures. In contrast, root growth increased at shallow depths (0–15 cm) under both saline irrigation treatments (p <0.001). Cultivars differed significantly in salt tolerance (p < 0.001), with cultivars Haifa and Irrigation exhibiting superior tolerance in terms of lower reductions in herbage yield (p <0.05) and petiole densities (p <0.001) during one irrigation season and lower concentrations of Na and Cl in the shoots (p <0.05) compared with the other four cultivars (Aran, Kopu, Pitau and Tamar). In addition, canopy photosynthetic efficiency rates (A *) in plots irrigated with water at 5.2 dS m–1 were higher in cultivar Haifa compared with cultivar Tamar (p <0.05). The salt tolerance ranking obtained for the six cultivars was in broad agreement with earlier greenhouse studies. Consequently, it appears that, while white clover is an extremely salt-sensitive species, it is possible to grow cultivars which display greater salt tolerance than other cultivars and which provide some scope to increase, or at least to maintain, pasture yields in areas where the soil salinity is low to moderate or where pumped saline groundwater is re-used for Irrigation.  相似文献   

4.
Summary The salt tolerance of guayule (Parthenium argentatum Gray cv. N565-II) was tested in small held plots (silty clay soil) in the Imperial Valley of California. Seedlings were transplanted in October 1981. Differential salination was begun in March 1982 and continued for 4 years by irrigating with waters salinized with NaCl and CaCl2 (1:1 by wt.) to obtain electrical conductivities of 0.8, 1.4, 3, 6, 9, and 12 dS/m. Dry matter, rubber, and resin yields were determined from pollarded plants in February 1984 and uprooted plants in February 1985 and 1986. Rubber concentrations in the woody branches in 1984 and 1985 averaged 6.1 and 7.3%, respectively on a dry weight basis and were not significantly affected by soil salinity. Resin concentrations averaged 8.6% and 7.3% for the two years. In 1986, both rubber and resin concentrations decreased with increased salinity. Rubber and resin concentrations in the root crowns were approximately one percentage point less than those of the shoot. Dry matter and resin yields were not affected by salinity until the time- and depth-averaged electrical conductivity of the saturated-soil extracts ( ) taken from the rootzone (0–90 cm) exceeded 8.7 dS/m. Above 8.7 dS/m, both yields decreased 11.6% per dS/m increase in . Rubber yields decreased 10.8% per dS/m above a threshold of 7.8 dS/m. Plant mortality rather than growth reduction at high levels of salinity appears to be the limiting factor for rubber production from irrigated guayule.  相似文献   

5.
Summary Lucerne was irrigated for three years on a slowly permeable, duplex soil, with saline water up to 2.4 dS m–1 without significant yield decline. Irrigation water of 4.5 dS m–1 significantly reduced yield. Lucerne yield was most closely related to the soil ECe of the 0–15 cm depth, rather than the total rootzone, and was described by; Relative yield=100–6.5 (ECe-2.1). While lucerne roots reached depths of at least 150 cm, approximately 80% of total root length was located in the 0–60 cm depth.Increasing salinity increased the plant concentrations of sodium and chloride, however, these changes were not closely related to changes in yield.Soil salinity increased with increasing salinity of the applied water. However, during the irrigation season water penetration and the accumulation of salt within the profile was predominantly restricted to the 0–60 cm depth. No portion of the applied irrigation water was available as a leaching fraction. Any leaching of salts to the watertable, particularly below 120 cm, was due to winter rainfall rather than the application of summer irrigation water.Ripping the soil to a depth of 75 cm increased water infiltration and resulted in increased crop yields, but did not significantly affect the crop relative yield-soil ECe relationship.From the results it is proposed that on the slowly permeable duplex soils, when watertable depth is controlled, management strategies for lucerne irrigated with saline water should be based on controlling the salinity of the shallow soil depths, to 60 cm.  相似文献   

6.
Summary A field experiment was conducted for five years to study the response of 6-year old lemon trees cv. Verna on three different rootstock (sour orange, Cleopatra mandarin and macrophylla) to uniform applications of four irrigation waters having Cl concentrations of 4 (control), 11, 26.5 and 42.5 mol m–3, respectively.Fruit yield and the growth in trunk circumference were significantly reduced by increasing salinity in the rootzone, although this effect varied with the rootstock. The threshold values for response were 1.53, 2.08 and 1.02 dS m–1 for sour orange, Cleopatra mandarin and macrophylla respectively. The corresponding yield reduction for each unit increase in salinity above those values was 10.5, 13.7 and 14.2%, respectively. Trees on macrophylla accumulated higher Cl concentrations in the leaves than those from the other two rootstocks. The role of the interstock of sanguina orange on restriction of Cl uptake is discussed.  相似文献   

7.
In many water scarce areas, saline water has been included as an important substitutable resource in agricultural irrigation. It would be of practical use to investigate the effect of stage-specific saline irrigation on yield, fruit quality, and other growth responses of greenhouse tomato, to establish a proper irrigation management strategy for tomato production in these regions. Here, saline irrigations (3.33, 8.33, and 16.67 dS m−1 NaCl solution) were applied during four growth stages of greenhouse tomato (L. esculentum Mill. cv. Zhongza No. 9) grown in the North China Plain, respectively. These include flowering and fruit-bearing stage (stage 1), first cluster fruit expanding stage (stage 2), second cluster fruit expanding stage (stage 3), and harvesting stage (stage 4). Compared with the following three stages, yield loss was most remarkable in stage 1 under all three salinity levels. Under irrigation practices using 3.33 dS m−1 saline water in all four stages, 8.33 dS m−1 saline water in latter three stages, and 16.67 dS m−1 saline water in stage 4, yield reduction was not significant while fruit quality was improved. In conclusion, it is feasible to use stage-specific saline irrigation for tomato production in water scarce areas like North China Plain.  相似文献   

8.
Summary The salt tolerance of irrigated Jerusalem artichokes (Helianthus tuberosus L.) was assessed in terms of biomass of both above ground parts and tubers in greenhouse and field trials. Salinity of irrigation water ranged from 0.7 to 12 dS m–1 in the greenhouse trial and from 0.2 to 10 dS m–1 in the field trial. Yield response of the dry matter of tubers of greenhouse-grown plants and of above ground parts of greenhouse-grown and fieldgrown plants, fell within the moderately tolerant category of Maas and Hoffman (1977). However, tuber yields in the field on a heavy clay loam fell within the moderately sensitive category, described by the equation, Y = 100 – 9.62 (ECe-0.4), where Y = yield (t ha–1) as a % of that under non-saline conditions and ECe = electrical conductivity of saturation extract in the rootzone (0–30 cm). The Cl concentration of leaves increased linearly with increasing external salinity and increased from tubers to stems to leaves. In contrast, leaf Na remained low except at the highest salinities, despite consistently higher stem Na; indicating some mechanism for restriction of leaf Na up to a certain external salinity.  相似文献   

9.
Summary The effect of N and K nutrition on the salt tolerance of lettuce (Lactuca saliva L. cv. Saunas) and Chinese cabbage (Brassica campestris L., Pekinensis cv. Kazumi) was evaluated in three greenhouse experiments under a controlled aero-hydroponic system of cultivation. Three levels of KNO3 (1, 5 and 10 mM) were tested in all the experiments with rapidly circulated saline and nonsaline nutrient solutions. Two experiments, carried out between January and March 1989, with lettuce (Exp. I) and Chinese cabbage plants (Exp. III), consisted of two salinity levels, EC = 1.75 and 6.0 dS m–1, the former representing a nonsaline nutrient solution. In the third experiment with lettuce (Exp. II., conducted between March and May 1989), three saline nutrient solutions having EC levels of 4.7, 7.75 and 10.75 dS m–1 were compared to the nonsaline solution. The nutrient solutions were salinized with NaCl and CaCl2, in a 4:1 molar ratio. The highest yields of fresh weight of both crops were obtained from the 5 mM KNO3 under both saline and non-saline conditions. The 10 mM treatment caused yield reduction in Chinese cabbage, probably due to a severe tipburn disorder. The relatively high fresh weight yield obtained at the lowest (1 mM) KNO3 level can be explained by the positive effect of circulation velocity on nutrient uptake. The threshold salinity damage value for the vegetative yield of lettuce plants fed by 5 or 10 mM KNO3 was approximately 5 dSm–1 and the yield decreased by 6.5% per unit dS m–1 above the threshold. No yield improvement due to the addition of KNO3 occurred under highly saline conditions (Exp. II). The fresh weight of Chinese cabbage obtained from the saline 1 and 5 mM KNO3 treatments was approximately 15% lower than the non-saline-treatment (Exp. III). Salinity increased tipburn and the effect was not altered by the addition of KNO3. No significant interaction between nutrition (KNO3 level) and salinity was found. The application of salts increased the concentration of Na and Cl in plant tissue and reduced the levels of N and K; the opposite occurred in plants fed by the medium and high levels of KNO3.Contribution from Institute of Soils and Water, ARO, Volcani Center, PO Box 6, Bet Dagan 50250, Israel. No. 3092-E 1990 series  相似文献   

10.
Summary Because of the strategic and industrial importance of natural rubber, there has been renewed interest in cultivating guayule (Parthenium argentatum). This study was performed for assessing feasibility of guayule cultivation with waters high in dissolved salts. The test materials included six USDA selections (11591, 11605, 11619, 11646, 12229 and N576), one cultivar (593) and one hybrid (4265XF). Seedlings were grown for l0 weeks in a greenhouse and transplanted in the spring and in the summer into lysimeters (unit surface dimension of 6 x 7 m) containing loamy sand or silt loam. They were grown with simulated irrigation waters having four levels of salinity (0.8, 2.4, 4.6 and 7.2 dSm–1 with SAR < 13) and an additional water containing 5 mmol L–1 of Mg at 2.4 dSm–1. In the spring planting, over 90% of the transplants survived when furrow irrigated weekly with waters of 4.6 dSm–1 or less. However, transplant growth for the first several months was reduced by half at irrigation water salinity of 4.6 dSm–1. In the summer planting, several fold increases in mortality and growth reduction occurred. Dry top Shrub yields after the two growing seasons following the spring planting averaged 10 Mg ha–1 at 0.8 dSm–1 and declined on the average 15 and 51 % when irrigated with waters of 4.6 and 7.2 dSm–1 respectively. The amount of water used to produce one ton of dry shrub was 1,600 m3 with waters of 0.8 and 4.6 dSm–1, and 1,900 m3 with water of 7.2 dSm–1. The contents of rubber in the shrubs averaged 61 g kg–1 at 0.8 dSm–1 and increased to 70 g kg–1 at 7.2 dSm–1. whereas resin contents were not affected by the salt treatments. Resulting rubber yields were reduced on the average by 8.5 and 44% at 4.6 and 7.2 dSm–1. respectively, because of the reduction in shrub yields. Selection N576 produced the largest rubber yields with the highest rubber content at all levels of salinity. Increasing Mg concentrations from 0.5 to 5 mmol L–1 in the irrigation waters reduced neither yields nor transplant survival. Yield reductions observed here appeared to be related to Na, but not Mg.Contribution from Texas Agricultural Experiment Station. Supported in part by a grant from the Latex Commission, USDA and by the US-Israel Binational Agricultural Research and Development (BARD) fund  相似文献   

11.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

12.
In irrigated agriculture, the production of biomass and marketable yield depend largely on the quantity and salinity of the irrigation water. The sensitivity of field-grown muskmelon (Cucumis melo L. cv. Galia) to water deficit was compared, using non-saline (ECi= 1.2 dS m–1) and saline (ECi=6.3 dS m–1) water. Drip irrigation was applied at 2-day intervals at seven different water application rates for each water quality, including a late water-stress treatment. Neutron scattering measurements showed that the soil layers below the root zone remained dry throughout the experiment, indicating negligible deep percolation. Thus, the sum of the seasonal amount of applied water and the change in soil moisture approximated the cumulative evapotranspiration (ET). Gradual buildup of water and salt stresses resulted in small treatment effects on the size of the vegetative cover and large effects on leaf deterioration and fruit production. Crop responses to salinity may result from an osmotic component of the soil water potential or from other salt effects on the crop physiology. Relating plant data to cumulative ET allowed a distinction to be made between the effect on water availability and specific salinity effects. The relation between fruit fresh weight and ET was not sensitive to ECi. The slopes for fruit dry weights were also insensitive to ECi but the intercept was larger for saline treatments. At any given ET saline water increased fruit number, increased fruit dry matter content and decreased fruit netting, in comparison with non-saline water. The combination of salinity and soil-water deficit was detrimental to fruit quality. Saline soil-water deficit decreased the percentage of marketable (netted) fruit and caused an early end to the period of marketable fruit production. Non-saline soil-water deficit increased the percentage of marketable fruit and had no effect on the duration of the production period. Late non-saline water stress caused a pronounced increase in the percentage of marketable fruit.  相似文献   

13.
Nitrogen (N2) fixation in an irrigated white clover-grass sward was estimated using the 15N isotope dilution technique following the addition of K15NO3 at 0.5 gN m–2 and 80 atom % 15N in a field study during the 1990–91 season. Two water salinity treatments (channel water; ECw = 0.07 and groundwater; 2.4 dS m–1) and four irrigation frequencies were included in a factorial design with four replicates. The channel water treatments were irrigated when pan evaporation minus rainfall equalled 50 mm, whereas the groundwater treatments were irrigated at deficits of 40, 50, 65 or 80 mm. Cumulative dry matter of the clover was significantly less in treatments irrigated with saline groundwater compared to channel water at day 164, and soil salinities (ECe) increased on average from 2.3 to 5.07 dS m–1. In contrast, salinity of the irrigation water had no effect on the cumulative yield of grass. Cumulative dry matter of the grass and clover were not affected by groundwater irrigation frequency. Total N accumulation by the grass did not differ significantly between treatments. However, total N accumulation in white clover was significantly less (P < 0.05) in all treatments irrigated with groundwater compared to channel water. Neither the N concentrations of the grass nor the clover differed significantly between the salinity treatments. Salinity and irrigation frequency had no effect on the proportion of clover N (Patm) derived from N2 fixation. The values of Patm were high throughout, and increased progressively from 0.78 at day 39 to 0.91 at day 164 (P < 0.01). However, the yield of fixed N was lower in clover when watered with groundwater compared to channel water (P < 0.01). Thus low to moderate soil salinity did not affect the symbiotic dependence of clover, but the yield of biologically-fixed N was depressed through a reduction in the dry matter yield of the legume.  相似文献   

14.
The effect of irrigation with saline (0.1-7.6 dS m-1) water on the growth of six cultivars of lucerne was assessed over four irrigation seasons at Tatura, Victoria, Australia. Measurements made in the study included shoot dry matter production, shoot ion concentrations, flowering incidence, root distribution and soil salinity and sodicity levels. After four seasons, soil ECe levels had risen to 4.2 dS m-1 at the beginning of the irrigation season and this increased to around 6 dS m-1 at the end of the season for the highest salinity irrigation treatment (7.6 dS m-1). The soils in the two most saline irrigation treatments also became sodic (SAR1:5>3) by the third and fourth seasons. By the second season, cultivars differed significantly in salt tolerance as defined by the rate of decline in dry matter production. The cultivars CUF 101 and Validor were consistently the most salt-tolerant cultivars, although cv. Southern Special produced the greatest amount of dry matter over all salinity treatments. Root densities at depths from 0 to 60 cm were greater under saline (2.5 and 7.6 dS m-1) than under non-saline conditions (0.1 dS m-1). Flower production was increased by salinity. It was concluded that, despite the presence of intraspecific variation for salt tolerance, it is detrimental to irrigate lucerne with water at electrical conductivities greater than 2.5 dS m-1 on a red-brown earth in southern Australia.  相似文献   

15.
Because of the stragetic and industrial importance of natural rubber, there is renewed interest in cultivating guayule (Parthenium argentatum) in the Southwestern U.S.A. and several other arid regions of the world. This review was made to assess the quantity and quality of water required to cultivate this crop under irrigation. Data from Arizona and West Texas show that under high transplant densities (44 000 to 54 000 plants per ha), shrub and rubber yields increase almost linearly with increasing irrigation up to 300 cm for the first 2 years. The amount of water required to produce a ton of dry shrub in 2 years ranges from 1200 to 1600 m3 for a wide range of irrigation regimes and irrigation water salinity. Although rubber content in the shrubs increases with increasing water stress, the increase is generally insufficient to offset the reduction in shrub yield under high plant densities. Salinity stress may increase rubber content slightly, but reduces shrub and rubber yields when salinity of irrigation water exceeds 4 to 6 dS m?1 in sandy soils. The amount of water required to produce 1 kg of rubber with existing cultivars (with rubber contents of 40 to 70 g kg?1) ranges from 20 to 30 m3, and should decrease substantially with the development of cultivars with higher rubber contents. The resin content in the shrubs does not change greatly with irrigation or salinity levels, thus the resin yield increases proportionally with shrub yield or irrigation amount. If guayule is to be established through direct seeding, additional water of low salinity needs to be allocated. Nursery grown seedlings have been transplanted successfully in spring months with 10–25 cm of water having salinity less than about 4 dS m?1. If high rubber yields are to be achieved in 2–3 years, water requirements for guayule would be comparable to those for alfalfa. However, guayule can be grown with less quantities of water because of its high drought tolerance, especially when rubber production is the sole purpose.  相似文献   

16.
The effect of saline irrigation was investigated on germination and growth parameters of six barley (Hordeum vulgare L.) cultivars in a pot experiment. The crop germination decreased between 24–35% with irrigation water having EC of 9.26 dS m−1, 28–47% with water EC of 13.4 dS m−1 and 30–53% with water EC of 16.28 dS m−1 among various cultivars. The sequence of reduction in germination was Hassawi > Gusto > Madini > M. Khariji > Qassimi. Plant height and total number of plant tillers decreased significantly with increasing irrigation-water salinity. Plant height ranged between 39.43 cm (Qassimi cultivar) with water EC of 3.00 dS m−1 to 1.97 cm (Gusto) with water EC of 16.28 dS m−1 whereas the range for total number of plant tillers per pot was 77.00 (Qassimi) with irrigation EC of 3.00 dS m−1 to 9.67 (Gusto) with irrigation EC of 16.28 dS m−1. The trend of reduction in plant height for different cultivars was Gusto > Qassimi > Hassawi > Madini > M. Khariji whereas for plant tillers, the sequence was Gusto < Hassawi < M. Khariji < Qassimi < Madini. Greenmatter and drymatter yield decreased significantly with increasing irrigation water salinity. The greenmatter yield ranged between 138.67 g per pot (Madini) with water EC of 3.00 dS m−1 to 11.40 g per pot (Gusto) with water EC of 16.28 dS m−1. A similar trend was found for drymatter yield. The trend of reduction in yield among various cultivars (both greenmatter and drymatter) was Gusto > Hassawi > M. Khariji > Qassimi > Madini. Overall sequence of salt tolerance for different barley cultivars was Madini > Qassimi > M. Khariji > Hassawi > Gusto. A comparison of cultivars indicated that irrigation waters with EC 13.40 dS m−1 and above reduced crop germination and greenmatter production to a significant level. In conclusion, there exists a lot of potential for a reasonable production of barley as forage crop with irrigation water having salinity up to 9.26 dS m−1 provided 15% extra water above crop-water requirement is applied as leaching requirements to control soil salinity.  相似文献   

17.
Summary An irrigation experiment with water of different salinities (2.8, 7.6 and 12.7 mol Cl m–3) was carried out from 1982 to 1988 in a mature Shamouti orange grove in the coastal plain of Israel. Seasonal accumulation of salts in the soil solution of the root zone (EC of more than 4.0 dS m–1 at the end of the irrigation season) was almost totally leached during the winter. The average annual rainfall of 550 mm reduced EC values below 1.0 dS m–1. Tree growth, as measured by the increase in cross sectional area of main branches, was retarded by saline irrigation water (123, 107 and 99 cm2 growth per tree during six years for the 2.8, 7.6 and 12.7 mol Cl m–3 treatments, respectively). Potassium fertilization (360 kg K2O ha–1) increased yield at all salinity levels during the last three years of the experiment, mainly by increasing fruit size. Saline irrigation water slightly increased sucrose and C1 concentrations in the fruit juice. Salinity decreased transpiration, increased soil water potential before irrigation and decreased leaf water potential. However, the changes in leaf water potential were small. Leaf Cl and Na concentrations increased gradually during the experimental period, but did not reach toxic levels up to the end of the experiment (4.4 g Cl kg–1 dry matter in the high salt treatment vs. 1.7 in the control). Relatively more leaf shedding occurred in the salinized trees as compared to the control. The sour orange root-stock apparently provided an effective barrier to NaCl uptake; therefore, the main effect of salinity was probably osmotic in nature. No interactions were found between N or K fertilization and salinity. Additional N fertilization (160 kg N ha–1 over and above the 200 kg in the control) did not reduce Cl absorption nor did it affect yield or fruit quality. Additional K had no effect on Na absorption but yield and fruit size were increased at all salinity levels. No significant differences were obtained between partial and complete soil surface wetting (30% and 90% of the total soil area resp.) with the same amounts of irrigation water. The effect of salinity on yield over the six years of the experiment was relatively small and occurred only after some years. But, in the last three years salinity significantly reduced average yields to 74.6, 67.1, and 64.2 Mg ha–1 for the three levels of salinity, respectively.These results suggest that saline waters of up to 13 mol Cl m–3 primarily influence the tree water uptake and growth response of Shamouti orange trees, whereas yield was only slightly reduced during six years.  相似文献   

18.
A field lysimeter study was conducted to investigate the effect of initial soil salinity and salinity level of brackish subirrigation water on tuber weight and tuber size of three potato (Solanum tuberosum L.) cultivars (Kennebec, Norland and Russet Burbank) under simulated arid conditions. Both saline and non-saline initial soil conditions were simulated in a total of 36 lysimeters. Eighteen lysimeters were flushed with fresh water (0.2 dS/m), while the remaining 18 lysimeters were flushed with brackish water (2 dS/m). For each soil condition, two subirrigation water concentrations, 1 and 9 dS/m, were used in nine lysimeters each. For each subirrigation water treatment, three potato cultivars were grown. In all lysimeters, water table was maintained at 0.4 m from the soil surface. Arid conditions were simulated by covering the lysimeter top with plastic mulch, allowing the potato shoots to grow through a cut in the mulch. The average root zone salinities (ECw) were found to be 1.2 and 1.5 dS/m in non-saline lysimeters subirrigated with 1 and 9 dS/m waters, respectively. The corresponding salinities were 3.2 and 3.7 dS/m in the saline lysimeters. Across cultivars, there was no significant effect of either initial soil salinity or subirrigation water salinity on total tuber weight. However, the weight of Grade A tubers was higher in non-saline soil than in saline soil. Kennebec and Russet Burbank Grade A tuber weights were not affected by the initial soil salinity. On the contrary, a significant reduction in Grade A and total tuber weight under initially saline soil was evident for the Norland cultivar.  相似文献   

19.
Summary Irrigated cultivation of pecans (Carya illinoensis K.) has increased dramatically in the Southwestern USA, yet their tolerance to salinity remains largely unknown. The first part of this study was conducted to assess if stunted tree growth reported in clayey soils is related to salinity, and the second part was to evaluate changes in soil salinity and the performance of 11 year old Western trees irrigated with water of 1.1 dSm–1 and 4.3 dSm–1 for 4 years. The first study, conducted at a commercial orchard (49 ha) in the El Paso valley (TX), showed a highly significant correlation between tree trunk size and salinity of the saturation extract (ECe) with r=–0.89. Soil salinity above which trunk size decreased in excess of the standard error was 2.0 dSm–1 in ECe from 0–30 cm depth, and 3.0 dSm–1 in 0 to 60 cm depth with corresponding Na concentrations of 14 and 21 mmol l–1. Excessive accumulation of salts and Na was found only in silty clay and silty clay loam soils. The second study, conducted at a small experimental field (1 ha), indicated that irrigation with waters of 1.1 and 4.3 dSm–1 increased ECe of the top 60 cm profile from 1.5 to 2.2 and 4.2 dSm–1 and Na concentration in the saturation extract to 17 and 33 mmol l–1, respectively. The leaching fractions were estimated at 13 and 37% when irrigated with waters of 1.1 and 4.3 dSm–1, respectively. Tree growth progressively slowed in the saline plots irrigated with water of 4.3 dSm–1, and became minimal during the 4th year. The cumulative shoot length over the 4 year period was reduced by 24% and trunk diameter by 18% in the saline plots relative to nonsaline plots. Irrigation with the saline water also reduced nut yields by 32%, nut size by 15% and leaflet area by 26% on the 4 year average, indicating that pecans are only moderately tolerant to salinity. The concentration of Na, Cl and Zn in the middle leaflet pair did not differ significantly between the two treatments. Soil salinity provided a more reliable measure for assessing salinity hazard than leaf analysis. However, soil salinity was found to be highly spatially variable following a normal distribution within a soil type. This high variability needs to be recognized in soil sampling as well as managing irrigation.Contribution from Texas Agricultural Experimental Station, Texas A & M University System. This program was supported in part by a grant from the Binational Agricultural Research and Development (BARD) fund  相似文献   

20.
Coal bed natural gas (CBNG) extraction in the Powder River (PR) Basin of Wyoming and Montana produces modestly saline-sodic wastewater, which may have electrical conductivity (EC) and sodium adsorption ratios (SAR) exceeding accepted thresholds for irrigation (EC = 3 dS m−1, SAR = 12 (mmolc l−1)1/2. As an approach to managing large volumes of CBNG-produced water, treatment processes have been developed to adjust produced water salinity and sodicity to published irrigation guidelines and legislated in-stream standards. The objective of this laboratory study was to assess acute and chronic soil solution EC and SAR responses to various wetting regimes simulating repeated flood irrigation with treated CBNG product water, followed by single rainfall events. Fifty-four soil samples from irrigated fields in southeast Montana were subjected to simulated PR water or CBNG water treated to EC and SAR values accepted as thresholds for designation of saline × sodic water, in a single wetting event, five wetting–drying events, or five wetting–drying events, followed by leaching with distilled water. Resultant saturated paste extract EC (ECe) and SAR of soils having <33% clay did not differ from one another, but resulting ECe and SAR were all less than those for soil having >33% clay. Repeated wetting with PR water having EC of 1.56 dS m−1 and SAR of 4.54 led to SAR <12, but brought ECe near 3 dS m−1. Repeated wetting with water having salinity = 3.12 dS m−1 and SAR = 13.09 led to ECe >3 dS m−1 and SAR near 12. Subsequent inundation and drainage with distilled water, simulating rainfall-quality leaching, reduced ECe and SAR more often in coarse-textured, high salt content soils than in finer-textured, lower salt content soils. Decreases in ECe upon leaching with distilled water were of greater magnitude than corresponding decreases in SAR, reinforcing supposition of sodium-induced dispersion of fine-textured soils as a consequence of rainfall following irrigation with water having salinity and sodicity levels equal to previously published thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号