首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Our objective was to examine the ability of thyroid releasing hormone (TRH) to stimulate not only the release of the thyroid hormones, but also prolactin (PRL) in the female pig. An experiment was conducted to determine the effect of dose and route of administration of TRH on the concentration of PRL and thyroxine (T4) in cyclic gilts. Six gilts were injected with 0, 5, 25, 125, and 625 micrograms TRH and fed 0, 5, 2.5, 12.5 and 62.5 mg TRH. Gilts received TRH once daily. During the 10-day treatment period, route of TRH administration alternated between i.v. injection and feeding. The dose of TRH progressed from the lowest to the highest. Blood samples were taken prior to TRH injection and thereafter at 15-min intervals for 3 hr. Sampling continued for an additional 3 hr at 30-min intervals when TRH was fed. Concentrations of PRL and T4 were determined by radioimmunoassay. Intravenous injection of gilts with 125 and 625 micrograms TRH resulted in an increase in PRL from 0 to 15 min (P less than .05). All doses of TRH given i.v. elevated T4 over a 2-hr period (P less than .01). TRH failed to increase PRL when TRH was fed (P greater than .5). The feeding of 62.5 mg TRH elevated T4 from 0 to 6 hr (P less than .01). Thus, TRH injection increased PRL rapidly and T4 gradually. When TRH was fed, only a gradual elevation in T4 was observed. We conclude that TRH can elicit the release of both PRL and T4 in the cyclic gilt, but magnitude and duration of the PRL and T4 response depends on the dose and route of TRH administration.  相似文献   

2.
Twelve crossbred gilts, 169 ± 3 days of age and 72.8 ± 3.4 kg body weight, were hypophysial stalk-transected (HST)1 or sham hypophysial stalk-transected (S-HST). Gilts were ovariectomized 6 days later and assigned to four treatments of 3 gilts each in a 2 × 2 factorial arrangement. One-half of the HST and S-HST gilts received 5 mg estradiolbenzoate (EB) or corn oil vehicle im at 0800 hr daily for 5 days beginning 64 ± 3 days after HST or S-HST. Blood was collected by jugular vein cannula at 0830 and 0900 hr the day after the last injection of EB or oil. Immediately after the 0900 hr sample, 200 μg thyrotropin releasing hormone (TRH) were injected (iv). Mean basal serum prolactin (PRL) concentration was similar for HST (10.3 ± 1.0 ng/ml) and S-HST (12.3 ± 1.7 ng/ml) gilts, however mean basal serum PRL concentration was greater (P<.05) for EB-treated gilts (13.7 ± 1.3 ng/ml) than for oil-treated gilts (8.8 ± .5 ng/ml). Mean serum PRL concentration of all gilts increased within 10 min and returned to approximately 20 ng/ml by 150 min after TRH. Maximum serum PRL concentrations at 10 min after TRH were greater (P<.01) for S-HST (255.9 ± 29.6 ng/ml) than HST gilts (83.4 ± 18.8 ng/ml), but were not different for EB (198.0 ± 50.6 ng/ml) and oil-treated gilts (141.4 ± 36.3 ng/ml). Area under the serum PRL response curve after TRH was greater (P<.005) for S-HST than HST gilts and for EB than oil-treated gilts (P<.05). These results do not eliminate the possible influence of estrogen on PRL secretion at the hypothalamus, but do indicate that estrogen directly stimulated the anterior pituitary gland to secrete PRL.  相似文献   

3.
Serum triiodothyronine (T3) and thyroxine (T4) concentrations were determined after IV administration of 200 micrograms of thyrotropin-releasing hormone (TRH) to 10 healthy euthyroid dogs. Significant (P less than 0.05) changes were not found in the T3 concentration throughout an 8-hour sampling interval. All dogs had a significant increase (P less than 0.05) in the T4 concentration at 4, 5, 6, 7, and 8 hours after TRH administration. The largest increase in the serum T4 concentration occurred 4 hours after TRH injection. From 4 to 8 hours after TRH administration, the mean increase above basal T4 concentrations was 13.9 +/- 5.4 ng/ml.  相似文献   

4.
Concentrations of serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) were determined after the administration of freshly reconstituted thyrotropin-releasing hormone (TRH), reconstituted TRH that had been previously frozen, or thyrotropin (TSH) to 10 mature dogs (6 Greyhounds and 4 mixed-breed dogs). Thyrotropin-releasing hormone (0.1 mg/kg) or TSH (5 U/dog) was administered IV; venous blood samples were collected before and 6 hours after administration of TRH or TSH. Concentrations of the T4 and T3 were similar (P greater than 0.05) in serum after administration of freshly reconstituted or previously frozen TRH, indicating that TRH can be frozen at -20 C for at least 1 week without a loss in potency. Concentrations of T4, but not T3, were higher after the administration of TSH than they were after the administration of TRH (P less than 0.01). Concentrations of T4 increased at least 3-fold in all 10 dogs given TSH, whereas a 3-fold increase occurred in 7 of 10 dogs given freshly reconstituted or previously frozen TRH. Concentrations of T4 did not double in 1 dog given freshly reconstituted TRH and in 1 dog given previously frozen TRH. Concentrations of T3 doubled in 5 of 10, 2 of 10, and 5 of 10 dogs given TSH, freshly reconstituted TRH, or previously frozen TRH, respectively. Results suggested that concentrations of serum T4 are higher 6 hours after the administration of TSH than after administration of TRH, using dosage regimens of 5 U of TSH/dog or 0.1 mg of TRH/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
OBJECTIVE: To evaluate the effect of various environmental temperatures (ET) on the ability of neonatal pigs to cope with an endotoxin challenge. ANIMALS: 28 crossbred male pigs that were 24 hours old. PROCEDURE: At 24 hours of age, pigs were placed in environmentally controlled chambers maintained at 18 or 34 C (14 pigs/ET). Rectal temperatures (RT) were recorded at 15-minute intervals for 3 hours following an IP injection of 0.9% NaCl (7 control pigs/ET) or lipopolysaccharide (LPS; 150 microg/kg of body weight; 7 LPS-treated pigs/ET). Tissue specimens and blood samples were collected following the 3-hour challenge period. RESULTS: LPS-treated pigs exposed to 18 C had a period of hypothermia whereas RT for LPS-treated pigs at 34 C did not differ from control pigs. The LPS-treated pigs maintained at 18 C lost the most body weight during the 3-hour period and also had the greatest increase in serum cortisol concentration. Serum prolactin (PRL) concentration was decreased in pigs at 18 C, compared with pigs at 34 C. Challenge with LPS resulted in an increase in serum PRL concentration at 18 C but had no effect on serum PRL at 34 C. Challenge with LPS resulted in an increase in expression of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 receptor mRNA in the hypothalamus. CONCLUSIONS AND CLINICAL RELEVANCE: Exposure to a cold ET can inhibit the ability of neonatal pigs to cope with an exogenous endotoxin challenge. When combined, cold stress and exposure to exogenous endotoxin induces a rapid and potentially dangerous loss of body temperature in neonatal pigs.  相似文献   

6.
A study was conducted to determine whether exogenous opioids increase prolactin (PRL) secretion in Holstein heifer calves via a dopaminergic mechanism. Twenty-four Holstein heifer calves ranging in age from 5 to 7 mo were assigned to one of four treatment groups (six/treatment): 1) injection of saline (SAL); 2) injection of a synthetic enkephalin (D-Ala2, N-Me-Phe4, Met(O)5-ol enkephalin; DAMME); 3) injection of DAMME after pretreatment with the long-acting dopamine agonist 2-bromo-alpha-ergocryptine; or 4) injection of thyrotropin-releasing hormone (TRH) after pretreatment with 2-bromo-alpha-ergocryptine. Calves were equipped with indwelling jugular cannulas on d 1, and baseline plasma PRL concentrations were established. Animals receiving 2-bromo-alpha-ergocryptine were injected s.c. 3 h after the last baseline sample was drawn on d 1. On d 2, calves assigned to receive SAL, DAMME, or TRH were injected 2 h after the start of sampling, and sampling was continued for an additional 4.5 h. Basal plasma PRL was lower (P less than .01) on d 2 in calves injected with 2-bromo-alpha-ergocryptine than baseline levels on d 1. Plasma PRL was higher (P less than .01) in calves not pretreated with 2-bromo-alpha-ergocryptine after DAMME injection on d 2 but was not different after DAMME injection in calves pretreated with 2-bromo-alpha-ergocryptine. In contrast, plasma PRL increased (P less than .01) after TRH injection on d 2 in calves pretreated with 2-bromo-alpha-ergocryptine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Fifteen pony mares were assigned to 1 of 3 treatment groups after foaling: Group 1, 35 ml of sterile saline solution was infused into the uterine lumen within 24 hours after parturition (6 mares); group 2, 300 mg of Escherichia coli endotoxin was infused into the uterine lumen within 24 hours after parturition (6 mares); and group 3, 300 mg of E coli endotoxin was infused into the uterine lumen between 72 and 96 hours after parturition (3 mares). Rectal temperatures were taken at -1, -0.5, 0, 0.5, 1, 1.5, 2, 3, 4, and 5 hours after treatment. Venous blood samples were also taken at these times for routine WBC counts. Data were analyzed as a repeated measurement design with linear and quadratic orthogonal contrasts performed where significant time and interaction with time occurred. Pretreatment averages of total WBC and neutrophil counts were compared with their nadir posttreatment averages by a t test when treatment-by-time interaction was significant for the parameter. Rectal temperature (37.9 +/- 0.1 C) remained stable and did not vary among treatment groups after intrauterine infusions. In contrast, total WBC and neutrophil counts did vary among treatment groups across time. However, for treatment groups 1 and 3, neither blood total WBC count nor neutrophil count after intrauterine infusions was different from pretreatment observations. In group 2, total WBC count decreased (P less than 0.10) from a pretreatment average of 11.5 +/- 0.4 X 10(3) cells/mm3 to a nadir concentration of 10.0 +/- 0.6 X 10(3) cells/mm3 by 60 minutes after infusion of endotoxin into the uterus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The clinical effect of flunixin meglumine administration was determined in cows with acute mastitis induced by intramammary administration of endotoxin. In 12 lactating cows, 10 micrograms of Escherichia coli 026:B6 endotoxin were administered via a teat cannula into the teat cistern of single randomly selected rear quarters. Cows were challenge exposed as pairs. One cow in each pair was administered parenteral flunixin meglumine (6 cows) and 1 cow per pair was administered saline solution (6 cows). Multiple doses (7) of 1.1 mg of flunixin meglumine/kg of body weight or saline solution were administered at 8-hour intervals beginning 2 hours after endotoxin. Cow and quarter clinical signs as well as milk somatic cell concentrations, bovine serum albumin, electrical conductivity, and milk production were determined before and for 14 days after endotoxin inoculation. Intramammary endotoxin produced signs characteristic of acute coliform mastitis. Quarter and systemic abnormalities occurred and milk production was reduced by approximately 50% at 12 hours after endotoxin. Flunixin meglumine therapy significantly (P less than or equal to 0.05) reduced rectal temperatures and quarter signs of inflammation and improved clinically graded depression when compared with these signs in saline solution-treated controls. Milk production and laboratory indicators of inflammation in milk were not significantly (P greater than 0.05) different for flunixin meglumine vs saline solution controls. The clinical response observed was consistent with the antipyretic, analgesic, and anti-inflammatory properties of flunixin meglumine.  相似文献   

9.
Serum concentrations of pituitary and adrenal hormones were determined in lactating sows and ovariectomized (OVX) gilts exposed to 8 h (8L:16D) or 16 h of light (16L:8D). In addition serum prolactin (PRL) concentrations were determined after a thyrotropin releasing hormone (TRH) challenge. At 103 +/- 2 d of gestation or 3 wk after ovariectomy of nulliparous gilts on d 7 to 9 of the estrous cycle (d - 10), blood samples were collected from jugular vein cannulae at 30-min intervals for 8 h beginning at 0800 h. Immediately after the last sample, 13 sows and five OVX gilts were assigned to 8L:16D and 14 sows and five OVX gilts were assigned to 16L:8D/d and placed in two identical chambers in the farrowing house. Blood sampling was repeated on d 7, 14 and 21 of lactation in the sows and on d 7, 14, 21 and 28 in the OVX gilts. In Exp. 1, serum cortisol (C) concentrations were similar for sows exposed to 8L:16D (n = 7) and 16L:8D (n = 6) treatments, whereas in Exp. 2, serum C concentrations for sows exposed to 8L:16D (n = 6) were lower than those exposed to 16L:8D (n = 6) on d 7, 14 and 21. Photoperiod failed to influence serum concentrations of PRL, luteinizing hormone (LH) and growth hormone in the lactating sows or PRL in the OVX gilts. Photoperiod also failed to affect mean basal serum concentrations, peak height and peak frequency for PRL and LH in the lactating sows or for PRL in the OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of thyrotropin-releasing hormone (TRH) on equine thyroid function was determined by quantifying serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) before and after TRH administration. Thyrotropin-releasing hormone was administered IV to adult horses (n = 5) and ponies (n = 6) at a dose of 1 mg or 0.5 mg, respectively. Serum T4 and T3 concentrations were determined before and 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 24 hours after TRH administration. Serum T4 increased from a basal concentration of 24.4 +/- 8.7 ng/ml (mean +/- SD) to a maximum value of 48.2 +/- 10.2 by 4 hours after TRH administration. Serum T3 increased from a basal concentration of 0.44 +/- 0.18 ng/ml to a maximum value of 1.31 +/- 0.37 ng/ml by 2 hours after TRH administration. Seemingly, TRH increases serum concentrations of T4 and T3 and may be useful as a test of equine hypophysis-thyroid function.  相似文献   

11.
Changes in total thyroxine (T4), free T4 and total tri-iodothyronine (T3) were measured in 13 cats after the intravenous injection of varying doses of thyrotrophin stimulating hormone (TSH) (0–5 U/cat n = 6; 1 U/cat n = 8; 1 U/kg bodyweight, n = 7) or thyrotrophin releasing hormone (TRH) (100 ug/cat, n = 10). All three doses of TSH resulted in a significant (P < 0–05) rise in T4, free T4 and T3 levels, with the mean peak in hormone concentrations occurring six to eight hours after injection. The three doses of TSH all appeared to produce maximal stimulation of thyroid hormone secretion. The mean percentage increase in hormone concentrations at seven hours following the three doses of TSH ranged from 167 to 198 per cent for T4, 240 to 365 per cent for free T4, and 73 to 116 per cent for T3. Following administration of TRH there was also a significant (P < 0–05) rise in T4, and free T4. The mean peak in T4 and free T4 levels occurred at four hours, and mean increases in hormone levels at this time were 92 per cent for T4, and 198 per cent for free T4. The administration of TRH produced little change in T3 levels. TSH administration resulted in a significantly higher (P < 0–05) percentage peak increase in T4, free T4 and T3 levels at all three dosages than did TRH.  相似文献   

12.
Five ovariectomized (OVX) gilts were placed in each of two chambers at 20 C with a photoperiod of 12 h light and 12 h dark for 8 d (12L:12D). On d 1, blood samples were collected via jugular cannula every 30 min from 0830 to 1630. At 1630, 200 micrograms of thyrotropin releasing hormone (TRH) were injected iv and blood samples taken every 10 min for 1 h and every 30 min for the next 2 h. On d 2, samples were taken every 30 min from 0830 to 0930 and from 1530 to 1630. Temperature was changed to 10 C or 30 C on d 3. Samples were taken from 0830 to 1630 on d 3, 4 and 9. At 1630 on d 9, the TRH challenge was repeated. Mean basal serum concentrations of prolactin (PRL) were similar for all gilts and for all periods. However, serum PRL response (ng PRL X ml-1 X 150 min-1) to TRH increased (P less than .0001) after exposure to 30 C, while exposure to 10 C failed to alter PRL response. In Exp. 2, six ovariectomized gilts were assigned to each chamber. The protocol of Exp. 1 was followed through d 3, except temperature and photoperiod were changed to 10 C and 8L:16D or 30 C and 16L:8D. On d 34 the TRH challenge was repeated. Mean basal serum concentration of PRL was similar for all gilts and all periods. However, simultaneous increases in temperature and photoperiod increased (P less than .005) serum PRL response to TRH, whereas simultaneous decreases in temperature and photoperiod failed to alter PRL response to TRH.  相似文献   

13.
OBJECTIVE: To determine the effects of endotoxin administration on thyroid function test results and serum tumor necrosis factor-alpha (TNF-alpha) activity in healthy dogs. ANIMALS: 6 healthy adult male dogs. PROCEDURES: Serum concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3'5'-triiodothyronine (rT3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (TSH), and TNF-alpha activity were measured before (day-1; baseline), during (days 0 to 3), and after (days 4 to 24) IV administration of endotoxin every 12 hours for 84 hours. RESULTS: Compared with baseline values, serum T3 concentration decreased significantly, whereas rT3 concentration increased significantly 8 hours after initial endotoxin administration. Serum T4 concentration decreased significantly at 8 and 12 hours after initiating endotoxin administration. Serum T4 concentration returned to reference range limits, then decreased significantly on days 6 to 12 and 16 to 20. Serum fT4 concentration increased significantly at 12, 24, and 48 hours after cessation of endotoxin treatment, compared with baseline values. Serum rT3 concentration returned to reference range, then decreased significantly days 5 and 7 after stopping endotoxin treatment. Serum TNF-alpha activity was significantly increased only 4 hours after initial endotoxin treatment, compared with baseline activity. CONCLUSIONS AND CLINICAL RELEVANCE: Endotoxin administration modeled alterations in thyroid function test results found in dogs with spontaneous nonthyroidal illness syndrome. A decrease in serum T4 andT3 concentrations and increase in serum rT3 concentration indicate impaired secretion and metabolism of thyroid hormones. The persistent decrease in serum T4 concentration indicates that caution should be used in interpreting serum T4 concentrations after resolution of an illness in dogs.  相似文献   

14.
The aim of the present study was to clarify the effect of melatonin (MEL) on the salsolinol (SAL)‐induced release of prolactin (PRL) in goats. Female goats were kept at 20°C with 16 h of light, 8 h of darkness, and orally administered saline or MEL for 5 weeks. A single intravenous (i.v.) injection of saline (controls), SAL, thyrotropin‐releasing hormone (TRH) or a dopamine receptor antagonist, sulpiride, was given to the goats 3 weeks after the first oral administrations of saline or MEL, and the responses were compared. The mean basal plasma PRL concentrations in the control group were higher for the saline treatments than MEL treatments (P < 0.05). SAL as well as TRH and sulpiride stimulated the release of PRL promptly after each injection in both the saline‐ and MEL‐treated groups (P < 0.05). The area under the response curve of PRL for the 60‐min period after the i.v. injection of SAL, TRH and sulpiride in the saline‐treated group was greater than each corresponding value in the MEL‐treated group (P < 0.05). These results show that daily exposure to MEL under a long day length reduces the PRL‐releasing response to SAL as well as TRH and sulpiride in goats.  相似文献   

15.
The response of thyroid stimulating hormone (TSH) and prolactin (PRL) concentrations to administration of thyrotropin releasing hormone (TRH) was determined in light-horse mares during the anestrous season (winter) and during estrus (standing heat) in the summer. Within each season, mares (4/group) were treated with either saline (controls) or one of four doses of TRH (80, 400, 2,000 or 10,000 ug) intravenously. Samples of blood were drawn at −15, −.5, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to TRH injection. Concentrations of TSH and PRL in pre-TRH samples were greater (P<.05) in anestrous mares during winter than in estrous mares during summer. Concentrations of TSH increased (P<.05) within 30 min after administration of TRH and remained elevated during the 4-hr sampling period. The maximal net change in TSH concentrations and the area under the response curve were greatest for 2,000 ug of TRH; 80 ug did not produce a significant TSH response. There was no interaction (P >.10) between reproductive state and TRH dose for TSH concentrations. Concentrations of PRL were not significantly affected by any TRH dose during either season. It appears that mares differ from many mammalian species in that they do not respond to an injection of TRH with increases in both TSH and PRL.  相似文献   

16.
The aim of the present study was to clarify the relation between salsolinol (SAL)‐induced prolactin (PRL) release and photoperiod in goats. A single intravenous (i.v.) injection of SAL was given to adult female goats under short (8 h light, 16 h dark) or long (16 h light, 8 h dark) photoperiod conditions at two different ambient temperatures (20°C or 5°C), and the PRL‐releasing response to SAL was compared to that of thyrotropin‐releasing hormone (TRH) or a dopamine (DA) receptor antagonist, sulpiride. SAL, as well as TRH or sulpiride, stimulated the release of PRL promptly after each injection in both 8‐ and 16‐h daily photoperiods at 20°C (P < 0.05). The area under the response curve (AUC) of PRL for the 60‐min period after injections of saline (controls), SAL, TRH and sulpiride in the 16‐h daily photoperiod group was greater than each corresponding value in the 8‐h daily photoperiod group (P < 0.05). There were no significant differences in the AUC of PRL among the values produced after the injection of SAL, TRH and sulpiride in 16‐h daily photoperiod group; however, the values produced after the injection of TRH were smallest among the three in the 8‐h daily photoperiod group (P < 0.05). The PRL‐releasing responses to SAL, TRH and sulpiride under a short and long photoperiod condition at 5°C resembled those at 20°C. These results show that a long photoperiod highly enhances the PRL‐releasing response to SAL as well as TRH or sulpiride in either medium or low ambient temperature in goats.  相似文献   

17.
Cortisol, triiodothyronine (T3), thyroxine (T4), insulin, and glucose responses to thyrotropin-releasing hormone (TRH) were evaluated in 12 healthy, mature horses and in 7 horses and 4 ponies with clinical signs of pituitary adenoma (PA). Within 1 hour after TRH administration, the increase in T3 and T4 was similar in healthy horses and animals with PA. Plasma cortisol in the group with PA increased (P less than 0.05) within 0.25 hours after TRH administration, and remained increased for 1.5 hours. In the control group, a significant increase in plasma cortisol concentrations did not develop after TRH administration. Plasma glucose and insulin concentrations were higher in animals with PA than in the healthy horses throughout the experiment (6 hours).  相似文献   

18.
Effects of thyrotropin-releasing hormone (TRH) on serum concentrations of thyroid hormones were studied in 36 mixed-bred dogs. Dogs were randomly assigned to 7 groups. Significant increases (P less than 0.05) of serum thyroxine (T4) values occurred as early as 2 hours and reached a peak at 6 to 8 hours after IV injection of 300 to 1,100 micrograms of TRH. Thyroxine concentrations in response to a TRH dose greater than 500 micrograms were similar to those observed with the 300-micrograms dose. Transient coughing, vomiting, salivation, and defecation after large doses (900 and 1,100 micrograms) were observed. Mean serum T4 concentration decreased from 2.1 micrograms/dl to 0.9 micrograms/dl within 1 day of thyroidectomy. Clinical signs of hypothyroidism, including lethargy, dry coats, and diffuse alopecia, were present in 2 dogs at a month after surgical operation. Thyroxine concentrations were detectable for greater than 2 months. Injection (IV) of 700 micrograms of TRH 6 weeks after surgical operation had no effect on serum concentration of T4 in thyroidectomized dogs. In 5 T4-treated dogs, TRH (700 micrograms, IV) significantly increased the serum T4 value, indicating that pituitary thyrotropes were responsive to TRH, in spite of daily medication of 0.8 mg of T4. Four dogs were treated orally with 200 mg of propylthiouracil/day for 5 weeks. Intravenous injection of 700 micrograms of TRH in propylthiouracil-treated dogs had no effect on the serum T4 concentration, indicating that TRH had no effect on serum T4 values in these dogs during the experimental period. These results indicate that TRH can replace bovine thyrotropin for the canine thyroid function test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments, using the ligated intestinal segment technique, were conducted to determine whether the pituitary hormone prolactin (PRL) could reduce Escherichia coli-induced fluid loss into the small intestine of 2- to 3-week-old pigs. Inoculation of 10(6) to 10(8) enteropathogenic E coli organisms into ligated jejunal segments caused a significant accumulation of luminal fluid within 12 hours. In the first experiment, intraluminal inoculation with 0.5 mg of ovine PRL along with the bacteria did not have any effect on fluid accumulation. Systemic IV treatment of the animals with 1.0 mg of ovine PRL at 3-hour intervals, beginning either immediately after or 9 to 10 hours before intestinal ligation, did not significantly (P less than 0.05) reduce fluid accumulation as compared with control animals. In the second experiment, IM administration of 100 microgram of thyrotropin-releasing hormone (TRH) at 3-hour intervals, beginning 6 hours before intestinal ligation, significantly (P less than 0.05) increased circulating PRL concentrations, as measured by radioimmunoassay. However, TRH treatment did not reduce the accumulation of luminal fluid in E coli-inoculated segments.  相似文献   

20.
Effects of thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) on plasma concentrations of thyroid hormones, and effects of ACTH and dexamethasone on plasma concentrations of cortisol, were studied in adult male ferrets. Thirteen ferrets were randomly assigned to test or control groups of eight and five animals, respectively. Combined (test + control groups) mean basal plasma thyroxine (T4) values were different between the TRH (1.81 +/- 0.41 micrograms/dl, mean +/- SD) and TSH (2.69 +/- 0.87 micrograms/dl) experiments, which were performed 2 months apart. Plasma T4 values significantly (P less than 0.05) increased as early as 2 hours (3.37 +/- 1.10 micrograms/dl) and remained high until 6 hours (3.45 +/- 0.86 micrograms/dl) after IV injection of 1 IU of TSH/ferret. In contrast, IV injection of 500 micrograms of TRH/ferret did not induce a significant increase until 6 hours (2.75 +/- 0.79) after injection, and induced side effects of hyperventilation, salivation, vomiting, and sedation. There was no significant increase in triiodothyronine (T3) values following TSH or TRH administration. Combined mean basal plasma cortisol values were not significantly different between ACTH stimulation (1.29 +/- 0.84 micrograms/dl) and dexamethasone suppression test (0.74 +/- 0.56 micrograms/dl) experiments. Intravenous injection of 0.5 IU of ACTH/ferret induced a significant increase in plasma cortisol concentrations by 30 minutes (5.26 +/- 1.21 micrograms/dl), which persisted until 60 minutes (5.17 +/- 1.99 micrograms/dl) after injection. Plasma cortisol values significantly decreased as early as 1 hour (0.41 +/- 0.13 micrograms/dl), and had further decreased by 5 hours (0.26 +/- 0.15 micrograms/dl) following IV injection of 0.2 mg of dexamethasone/ferret.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号