首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of environmental calcium concentrations on the survival, growth, body calcium content and calcium uptake kinetics in developing tilapia (Oreochromis mossambicus) larvae were studied. Fertilized eggs were incubated in high- and low-calcium artificial freshwater (0.88–0.96 mmol l–1 vs. 0.02–0.03 mmol l–1 CaCl2 or CaSO4) until 3 days after hatching. Tilapia larvae showed similar hatching rates and wet weights in either high- or low-calcium medium, indicating neither the development nor the growth in tilapia larvae was affected by the environmental calcium levels. The body calcium content in low-calcium groups was about 90–95% that of high-calcium groups, No matter what calcium source was used (CaCl2 or CaSO4), acclimation to low calcium medium caused a stimulation of calcium uptake (measured in 0.2 mmol l–1 calcium),i.e., 1.2–1.3 fold higher than that of high calcium groups. This enhanced calcium uptake capacity was characterized by a 50% decrease in Km and a 25% increase in Jmax. Effect of different calcium salts on calcium influx was significant only in low calcium level,i.e., calcium influx in low-CaCl2 group higher than that in low-CaSO4 group. These results suggest that tilapia larvae are able to modulate their calcium uptake mechanism to maintain normal body calcium content and growth in environments with different levels of calcium.  相似文献   

2.
Tilapia larvae were exposed to 0 (control), 50 (50-Cd) or 100 (100-Cd) μg l-1 cadmium for 4 days and then transferred to cadmium-free fresh water for 3 days of detoxification. Total length and weight, calcium influx and total body calcium and cadmium content were examined at various times during detoxification. All the groups grew normally with regards to total length and body weight. Within the first 12h of detoxification the 50- and 100-Cd exposed groups released cadmium at the similar rate of about 24 ng mg-1 h-1 (or 140 ng larva-1 h-1). Later, however, this rate declined to only 4–16% of the initial level. Calcium influx in the control group showed a 10–26% increase during the detoxification period. Calcium influx in the 50-Cd group increased by about 280% and reached it peak at 12h. Calcium influx in the 100-Cd group increased by 440% and did not peak until 24h after transfer. After peaking, the influxes in both 50- and 100-Cd groups declined to the level of control at the end of the experiment. Calcium contents in 50- and 100-Cd groups increased more rapidly than that in control group within first 24h of the detoxification period. However the rate of increase in calcium content in three groups was the same after 24h. The changes in calcium influx appeared to be correlated with those in calcium content, and these suggested that tilapia larvae regulate the mechanism of calcium balance to compensate for the reduced calcium level in the body. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Changes in Ca2+ content and flux, and the development of skin chloride cells in embryos and larvae of tilapia, Oreochromis mossambicus, were studied. Tilapia embryos hatched within 96h at an ambient temperature of 26–28°C. Total body Ca2+ content was maintained at a constant level, about 4–8 nmol per individual, during embryonic development. However, a rapid increase in body Ca2+ level was observed after hatching, 12.8 to 575.3 nmol per individual from day 1 to day 10 after hatching. A significant influx and efflux of Ca2+ occurred during development, with the average influx rate for Ca2+ increasing from 5.9 pmol mg−1 h−1 at 48h postfertilization to 47.8 pmol mg−1 h−1 at 1 day posthatching. The skin was proposed as the main site for Ca2+ influx before the development of gills, and the increased Ca2+ influx may be ascribed to gradual differentiation of skin surface and chloride cells during embryonic development. Ca2+ efflux was 16–56 pmol mg−1 h−1 in 1-day-old larvae. The resulting net influx of Ca2+, 10–12 pmol mg−1 h−1, accounted for the increased Ca2+ content after hatching. When comparing the measured and estimated ratios of efflux and influx, active transport was suggested to be involved in the uptake of Ca2+. Chloride cells, which may be responsible for the active uptake of Ca2+, started to differentiate in the skin of embryos 48h after fertilization, and the density of chloride cells increased following the development. A possibility of active transport for Ca2+ in early developmental stages of tilapia is suggested.  相似文献   

4.
Treatment of one-day-old yolksac larvae of tilapia (Oreochromis mossambicus), by immersion in cortisol solution for two weeks, significantly enhanced growth. The standard length, tail length, head width and wet weight showed dose-dependent increases at concentrations of cortisol (hydrocortisone) from 0.05 ppm to 0.5 ppm, with no further increase at 1.0 ppm. However, cortisol at 5.0 ppm retarded the growth of the larvae without causing any morphological abnormality. Yolk absorption and the onset of free-swimming activity in the larvae were also accelerated by cortisol treatment.  相似文献   

5.
The objective of the present study was to confirm previous results on the mediation of GnRH signal in tilapia by providing evidence from experiments in cultured pituitary cells and from perifusion experiments using a GnRH-antagonist. After 4 days in culture under identical conditions, cells taken from pituitaries of fish maintained at 26°C were more sensitive to GnRHa ([D-Ala6, Pro9-NEt]-LHRH) than those taken from fish maintained at 19°C. Cells from female pituitaries were more responsive than those from males. taGTH release in culture was augmented by Ca2+ ionophore (A23187; 1–100 μM) or ionomycin (0.02–10 μM). The response of perifused pituitary to GnRH was reduced by nimodipine (1–10 μM) indicating that Ca2+ influx via voltage-sensitive Ca2+ channels is involved in the stimulation of GTH release. Activation of protein kinase C by OAG (1-oleyl-2-acetyl glycerol; 0.16–160 μM) or TPA (1-O-tetra-decanoyl phorbol-13-acetate; 1.25–125 nM) resulted in a dose-dependent stimulation of taGTH release from cultured cells. Arachidonic acid (0.33–330 μM) also augmented the release of taGTH from the culture. Four sequential pulses of sGnRH (100 nM) at 2h intervals resulted in surges of taGTH release from perifused pituitary fragments; the surges were similar in magnitude with no signs of desensitization. Sequential stimulation with graded doses of sGnRH (0.1 nM to 1 μM) in the presence of GnRH-antagonist ([Pro2,6, Trp3]-GnRH) resulted in an attenuation of taGTH release. However, the GnRH-antagonist did not alter the pattern of forskolin-stimulated GTH release, indicating that forskolin stimulation is exerted at the level of the adenohypophyseal cells. It is concluded that, as in other vertebrates, the transduction of GnRH stimulation of GTH release involves Ca2+ influx through voltage-sensitive Ca2+ channels, mobilization of the ion from intracellular sources, arachidonic acid and activation of PKC. Adenylate cyclase-cAMP system us also involved in the mediation but its relationship with other transduction cascades requires further investigations.  相似文献   

6.
镉诱导鲫肝细胞内Ca2+-ATP酶与金属硫蛋白的表达   总被引:1,自引:0,他引:1  
吴婷婷  魏华  郭敏  曹娜  李国鹏 《水产学报》2011,35(6):824-830
研究了镉诱发鲫肝细胞相关的胞内游离钙离子变化,以及Ca2+-ATP酶及金属硫蛋白表达量的变化。试验分为对照组、5、10、15、20 μmol/L CdCl2 5个组。Ca2+用Fura-2/AM方法检测,试验后24 h用荧光倒置显微镜观察细胞内游离钙离子变化;分光光度法检测Ca2+-ATP酶;石墨炉—原子分光光度法检测了细胞内镉离子浓度;免疫酶联法(ELISA)检测了金属硫蛋白(MT)含量。结果显示,镉可导致细胞存活率下降,具有一定的毒性。镉离子引起胞内Ca2+荧光强度和Ca2+-ATP酶活性增加(P<0.01)。随镉浓度升高,处理组Ca2+-ATP酶浓度活性分别是对照组的4.52、6.73、6.68、7.19、6.18倍;暴露24 h后各组细胞内镉离子均有上升,其中5 μmol/L组最高,达(2.045±0.322) μmol/L;各处理组金属硫蛋白(MT)含量增高(P<0.01),且5 μmol/L低浓度组MT增幅最大,达17.15%。结果提示,镉诱导下细胞内Ca2+升高,MT表达量上升,且MT可螯合进入细胞内的镉离子,这种螯合可能是降低镉毒理作用的机制之一。  相似文献   

7.
Treatment of one-day old yolksac larvae of tilapia (Oreochromis mossambicus) by immersion in 0.05 ppm T4 or 0.01 ppm T3 significantly accelerated the differentiation and growth of all the fins, particularly pectoral and tail fins. Both the treatments also significantly accelerated yolk absorption and transition to free-swimming activity in the larvae. The treatments also significantly accelerated the growth of the larvae, with T3 at 0.01 ppm having a greater effect than T4 at 0.05 ppm. The yolk conversion efficiency was found not to be significantly affected by the hormone treatments but the treated larvae exhibited an increased heart beat, suggesting metabolic stimulation by the hormones.On the other hand, yolk absorption and free-swimming activity were significantly delayed in tilapia larvae immersed in 25 ppm solution of an antithyroid drug, phenylthiocarbamide (PTC). PTC also retarded the growth of the larvae. T4 (0.05 and 0.10 ppm) or T3 (0.01 and 0.02 ppm) therapy removed the PTC-inhibition,albeit not completely, suggesting that thyroid hormones are involved in the larval growth and development of tilapia.  相似文献   

8.
Lysozyme was purified from the ovary of tilapia, Oreochromis mossambicus, with two steps, chitin coated-cellulose and Sephadex G-100, and its biological properties were investigated. Purified lysozyme had a molecular mass of 15kDa on SDS-PAGE under reducing condition. Analyses with antibody (a-EL) against the purified lysozyme revealed that serum and egg extract reacted with a-EL and the precipitin lines fused completely. The enzyme activities in serum and egg extract were inhibited by adding serially diluted a-EL. Therefore, egg extract and serum lysozyme was immunologically identical. Immunohistochemically, lysozyme was observed in the ooplasm of the oocytes laden with yolk but not in the follicle layers, egg envelope or immature oocytes (the peri-nucleolus stage). In addition, the enzyme activity in the large oocytes was higher than that in the small ones. These results suggest that lysozyme detected in the oocytes is derived from extra-ovarian tissue and transfers from the maternal circulation. Lysozyme activity in the serum of female tilapia increased with oocyte development, suggesting that the change in the enzyme level may be partially related to the reproductive events (especially vitellogenesis) of the female fish.  相似文献   

9.
We have previously reported growth-promoting effects of recombinant bovine growth hormone (rbGH) in Mozambique tilapia, Oreochromis mossambicus, after 4 weekly injections or a single injection of slow-releasing formulation (Posilac®) (Leedom et al. 2002). In order to obtain further understanding of the role of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis in growth in the tilapia, the effects of rbGH on plasma and mRNA levels of IGF-I were examined. Plasma IGF-I levels were significantly increased after rbGH and Posilac® injections, and a significant correlation was observed between plasma IGF-I levels, body length and mass in both treatments. IGF-I mRNA levels in the liver and in the skeletal muscle were also significantly increased after rbGH and Posilac® injections, indicating that IGF-I gene expression in these tissues is under control of circulating GH. IGF-I mRNA levels in the gill were not affected by treatment. Liver IGF-I mRNA levels were significantly correlated with body length and with body mass after rbGH and Posilac® injections. These results indicate that the growth-promoting effect of rbGH in this species is mediated to a significant extent via its stimulation of hepatic production of IGF-I and the resulting increase in plasma IGF-I, and also possibly through locally produced IGF-I in the skeletal muscle, acting in a paracrine or autocrine fashion.  相似文献   

10.
Branchial plasma membranes from the freshwater cichlid teleostOreochromis mossambicus (tilapia) contain two Na+-dependent ATPases: Na+/K+ ATPase, and an amiloride-sensitive ATPase which is postulated to operate as a Na+/H+ (–NH4 +) ATPase. It is suggested that both enzyme activities are located in the basolateral membrane system of the chloride cells. K+ has opposing effects on the two enzymes: it stimulates Na+/K+ ATPase and inhibits Na+/H+ (–NH4 +) ATPase activity. Na+/H+ ATPase appears more sensitive to NH4 + at low concentrations than Na+/K+ ATPase and the stimulatory effect by NH4 + ions on the first enzyme could be important in facilitating NH4 + excretion by tilapia gills under physiological conditions.In vitro maximum stimulation by NH4 + is similar for the two enzymes (200%). In contrast to Na+/K+ ATPase, Na+/H+ ATPase activity is inhibited by supra-physiological (>20 mM) concentrations of NH4 +.  相似文献   

11.
Two forms of vitellogenin were isolated by DEAE agarose ion-exchange chromatography from plasma of the tilapia, Oreochromis mossambicus. The monomers have apparent molecular masses of 200 and 130 kDa, as indicated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and a total amount of phosphorus of 1.7 and 0.1%, respectively. Antibodies specific to the two forms, designated tVTG-200 and tVTG-130, were generated in rabbits and used to develop enzyme-linked immunosorbent assays (ELISAs) and in Western blot analyses of plasma and oocyte extract. SDS-PAGE of the oocyte extract showed a major protein band at 106.6, minor bands at 26.6, 24.2, and 23.7 kDa, and very faint bands at 83.4 and 17.5 kDa. Western blots of the oocyte extract revealed that the antiserum to tVTG-200 recognized strongly the protein bands at 24.2 and 23.7 kDa, and less strongly the bands at 25.1 and 22.6 kDa, whereas the antiserum to tVTG-130 recognized mainly the protein band at 106.6 kDa. The presence of both VTGs in untreated male tilapia was detected with the ELISAs using relatively high plasma volumes. Their presence in males was confirmed by VTG-like immunoreactive materials eluting from the ion-exchange column at the same positions as tVTG-200 and tVTG-130. The concentrations of the VTGs in males were several orders of magnitude lower than in vitellogenic females. Treatment of male tilapia with estradiol-17β (E2) induced both VTGs within 24h. After 7 days, tVTG-130 reached a maximum concentration in plasma, whereas tVTG-200 continued to increase. Our findings demonstrate that the two vitellogenins are biochemically distinct, possibly differentially regulated, and made by both sexes.  相似文献   

12.
The effect of sulfide on K+ influx pathways was measured in red blood cells (RBCs) of sulfide-sensitive rainbow trout (Oncorhynchus mykiss) and sulfide-tolerant crucian carp (Carassius carassius). In trout RBCs, maximal inhibition of Na+, K+-ATPase was attained at 10 mol l–1 sulfide and amounted to 32% without being influenced by pH between 6.7 and 8.3. Ouabain-resistant K+ influx in the absence and presence of sulfide was insignificant at pH values between 6.7 and 7.7. At higher pH values ouabain-resistant K+ influx increased, but was inhibited to about 15% by 30 mol l–1 sulfide. In RBCs of crucian carp neither Na+, K+-ATPase nor ouabain-resistant K+ influx were affected by sulfide concentrations up to 850 mol l–1. Differences in sulfide-sensitivity of K+ influx between both species can be based upon different properties of the membrane transporter themselves. The reduced Na+, K+-ATPase activity in trout RBCs may also result from a slightly reduced (by 9%) ATP level after sulfide exposure. In addition, intracellular sulfide concentrations were higher in trout RBCs as compared to crucian carp. In trout, intracellular sulfide concentrations reached extracellular levels within 5 min of incubation whereas sulfide concentrations in crucian carp RBCs remained about 2-fold lower than extracellular concentrations. Although the physiological basis of sulfide-insensitive K+ influx in crucian carp RBCs is currently unknown it may contribute to the extremely high sulfide-tolerance of this species.  相似文献   

13.
The effects of the Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae were investigated. The results indicate that the Na+-K+-ATPase activity, survival rate and weight gain of postlarvae were significantly affected by the Na+/K+ and Mg2+/Ca2+ ratios (P < 0.05). The Na+-K+-ATPase activity of postlarvae, in every treatment, changed corresponding to Na+/K+ and Mg2+/Ca2+ ratios, and came to a stable level after 24 h. There was a negative relation between Na+-K+-ATPase activity and Na+/K+ ratio, while there was a positive relation between Na+-K+-ATPase activity and Mg2+/Ca2+ ratio. Compared with seawater (the Na+/K+ and Mg2+/Ca2+ ratios are 27.8 and 4.64 respectively), the Na+-K+-ATPase activity of the Na+/K+ ratio 30 treatment showed no significant difference, while the Mg2+/Ca2+ ratio 4.5 treatment showed distinct difference. The survival rates and weight gain of postlarvae increased markedly when the suitable amount of K+ and Ca2+ was added to test water, and arrived at their maximum in the Na+/K+ ratio 20-30 or Mg2+/Ca2+ ratio 4.5 treatment, having no significant difference compared with normal seawater. Therefore, considering the Na+/K+, Mg2+/Ca2+ ratios and the absolute concentration of Mg2+, Ca2+ in the experimental saline groundwaters applied to Marsupenaeus japonicus farming, it should be modulated to around 30, 4.5 and 1312 mg/l, 291 mg/l, respectively.  相似文献   

14.
Branchial mitochondria-rich (MR) cells were examined on the afferent side of gill filaments in tilapia (Oreochromis mossambicus) acclimated to different hypotonic environments, local fresh water (LFW), hard fresh water (HFW) and 5 salt water (SW). Scanning electron micrographs (SEM) identified three types of apical surfaces of the MR cells, wavy convex, shallow basin and deep hole. In spite of the different types of apical surfaces, light microscopic (LM) and transmission electron microscopic (TEM) studies suggested that these cells were MR cells. The relative abundance of these 3 types of branchial MR cells varied with external hypotonic milieus. Wavy-convexed MR cells were dominant in the gills of fish adapted to HFW, whereas shallow-basined MR cells were evident in LFW-adapted fish. In SW-adapted fish, most of the MR cells were deep holes. Experiments on adaptation to various hypotonic milieus revealed that the changes of the branchial MR cells were reversible and occurred within 24 hours following transfer. The morphological alterations of the MR cells correlated with ionic changes in different milieus, indicating that these distinct types of MR cells may play key roles for osmoregulation in hypotonic media.  相似文献   

15.
The mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP) action on goldfish growth hormone (GH) release were investigated by examining GH release responses from dispersed goldfish pituitary cells to a synthetic mammalian (m)PACAP38 peptide. It was established that GH release stimulated by 2-h exposure to mPACAP38 was concentration-dependent, attenuated by the PACAP receptor antagonist mPACAP6–38, and subject to neuroendocrine modulation by somatostatin. Maximal mPACAP38-stimulated GH release was not additive to the responses elicited by either the adenylate cyclase activator forskolin or the cyclic (c)AMP analog 8-bromo-cAMP. The GH responses to mPACAP38, forskolin and 8-bromo-cAMP, either alone or in combination, were abolished by H89, a protein kinase A (PKA) inhibitor. SQ22536, an adenylate cyclase inhibitor, attenuated forskolin- and mPACAP38-stimulated GH release. In contrast, mPACAP38-stimulated GH release were additive to the responses to two protein kinase C (PKC) activators and unaffected by two PKC inhibitors. These results suggest that the stimulatory action of PACAP on GH secretion is mediated through a cAMP- / PKA-dependent mechanism, whereas the involvement of PKC appears unlikely. The ability of mPACAP38 to further enhance maximal GnRH (PKC)-dependent GH release, but not dopamine D1 agonist (PKA)-dependent GH secretion, is consistent with this hypothesis. A possible involvement of Ca2+ in PACAP action is also suggested. Two inhibitors of voltage-sensitive Ca2+ channel reduced the GH responses to mPACAP38 in static incubation; conversely, mPACAP38 increased intracellular [Ca2+] in identified, single goldfish somatotropes.  相似文献   

16.
The euryhaline Mozambique tilapia (Oreochromis mossambicus) shows a more marked ability to adapt to low magnesium levels in food and water than many other fish species. Nonetheless, the internal distribution of magnesium is altered under low-magnesium conditions. The amount of magnesium in scales, and to a lesser extent the vertebral bone, is reduced and hence serve as magnesium reservoirs. The magnesium concentration of muscle is only marginally reduced by low external magnesium, suggesting that magnesium is partitioned to ensure normal muscle functioning. The water magnesium is of vital importance, as exposure to low-magnesium water markedly deminished the ability of tilapia to adapt to low-magnesium feeding. However, magnesium intake from the water, eithervia the integument or drinking, does not increase in lowmagnesium fed fish, despite an increased opercular chloride cell density. The growth related magnesium accumulation of tilapia under low-magnesium conditions approximates the total intake of the element (from the food and from the water), indicating that magnesium losses are minimized and that the magnesium absorption from the gastrointestinal tract may be highly efficient and very important.  相似文献   

17.
The aim of this work was to determine the effects of supplemental dietary sodium chloride on salt water acclimation of tilapia Oreochromis niloticus. Fish were fed a basal diet supplemented with NaCl (8%) during three weeks in fresh water (FW) and then transferred to salt water (SW) at 15 and 20. Changes in plasma osmolality, chloride ion concentration (Cl), plasma level of cortisol and gill Na+, K+-ATPase activity were measured at 6, 12, 24, 48, 72 and 168 h after transfer to 15SW, while the higher strength SW group (20) was only monitored up to 24 h. Morphological changes in the gill mitochondria-rich (MR) cells were examined in relation to environmental salinity. The changes associated with dietary NaCl were sporadic and of small magnitude. The plasma osmolality and Cl increased immediately after transfer up to 12–24 h, but fish fed dietary salt (S) showed lower values than the control group (C). The S group showed higher plasma levels of cortisol than the control, which maintained its initial levels during the experiment. Gill Na+, K+-ATPase activity of the S group began to increase in the first hours after transfer, reaching maximum at 12 h and returned to basal level at 24 h, while the control group maintained basal levels. The differences between gill Na+, K+-ATPase activity of S and C fish were significant (p < 0.05) at 12 h. Transmission electron microscopy (TEM) revealed that MR cells in SW show more mitochondria and a more developed tubular system arising from the basolateral membrane. The MR cells of both groups frequently formed a multicellular complex in SW, consisting of a main MR and one or more accessory cells. Such complexes are rarely observed in FW. Some MR cells of fish fed supplemented dietary salt displayed convex apical membrane in FW.  相似文献   

18.
Lysozyme acts as a non‐specific defence substance and is found in the peripheral blood, cutaneous mucus and certain tissues of marine and freshwater fishes. In the present study, we examined the effect of various environmental factors (water temperature, salinity, pH and suspended sediments) on plasma lysozyme activity in the Nile tilapia, Oreochromis niloticus L. When the fish were reared at different water temperatures (18.4, 23, 28 and 33°C), plasma lysozyme activity increased at 28°C after 2 and 4 weeks. A significant decrease in lysozyme activity was found in the fish reared at 33°C for 4 weeks. These results suggest that there is a water temperature range that affects the amount of plasma lysozyme activity that can be detected. Fish cultured at 24 g L?1 of salinity for 2 and 4 weeks and 12 g L?1 for 4 weeks resulted in significantly increased plasma lysozyme activity, suggesting that environmental salinity also affects the amount of plasma lysozyme that can be detected. Lysozyme activity also significantly increased when the fish were held in acidic water at pH 4.0 and in suspended sediments at 2000 mg L?1 for 2 weeks. It was concluded that changes in some aquatic environmental factors affect the non‐specific immune responses of Nile tilapia.  相似文献   

19.
The tilapia, Oreochromis mossambicus, exhibits a sexually dimorphic pattern of growth, males growing larger than females. We examined the effects of E2 and DHT on the GH/IGF-I axis and on VTG production in the tilapia. Sexually mature tilapia were injected with 5 μg g body weight of E2 (males) or DHT (females) every 5 days for a total of 3 injections. Female tilapia had significantly higher plasma GH levels than males. However, plasma and liver mRNA levels of IGF-I were significantly lower in females than in males, whereas VTG levels in both the plasma and liver mRNA were significantly higher in females than in males. Although significant amounts of VTG were detected in control males (8 ± 0.3 μg ml), the levels in control females (3000 ± 500 μg ml) were about 400 times higher than in males. Males treated with E2 exhibited a female-like GH/IGF-I profile. That is, they had significantly elevated levels of plasma GH with lower plasma IGF-I and liver IGF-I mRNA levels. Estradiol treatment significantly elevated both plasma and liver mRNA VTG levels. Dihydrotestosterone treatment in females induced a male-like GH/IGF-I profile: plasma GH levels were significantly reduced, whereas plasma and liver IGF-I mRNA levels were significantly elevated. Both plasma and liver mRNA levels of VTG were not altered by DHT treatment. Pituitary GH mRNA levels were similar in all treatment groups. These results clearly indicate that estrogens and androgens feminize and masculinize the GH/IGF-I axis, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Atlantic salmon parr were reared for 4 months on experimental fish‐meal‐based diets supplemented with 0 (control), 0.5, 5, 25, 125 or 250 mg Cd kg?1 feed to assess the effects of dietary Cd on active Ca uptake, mobilization of Ca from internal reservoirs, and development of bone malformations. The accumulation of dietary Cd in tissues was, in decreasing order, intestine > kidney >> gill > bone. No significant accumulation of Cd in the scales was observed. Strongest inhibition of ATP dependent Ca uptake (measured as Ca2+‐ and Na+/K+‐ATPase) was observed in the intestine of salmon fed 25 mg Cd kg?1. This suppression in active intestinal Ca uptake did not lead to disturbed plasma Ca levels. Significant reduction of Ca from the scales in salmon fed 25 mg Cd kg?1, indicates remobilization of Ca to maintain Ca homeostasis. At the end of the experiment no significant differences were observed in bone Ca levels, nor were any bone malformations observed in any of the dietary Cd‐exposed salmon. This indicates that bone as an endogenous Ca reservoir is spared compared with scales. It was concluded that dietary Cd‐induced disturbance of Ca homeostasis did not lead to bone deformities, even when Atlantic salmon were fed high amounts of cadmium. This indicates a low risk of spinal deformations being developed in Atlantic salmon sub‐chronically exposed to high Cd concentrations in the feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号